
高速电压模式脉宽调制器

查询样品: UCC25705-Q1, UCC25706-Q1

特性

- 符合汽车应用要求
- 工作频率高于 4 MHz
- 集成型振荡器/ 电压前馈 补偿
- 大于 4:1 的输入电压范围
- 25 ns 电流限制延迟
- 可编程最大占空比钳位
- 光耦合器接口
- 50 µA 启动电流
- 1 MHz 时,工作电流为 4.2 mA

- 闭锁电流超过 100mA,符合 JESD78 Class I 标准
- 业界最小占位面积的 8 引脚 MSOP 封装可最大限度地缩减电路板面积与厚度

说明

UCC25705-Q1 与 UCC25706-Q1 器件是具有快速过压保护的 8 引脚电压模式一次侧控制器。上述器件可在高性能隔离与非隔离电源转换器中用作内核高速构建块。

UCC25705-Q1/UCC25706-Q1 器件具有支持集成型前馈补偿的高速振荡器,可提高转换器性能。 针对 25 ns 输出延迟时间的典型电流感测可对过载情况实现快速响应。 此外,该 IC 还可为实现更高保护功能提供可编程最大占空比钳位,其也可针对振荡器进行禁用,在尽可能大的占空比下运行。

提供两个 UVLO 选项。 具有更低启动电压的 UCC25705-Q1 旨在满足 DC 至 DC 转换器的需求,而更高启动电压 及更宽 UVLO 范围的 UCC25706-Q1 则更适用于离线应用。

UCC2570x-Q1 系列采用 8 引脚 SOIC (D) 封装。

图 1. 典型应用原理图 V_{OUT} VDD DISCH FB TPS2829 RC OUT 7 VFF FET DRIVER SOFT GND ILIM 1 CIRCUIT UCC2570x-Q1 MODE =1

A

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

ZHCS082 – MAY 2011 www.ti.com.cn

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature (unless otherwise noted)(1)(2)

	VALUE	UNIT
Supply voltage	15	V
Input voltage (VFF,RC,ILIM)	7	V
Input voltage (FB)	15	V
Input current (DISCH)	1	mA
Output current (OUT) dc	±20	mA
Storage temperature, T _{stg}	-65 to 150	°C
Junction temperature, T _J	–55 to 150	°C
Lead temperature (soldering, 10 sec)	300	°C

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

over operating free-air temperature range (unless otherwise noted)

		VALUE	UNIT
T _A	Operating ambient temperature	-40 to 105	°C

ORDERING INFORMATION TABLE

T,	A	PAC	KAGE	ORDERABLE PART NUMBER	TOP-SIDE MARKING
40°C to	125°C	SOIC-8 - D	Reel of 2500	UCC25706QDRQ1	25706Q
40°C to	125°C	SOIC-8 - D	Reel of 2500	UCC25705QDRQ1	Preview

ESD RATINGS TABLE

	PARAMETER	VALUE	UNIT
	Human Body Model (HBM)	1000	V
ESD	Charged- Device Model (CDM)	1000	V
	Machine Model (MM)	200	V

⁽²⁾ All voltages are with respect to GND. Currents are positive into, negative out of the specified terminal. Consult ti.com/packaging for more information.

ELECTRICAL CHARACTERISTICS

 V_{DD} = 11 V, V_{IN} = 30 V, R_{T} = 47 k, R_{DISCH} = 400 k, R_{FF} = 14 k, C_{T} = 220 pF, C_{VDD} = 0.1 μ F, and no load on the outputs, T_{A} = -40° to 125°C, (unless otherwise specified)

