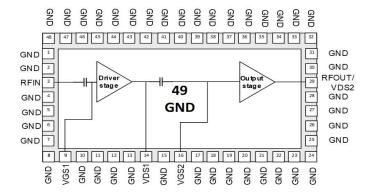


Product Overview

The QPA2513 is a 2-stage S-Band internally matched GaN Power Amplifier Module. The QPA2513 operates at pulsed RF CW in frequency range 3.1-3.5 GHz providing typically 51dBm of saturated output power with 30dB of large-signal gain and 62% of power added efficiency. The QPA2513 is matched to 50 Ohms with integrated bias circuits and DC blocking capacitor at input port. The QPA2513 in a SMD package that provides good thermal properties and ideal for use in both commercial and military radar systems.

Evaluation boards are available upon request.


25.0 x 12.5 x 3.488 mm SMD

Key Features

- Operating Frequency Range: 3.1 3.5 GHz
- Saturated Output Power Psat: 51dBm (1) (2)
- Power Added Efficiency at Psat: 62% (1) (2)
- Large Signal Gain at P_{SAT}: 30.4 dB ⁽¹⁾ ⁽²⁾
- Bias: V_{DS1,2}=+50V, I_{DQ1}=36mA, I_{DQ2}=192mA
- · Package Type: SMD
- Package Dimensions: 25.0x12.5x3.488mm
- 1. Pulsed RF signal on a reference fixture plane.
- 2. 3 dB gain compression.

Performance is typical across frequency. Please reference electrical specification table and data plots for more details.

Functional Block Diagram

Applications

- Military Radar
- Commercial Radar

Ordering Information

Part Number	Description
QPA2513	QPA2513 50 Piece Tray
QPA2513EVB04	QPA2513 Evaluation Board

125 W, 50 V, 3.1 - 3.5 GHz, GaN on SiC Power Amplifier

Absolute Maximum Ratings

Parameter	Rating
Breakdown Voltage (BV _{DG})	+145 V
Gate Voltage (V _{G1,2})	−7 to +2 V
Drain Voltage (V _{D1,2})	+55 V
RF Input Power, 50 Ohm load (3)(4)	24 dBm
RF Input Power, 10:1 output VSWR (3)(4)	21 dBm
Channel Temperature	275°C
Storage Temperature	-65 to +150°C

Notes:

- 3. At temperature +25°C
- 4. Pulse signal 10% Duty Cycle, 100 μs Pulse Width

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability.

Recommended Operating Conditions

Parameter	Min	Тур	Max	Unit
Driver Stage Gate Voltage (V _{G1})		-2.7		V
Output Stage Gate Voltage (V _{G2})		-2.7		V
Drain Voltage (V _{D1,2})		+50		V
Driver Quiescent Current (I _{DQ1})		36		mΑ
Output Stage Quiescent Current (IDQ1		192		mΑ
Operating Temperature	-40		+85	°C
F 1			10.00	

Electrical specifications are measured at specified test conditions. Specifications are not guaranteed over all recommended operating conditions.

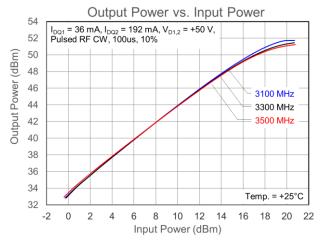
Electrical Specifications

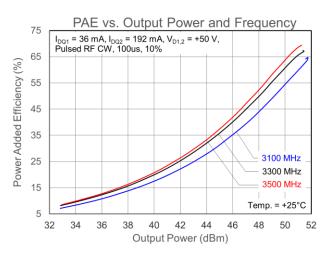
Parameter	Conditions	Min	Тур	Max	Units
Operating Frequency Range		3.1		3.5	GHz
Saturated Output Power	3 dB Gain Compression		51		dBm
Large Signal Gain	P _{SAT} = 51 dBm		30.4		dB
Power Added Efficiency	P _{SAT} = 51 dBm		62		%
Small Signal Gain	Frequency Range 3.1-3.5 GHz		33.4		dB
Input Return Loss	Frequency Range 3.1-3.5 GHz		-10.7		dB
Output Return Loss	Frequency Range 3.1-3.5 GHz		-7		dB
Driver Stage Gate Leakage (I _{G1})	$V_{G1} = -3.7 \text{ V}, V_{D1} = +10 \text{ V}$	-3.6			mA
Output Stage Gate Leakage (I _{G2})	$V_{G2} = -3.7 \text{ V}, V_{D2} = +10 \text{ V}$	-19.2			mA