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
UVLO section (UCCx5705)					
Start threshold		8.0	8.8	9.6	V
Stop threshold		7.4	8.2	9.0	V
Hysteresis		0.3	0.6	1.0	V
UVLO section (UCCx5706)				•	
Start threshold		11.2	12.0	12.8	V
Stop threshold		7.2	8.0	8.8	V
Hysteresis		3.2	4.0	4.5	V
Supply Current Section					
Start-up current	V _{DD} = UVLO start – 1 V, V _{DD} comparator off		30	90	μΑ
I _{DD} active	V _{DD} comparator on, oscillator running at 1 MHz		4.2	5.0	mA
Line Sense Section					
Low line comparator threshold		0.95	1.00	1.15	V
Input bias current (VFF)		-100		100	nA
Oscillator Section		*			
Frequency	VFF = 1.2 V to 4.8 V	0.9	1.0	1.1	MHz
CT peak voltage	VFF = 1.2 V, See ⁽¹⁾		1.2		V
	VFF = 4.8 V, See ⁽¹⁾		4.8		V
CT valley voltage	See ⁽¹⁾		0		V
Current Limit Section				•	
Input bias current		0.2	-0.2	-1	μΑ
Current limit threshold		180	200	220	mV
Propagation delay, ILIM to OUT	50 mV overdrive		25	35	ns
Pulse Width Modulator Section					
FB input impedance	V _{FB} = 3 V	30	50	90	kΩ
Minimum duty cycle	V _{FB} < 2 V			0	%
Navigas yan districtive and a	$V_{FB} = V_{DD}$, $F_{OSC} = 1 \text{ MHz}$	70	75	80	%
Maximum duty cycle	$V_{DISCH} = 0 V$, $F_{OSC} = 1 MHz$		93		%
PWM gain	V _{FF} = 2.5 V, MODE = 1		12		%/V
Propagation delay, PWM to OUT			65	130	ns
Output Section					
V _{OH}	$I_{OUT} = -5 \text{ mA}, \qquad V_{DD} - \text{output}$		0.3	0.6	V
V _{OL}	I _{OUT} = 5 mA		0.15	0.4	V
Rise time	C _{LOAD} = 50 pF		10	25	ns
Fall time	C _{LOAD} = 50 pF		10	25	ns

⁽¹⁾ Specified by design.

PIN DESCRIPTIONS

DISCH: A resistor to VIN sets the oscillator discharge current programming a maximum duty cycle. When grounded, an internal comparator switches the oscillator to a quick discharge mode. A small 100-pF capacitor between DISCH and GND may reduce oscillator jitter without impacting feed-forward performance. I_{DISCH} must be between 25 μ A and 250 μ A over the entire V_{IN} range.

FB: Input to the PWM comparator. This pin is intended to interface with an optocoupler. Input impedance is $50-k\Omega$ typical.

GND: Ground return pin.

I_{LIM}: Provides a pulse-by-pulse current limit by terminating the PWM pulse when the input is above 200 mV. This provides a high speed (25 ns typical) path to reset the PWM latch, allowing for a pulse-by-pulse current limit.

OUT: The output is intended to drive an external FET driver or other high impedance circuits, but is not intended to directly drive a power MOSFET. This improves the controller's noise immunity. The output resistance of the PWM controller, typically $60~\Omega$ pull-up and $30~\Omega$ pull-down, will result in excessive rise and fall times if a power MOSFET is directly driven at the speeds for which the UCC2570x-Q1 is optimized.

RC: The oscillator can be configured to provide a maximum duty cycle clamp. In this mode the on-time is set by RT and CT, while the off-time is set by R_{DISCH} and CT.Since the voltage ramp on CTis proportional to VIN, feed-forward action is obtained. Since the peak oscillator voltage is also proportional to VIN, constant frequency operation is maintained over the full power supply input range. When the DISCH pin is grounded, the duty cycle clamp is disabled. The RC pin then provides a low impedance path to ground CT during the off time.

 V_{DD} : Power supply pin. This pin should be bypassed with a 0.1- μ F capacitor for proper operation. The undervoltage lockout function of the UCC2570x-Q1 allows for a low current startupmode and ensures that all circuits become active in a known state. The UVLO thresholds on the UCC25705-Q1 are appropriate for a dc-to-dc converter application. The wider UVLO hysteresis of the UCC25706-Q1 (typically 4 V) is optimized for a bootstrap startup mode from a high impedance source.

 V_{FF} : The feed-forward pin provides the controllerwith a voltage proportional to the power supply input voltage. When the oscillator is providing a duty cycle clamp, a current of 2 × I_{DISCH} is sourced from the V_{FF} pin. A single resistor R_{FF} between V_{FF} and GND then set V_{FF} to:

$$VFF \approx VIN \times \left(\frac{2 \times R_{FF}}{2 \times R_{FF} + R_{DISCH}} \right)$$

When the DISCH pin is grounded and the duty cycle clamp is not used, the internal current source is disabled and a resistor divider from VIN is used to set VFF. In either case, when the voltage on V_{FF} is less than 1.0 V, both the output and oscillator are disabled.