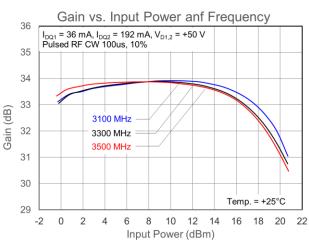
Test conditions unless otherwise noted: $V_{D1,2}$ = +50 V, I_{DQ1} = 36 mA, I_{DQ2} = 192 mA, T = +25°C, Pulsed RF CW (Duty Cycle = 10%, Width = 100 µs) on a reference fixture plane for 3.1-3.5 GHz.

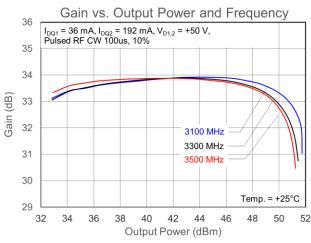
Thermal Information

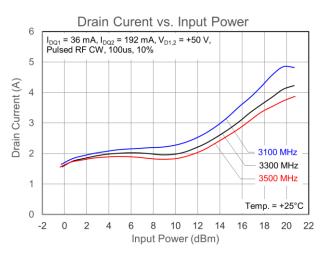
Parameter	Test Conditions	Values	Units
Thermal Resistance (θ _{JC}) ⁽⁵⁾⁽⁶⁾	TCASE = +85°C, VDS1,2 = +50 V,	0.97	°C/W
Peak IR Surface Temperature (T _{CH}) ⁽⁵⁾⁽⁶⁾	$I_{DQ1} = 36 \text{ mA}, I_{DQ2} = 192 \text{ mA}.$ $P_{DISS} = 89.8 \text{W}, Pulsed RF CW}$	144	°C

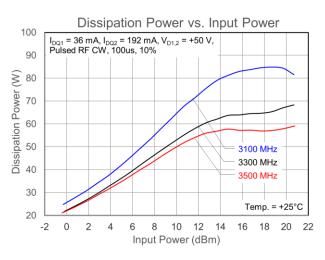

Notes:

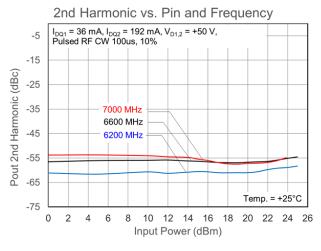

- 5. Thermal resistance is measured to package backside.
- 6. Pulsed CW (Duty Cycle = 10%, Pulse Width = $100 \mu s$).
- 7. Refer to the following document: GaN Device Channel Temperature, Thermal Resistance, and Reliability Estimates

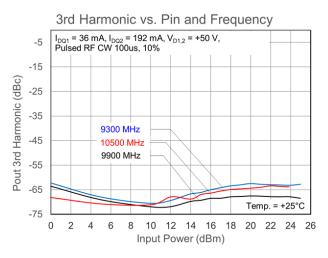


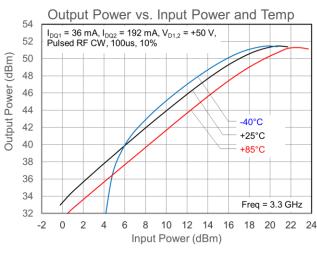

QPA2513 EVB Performance Plots – 3100 – 3500 MHz Reference Design

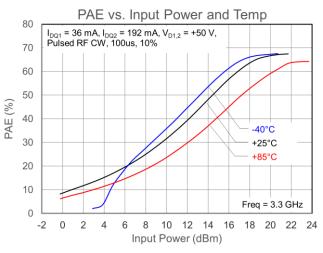

Notes: See page 9 for device reference planes where the performance was measured.

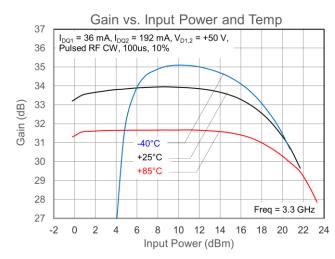


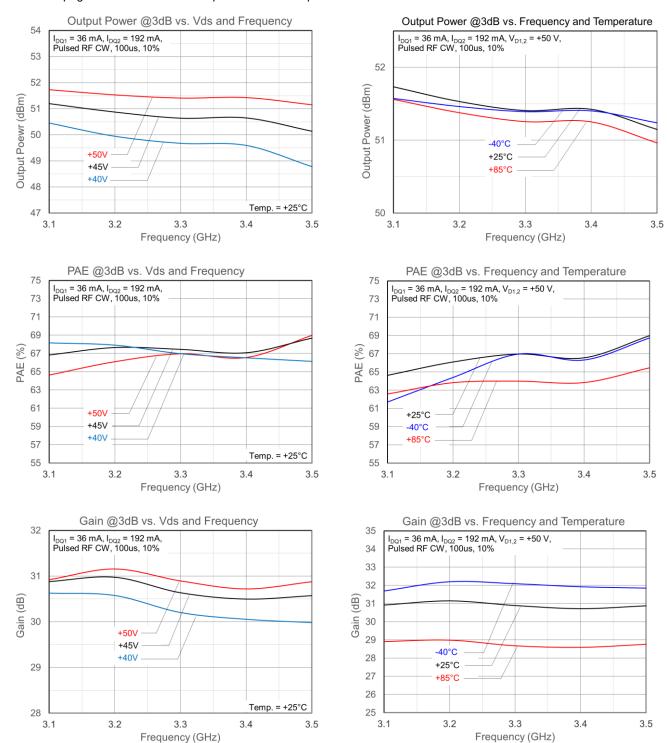



QPA2513 EVB Performance Plots – 3100 – 3500 MHz Reference Design



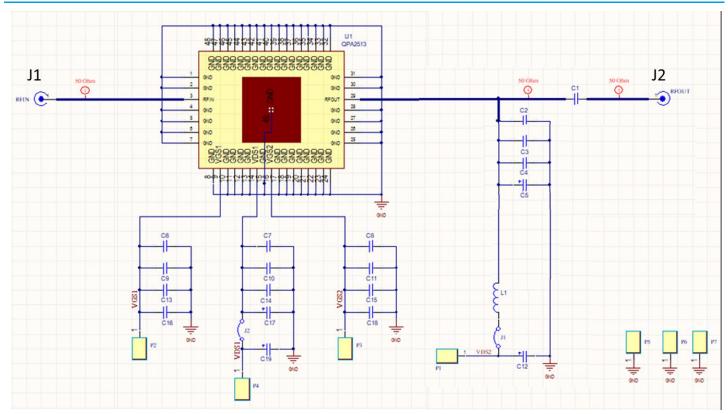

125 W, 50 V, 3.1 - 3.5 GHz, GaN on SiC Power Amplifier


Notes: See page 9 for device reference planes where the performance was measured.



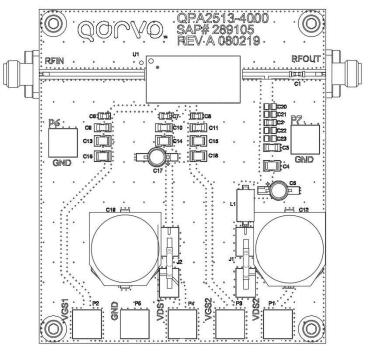
QPA2513 EVB Performance Plots at 3dB Gain Compression

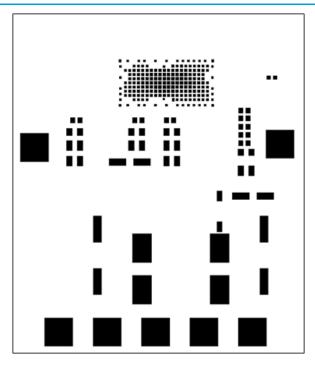

Notes: See page 9 for device reference planes where the performance was measured.


QPA2513 Typical Performance – S-Parameters

Notes: See page 8 for EVB reference planes where S-Parameters were measured.