STRUMENTS

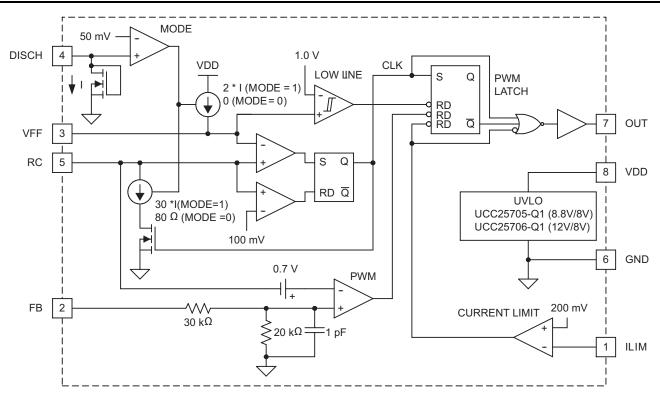


Figure 2. Block Diagram

FUNCTIONAL DESCRIPTION

Oscillator and PWM

The oscillator can be programmed to provide a duty cycle clamp or be configured to run at the maximum possible duty cycle.

The PWM latch is set during the oscillator discharge and is reset by the PWM comparator when the C_T waveform is greater than the feedback voltage. The voltage at the FB pin is attenuated before it is applied to the PWM comparator. The oscillator ramp is shifted by approximately 0.65-V at room temperature at the PWM comparator. The offset has a temperature coefficient of approximately --2 mV/ $^{\circ}$ C.

The I_{LIM} comparator adds a pulse by pulse current limit by resetting the PWM latch when $V_{ILIM} > 200$ mV. The PWM latch is also reset by a low line condition ($V_{FF} < 1.0$ V).

All reset conditions are dominant; asserting any output will force a zero duty cycle output.

Oscillator With Duty Cycle Clamp (MODE = 1)

The timing capacitor C_T is charged from ground to V_{FF} through R_T . The discharge path is through an on-chip current sink that has a value of 30 × I_{DISCH} , where I_{DISCH} is the current through the external resistor R_{DISCH} . Since the charge and discharge currents are both proportional to V_{IN} , their ratio, and the maximum duty cycle remains constant as V_{IN} varies.

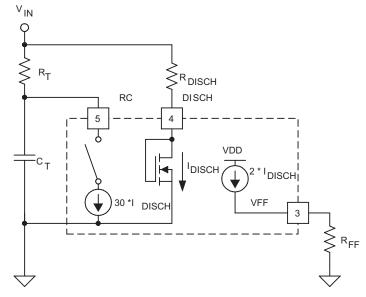


Figure 3. Duty Cycle Clamp (MODE = 1)

The on-time is approximately:

$$T_{\text{ON}} = \alpha \times R_{\text{T}} \times C_{\text{T}} \text{ where } \alpha = \frac{V_{\text{FF}}}{V_{\text{IN}}} \approx \frac{2 \times R_{\text{FF}}}{R_{\text{DISCH}}}$$

The off-time is:

$$T_{\text{OFF}} = \alpha \times \frac{C_{\text{T}} \times \left(R_{\text{T}} \times R_{\text{DISCH}}\right)}{30 \times R_{\text{T}} - R_{\text{DISCH}}}$$

The frequency is:

$$f = \frac{1}{\alpha \times R_T \times C_T} \times \frac{1}{1 + \frac{R_{DISCH}}{30 \times R_T - R_{DISCH}}}$$

The maximum duty cycle is:

$$Duty\,Cycle = \frac{T_{ON}}{T_{ON} + T_{OFF}} = \left(1 - \frac{R_{DISCH}}{30 \times R_T}\right)$$

ZHCS082 - MAY 2011 www.ti.com.cn

Component Selection for Oscillator With Duty Cycle Clamp (MODE = 1)

For a power converter with the following specifications:

- $V_{IN(min)} = 18 \text{ V}$
- $V_{IN(max)} = 75 \text{ V}$
- $V_{IN(shutdown)} = 15 \text{ V}$
- $F_{OSC} = 1 MHz$
- MAX = 0.78 at $V_{IN(min)}$

In this mode, the on-time is approximately:

- $T_{ON(max)} = 780 \text{ ns}$
- $T_{OFF(min)} = 220 \text{ ns}$

$$V_{FF(min)} = \frac{18}{15} = 1.20 \text{ V}$$

- 1. Pick $C_T = 220 pF$.
- 2. Calculate R_T.