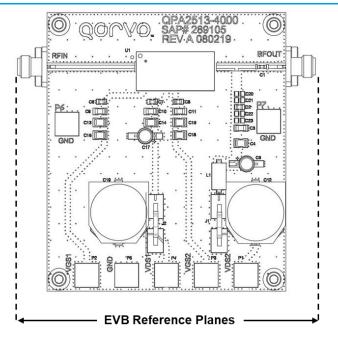
QPA2513 Evaluation Board Schematic


Notes:


Bill of Materials

Reference Des.	Value	Description	Manuf.	Part Number
C1	15 pF	Capacitor, 15pF, +/-5%, 250V, HI-Q, 0603	ATC	600S150JT250XT
C2, C6, C7, C8	12 pF	Capacitor, 12pF, 5%, 250V, HI-Q, 0805	ATC	600F120JT250XT
C3, C9, C10, C11	1000 pF	Capacitor, 1000pF, 10%, 500V, X7R, 1206	Samsung	CL31B102KGFNFNE
C4, C13, C14, C15	0.1 uF	Capacitor, 0.1uF, 10%, 100V, 1210	Murata	GRM32NR72A104KA01L
C5, C17	10 µF	Capacitor, 10uF, 20%, 100V, AL ELEC, AX	Panasonic	UCZ2A221MNQ1MS
C12, C19	220 µF	Capacitor, 220uF, 20%, 100V, ALU-ELECT, SMD	CDE	AFK227M2AR44T-F
C16, C18	10 uF	Capacitor, 10uF, 10%, 16V, X7R, 1210	TDK	C3225X7R1C106K200AB
L1	50 Ω	Ferrite, Bead, 115 Ohm, 10A, SMD	Laird Technology	28F0181-1SR-10
_	_	PCB QPA2513EVB	Various	_
J1, J2	_	Connector 50Ohm, SMA	Powell Electronics	PSF-S00-000
U1	_	100W 50V 3.1-3.5GHz GaN PA EHS	Qorvo	QPA2513

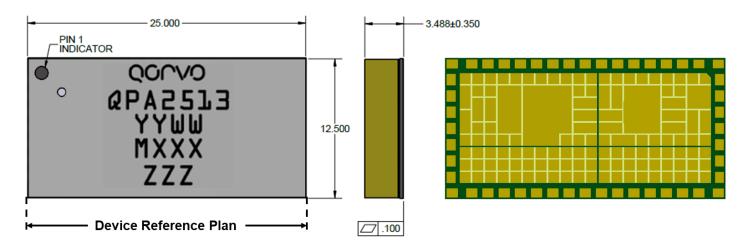
QPA2513 Evaluation Board Layout and Stencil

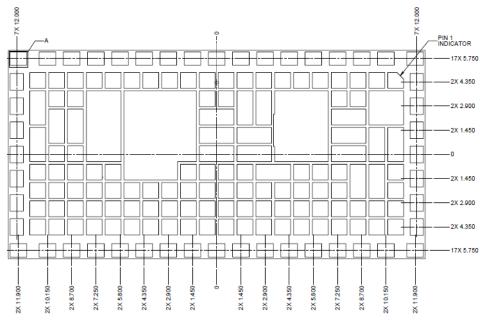


Notes:

- 1. PCB Rodgers 4350B 0.020in, 2 Layers, Copper 1.0oz. (2 oz Finish Thickness)
- 2. Stencil thickness 0.006" [150 um]

QPA2513 Evaluation Board Reference Plane for S-Parameters

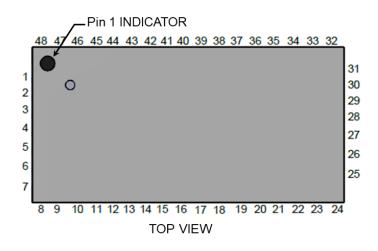

Notes:

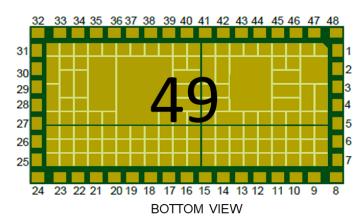

Package Marking and Dimensions

Marking: Qorvo Logo

QPA2513 – Part Number YY – Part Assembly Year WW - Part Assembly Week MXXX – Lot Number