$$R_{\text{T}} = \frac{V_{\text{IN(min)}} \! \times \! T_{\text{ON(max)}}}{V_{\text{FF(min)}} \! \times \! C_{\text{T}}}$$

$$R_T = 51.1 \text{ k}\Omega$$

 R_{DISCH}

$$R_{DISCH} = \frac{30 \times R_{T}}{1 + \left(\frac{\left(\frac{V_{FF(min)}}{V_{IN(min)}}\right) \times R_{T} \times C_{T}}{T_{OFF(min)}}\right)}$$

 $R_{DISCH} = 383 \text{ k}\Omega.$

 I_{DISCH} must be between 25 μA and 250 μA over the entire VIN range.

With the calculated values, I_{DISCH} ranges from 44 µA to 193 µA, within the allowable range. If I_{DISCH} is too high, C_T must be decreased.

4.
$$R_{FF}$$

$$R_{FF} = \frac{V_{FF(min)} \times R_{DISCH}}{2 \times (V_{IN(min)} - 1)}$$

The nearest 1% standard value to the calculated value is 13.7 k.

ZHCS082 - MAY 2011 www.ti.com.cn

Oscillator Without Duty Cyle Clamp (MODE = 0)

In this mode, the timing capacitor is discharged through a low impedance directly to ground. The DISCH pin is externally grounded. A comparator connected to DISCH senses the ground connection and disables both the discharge current source and V_{FF} current source. A resistor divider is now required to set V_{FF}.

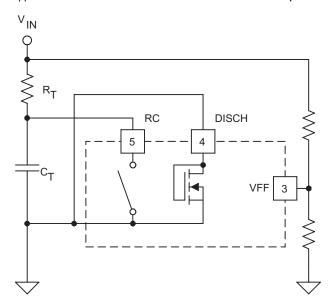


Figure 4. Ocsillator Without Clamp (MODE = 0)

$$T_{\text{ON}} = \alpha \times R_{\text{T}} \times C_{\text{T}} \text{ where } \alpha = \frac{V_{\text{FF}}}{V_{\text{IN}}}$$
 In this mode, the on-time is approximately:

The off-time is: $T_{OFF} \approx 75 \text{ ns}$

The frequency is:

$$f = \frac{1}{\alpha \! \times \! R_{\scriptscriptstyle T} \! \times \! C_{\scriptscriptstyle T} \! + \! 75 ns}$$

NSTRUMENTS

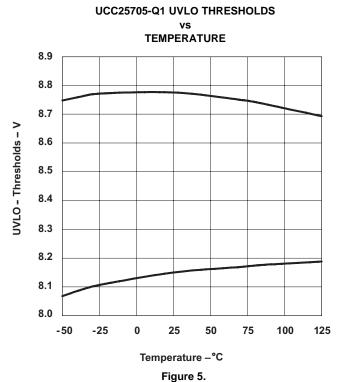
Component Selection for Oscillator Without Duty Cycle Clamp (MODE = 0)

For a power converter with the following specifications:

- V_{IN(min)} = 18 V
- V_{IN(max)} = 75 V
- V_{IN(shutdown)} = 15 V
- F_{OSC} = 1 MHz

With these specifications,

$$V_{\text{FF(min)}} = \frac{18}{15} = 1.2V$$


- 1. Pick $C_T = 220 pF$
- 2. Calculate R_T.

$$R_{T} = \frac{\frac{V_{\text{IN(min)}}}{V_{\text{FF(min)}}} \times \left(\frac{1}{F_{\text{OSC}}} - 75 ns\right)}{C_{T}}$$