REMOVED BOTTOM SOLDERMASK TO SHOW BOTTOM METALLIZATION

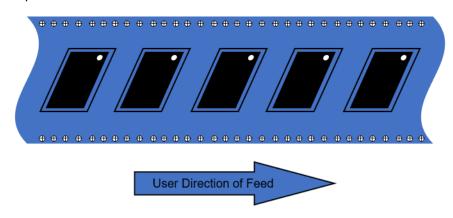


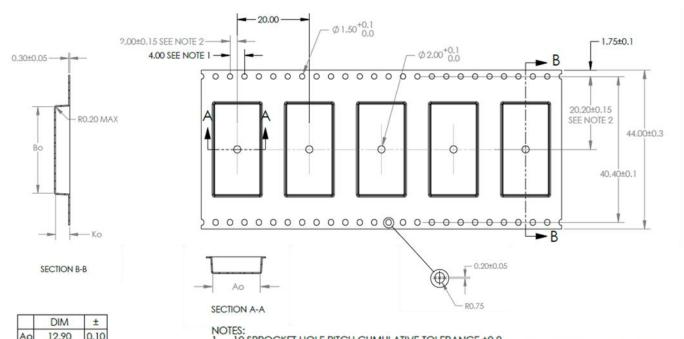

Notes:

- 1. All dimensions are in millimeters. Angles are in degrees.
- 2. General tolerance is ±0.05 unless otherwise noted.
- 3. Package Base: Laminate
- 4. Package Lid: FR-4.
- 5. Contact plating: Au, Thickness is 0.1 µm MIN.

Pin Configuration and Description

Pin Number	Label	Description
1, 2	GND	RF/DC ground.
3	RF IN	RF input
4, 5, 6, 7, 8	GND	RF/DC ground.
9	V _{GS1}	Driver Stage Gate Bias
10, 11, 12, 13	GND	RF/DC ground.
14	V _{DS1}	Driver Stage Drain Bias
15	GND	RF/DC ground.
16	V _{GS2}	Output Stage Gate Bias
17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28	GND	RF/DC ground.
29	RF OUT, V _{DS2}	RF output, Output Stage Drain Bias
30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48	GND	RF/DC ground.
49 (Backside Paddle)	GND	RF/DC ground.


Power Amplifier Module Biasing Procedure


Bias On	Bias Off
1. Turn ON V _{GS1} to −5 V.	
2. Turn ON V _{GS2} to −5 V.	1. Turn OFF RF.
3. Turn ON V_{DS1} and V_{DS2} to +50 V.	2. Adjust V _{GS1} and V _{GS2} to −5 V.
 Slowly adjust V_{GS1} until I_{DQ1} = 36 mA. 	3. Turn OFF V _{DS1} and V _{DS2} .
(Typically, $V_{G1} = -2.7 \text{ V.}$)	4. Wait two (2) seconds to allow drain capacitors to discharge.
5. Slowly adjust V _{GS2} until I _{DQ2} = 192 mA.	5. Turn OFF V _{GS1} and V _{GS2} .
(Typically, $V_{G1} = -2.7 \text{ V.}$)	
6. Turn ON RF.	

Tape and Reel Information – Carrier and Cover Tape Dimensions

Tape and reel specifications for this part are also available on the Qorvo website. Standard T/R size = 2500 pieces on a 13" reel.

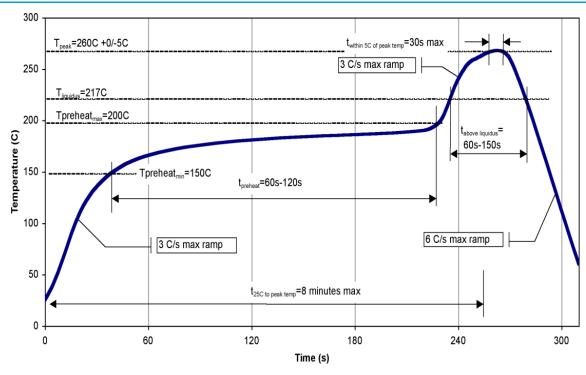
		L	_ength		A0	0.508	12.9
Feature)	I	Measure		Symbol	Size (in)	Size (mm)
ino	1120	0.10	3	. AO AND BO ARE MEASURED ON A	PLANE AT A DISTANCE	E K ABOVE THE BOTTO	OM OF THE POCKET.
Ko	4.20	0.10		POCKET HOLE. AO AND BO ARE MEASURED ON A	DI ANE AT A DISTANCE	"P" AROVE THE BOTTO	M OF THE POOKET
Во	25.40	0.10	2	POCKET POSITION RELATIVE TO SP	ROCKET HOLE MEASUR	RED AS TRUE POSITION	OF POCKET, NOT
70	12.70	0.10	1	 10 SPROCKET HOLE PITCH CUMUL 			

Feature	Measure	Symbol	Size (in)	Size (mm)
	Length	A0	0.508	12.9
Oneite	Width	B0	1.000	25.4
Cavity	Depth	K0	0.165	4.23
	Pitch	P1	0.472	12.0
Centerline Distance	Cavity to Perforation - Length Direction	P2	0.079	2.0
Centenine distance	Cavity to Perforation - Width Direction	F	0.795	20.2
Cover Tape	Width	С	1.476	37.5
Carrier Tape	Width	W	1.732	44.0

125 W, 50 V, 3.1 – 3.5 GHz, GaN on SiC Power Amplifier

Tape and Reel Information – Reel Dimensions

Packaging reels are used to prevent damage to devices during shipping and storage, loaded carrier tape is typically wound onto a plastic take-up reel. The reel size is 13" diameter. The reels are made from high-impact injection-molded polystyrene (HIPS), which offers mechanical and ESD protection to packaged devices.



Feature	Measure	Symbol	Size (in)	Size (mm)
	Diameter	Α	12.992	330.0
Flange	Thickness	W2	1.976	50.2
	Space Between Flange	W1	1.764	44.8
	Outer Diameter	N	4.016	102.0
Hub	Arbor Hole Diameter	С	0.512	13.0
пир	Key Slit Width	В	0.079	2.0
	Key Slit Diameter	D	0.787	20.0

125 W, 50 V, 3.1 – 3.5 GHz, GaN on SiC Power Amplifier

Recommended Solder Temperature Profile

125 W, 50 V, 3.1 - 3.5 GHz, GaN on SiC Power Amplifier

Handling Precautions

Parameter	Rating	Standard
ESD – Human Body Model (HBM)	Class 1A	ANSI/ESDA/JEDEC Standard JS-001
ESD - Charged Device Model (CDM)	Class C3	ANSI/ESDA/JEDEC Standard JS-002
MSL-Moisture Sensitivity Level	MSL3	IPC/JEDEC Standard J-STD-020

Solderability

Compatible with lead-free (260°C max. reflow temp.) soldering process.

This package is air-cavity and non-hermetic, and therefore cannot be subjected to aqueous washing. The use of no-clean solder to avoid washing after soldering is highly recommended.

Package lead plating is ENEPIG.

Solder rework not recommended

RoHS Compliance

This part is compliant with 2011/65/EU RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment) as amended by Directive 2015/863/EU.

This product also has the following attributes:

- Antimony Free
- TBBP-A (C₁₅H₁₂Br₄O₂) Free
- PFOS Free
- SVHC Free

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations:

Web: www.qorvo.com Tel: 1-844-890-8163

Email: customer.support@gorvo.com

Important Notice

The information contained herein is believed to be reliable; however, Qorvo makes no warranties regarding the information contained herein and assumes no responsibility or liability whatsoever for the use of the information contained herein. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for Qorvo products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information. THIS INFORMATION DOES NOT CONSTITUTE A WARRANTY WITH RESPECT TO THE PRODUCTS DESCRIBED HEREIN, AND QORVO HEREBY DISCLAIMS ANY AND ALL WARRANTIES WITH RESPECT TO SUCH PRODUCTS WHETHER EXPRESS OR IMPLIED BY LAW, COURSE OF DEALING, COURSE OF PERFORMANCE, USAGE OF TRADE OR OTHERWISE, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Without limiting the generality of the foregoing, Qorvo products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.

Copyright 2020 © Qorvo, Inc. | Qorvo is a registered trademark of Qorvo, Inc.