ZHCS082 – MAY 2011 www.ti.com.cn

TEXAS INSTRUMENTS

TYPICAL CHARACTERISTICS

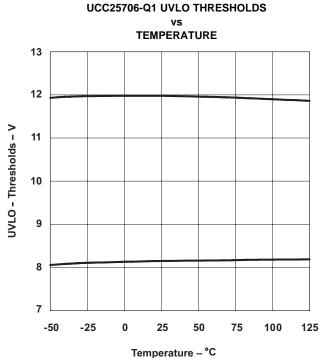
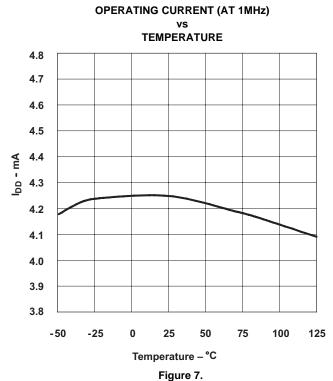
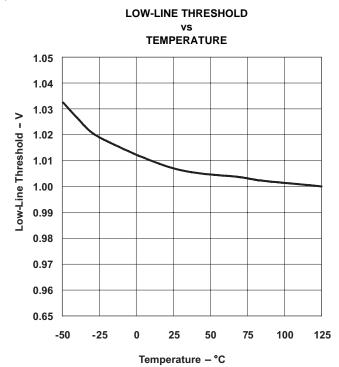
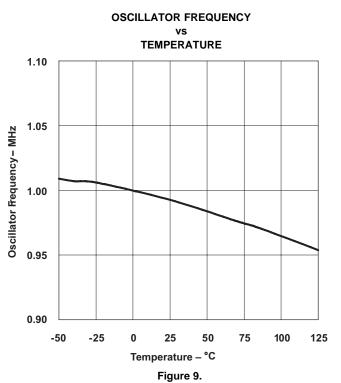
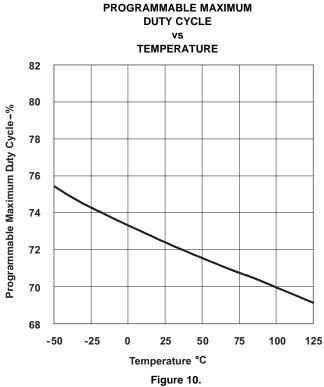
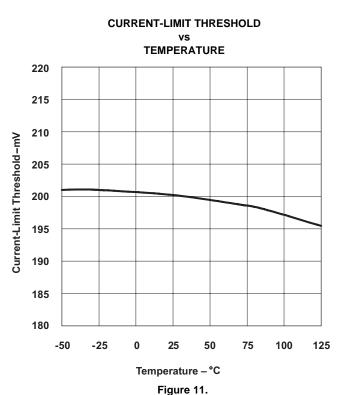
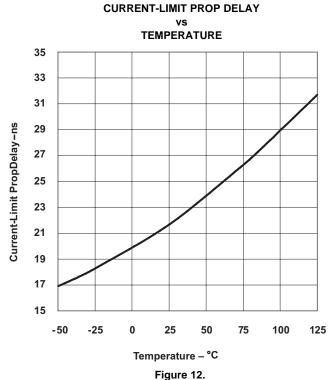



Figure 6.


Figure 8.

TYPICAL CHARACTERISTICS

重要声明

德州仪器(TI) 及其下属子公司有权在不事先通知的情况下,随时对所提供的产品和服务进行更正、修改、增强、改进或其它更改,并有权随时中止提供任何产品和服务。客户在下订单前应获取最新的相关信息,并验证这些信息是否完整且是最新的。所有产品的销售都遵循在订单确认时所提供的TI 销售条款与条件。

TI 保证其所销售的硬件产品的性能符合 TI 标准保修的适用规范。仅在 TI 保证的范围内,且 TI 认为有必要时才会使用测试或其它质量控制技术。除非政府做出了硬性规定,否则没有必要对每种产品的所有参数进行测试。

TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用TI 组件的产品和应用自行负责。为尽量减小与客户产品和应用相关的风险,客户应提供充分的设计与操作安全措施。

TI不对任何TI专利权、版权、屏蔽作品权或其它与使用了TI产品或服务的组合设备、机器、流程相关的TI知识产权中授予的直接或隐含权限作出任何保证或解释。TI所发布的与第三方产品或服务有关的信息,不能构成从TI获得使用这些产品或服务的许可、授权、或认可。使用此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是TI的专利权或其它知识产权方面的许可。

对于TI 的产品手册或数据表,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况下才允许进行复制。在复制信息的过程中对内容的篡改属于非法的、欺诈性商业行为。TI 对此类篡改过的文件不承担任何责任。

在转售TI产品或服务时,如果存在对产品或服务参数的虚假陈述,则会失去相关TI产品或服务的明示或暗示授权,且这是非法的、欺诈性商业行为。TI对此类虚假陈述不承担任何责任。

TI产品未获得用于关键的安全应用中的授权,例如生命支持应用(在该类应用中一旦TI产品故障将预计造成重大的人员伤亡),除非各方官员已经达成了专门管控此类使用的协议。购买者的购买行为即表示,他们具备有关其应用安全以及规章衍生所需的所有专业技术和知识,并且认可和同意,尽管任何应用相关信息或支持仍可能由TI提供,但他们将独力负责满足在关键安全应用中使用其产品及TI产品所需的所有法律、法规和安全相关要求。此外,购买者必须全额赔偿因在此类关键安全应用中使用TI产品而对TI及其代表造成的损失。

TI 产品并非设计或专门用于军事/航空应用,以及环境方面的产品,除非TI 特别注明该产品属于"军用"或"增强型塑料"产品。只有TI 指定的军用产品才满足军用规格。购买者认可并同意,对TI 未指定军用的产品进行军事方面的应用,风险由购买者单独承担,并且独力负责在此类相关使用中满足所有法律和法规要求。

TI产品并非设计或专门用于汽车应用以及环境方面的产品,除非TI特别注明该产品符合ISO/TS 16949 要求。购买者认可并同意,如果他们在汽车应用中使用任何未被指定的产品,TI对未能满足应用所需要求不承担任何责任。

可访问以下URL 地址以获取有关其它TI 产品和应用解决方案的信息:

	产品		应用
数字音频	www.ti.com.cn/audio	通信与电信	www.ti.com.cn/telecom
放大器和线性器件	http://www.ti.com.cn/amplifiers	计算机及周边	www.ti.com.cn/computer
数据转换器	http://www.ti.com.cn/dataconverters	消费电子	www.ti.com/consumer-apps
DLP®产品	www.dlp.com	能源	www.ti.com/energy
DSP - 数字信号处理器	http://www.ti.com.cn/dsp	工业应用	www.ti.com.cn/industrial
时钟和计时器	http://www.ti.com.cn/clockandtimers	医疗电子	www.ti.com.cn/medical
接口	http://www.ti.com.cn/interface	安防应用	www.ti.com.cn/security
逻辑	http://www.ti.com.cn/logic	汽车电子	www.ti.com.cn/automotive
电源管理	http:///www.ti.com.cn/power	视频和影像	www.ti.com.cn/video
微控制器 (MCU)	http://www.ti.com.cn/microcontrollers	无线通信	www.ti.com.cn/wireless
RFID 系统	http://www.ti.com.cn/rfidsys		
RF/IF 和 ZigBee® 解决方案	www.ti.com.cn/radiofre		
	TI E2E 工程师社区	http://e2e.ti.com/cn/	

邮寄地址: 上海市浦东新区世纪大道 1568 号,中建大厦 32 楼 邮政编码: 200122 Copyright © 2011 德州仪器 半导体技术(上海)有限公司

PACKAGE OPTION ADDENDUM

10-Dec-2020

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
							(6)				
UCC25706QDRQ1	ACTIVE	SOIC	D	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	25706Q	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

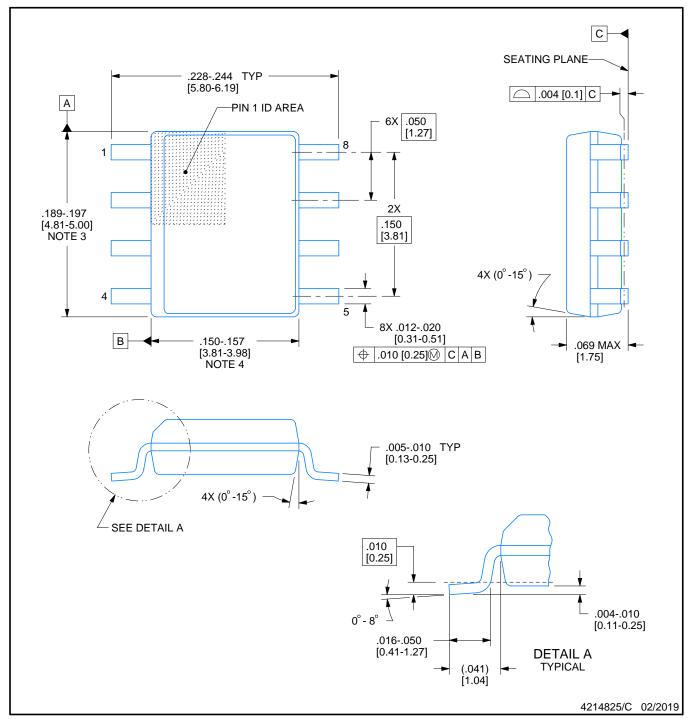
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

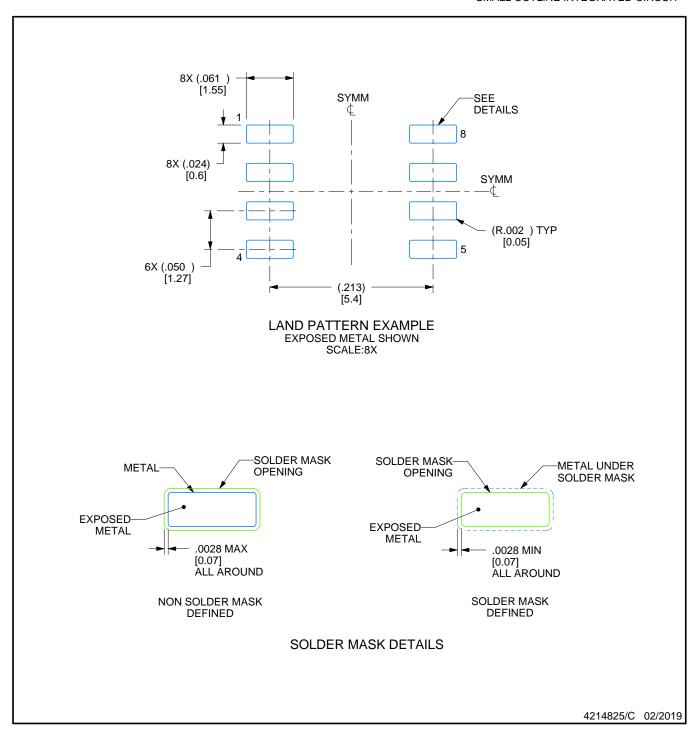
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.


- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

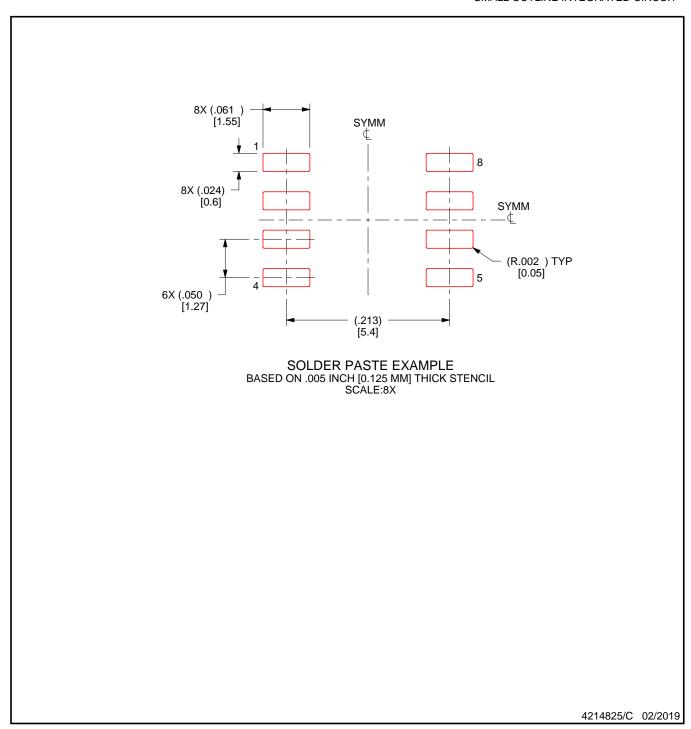
SMALL OUTLINE INTEGRATED CIRCUIT



NOTES:

- 1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.
- 4. This dimension does not include interlead flash.
- 5. Reference JEDEC registration MS-012, variation AA.

SMALL OUTLINE INTEGRATED CIRCUIT


NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

重要声明和免责声明

TI 均以"原样"提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示担保。

所述资源可供专业开发人员应用TI产品进行设计使用。您将对以下行为独自承担全部责任: (1)针对您的应用选择合适的TI产品; (2)设计、验证并测试您的应用; (3)确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI对您使用所述资源的授权仅限于开发资源所涉及TI产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI及其代表造成的损害。

TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。

邮寄地址: 上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码: 200122 Copyright © 2020 德州仪器半导体技术(上海)有限公司