

FEATURES

Controlled Baseline

 One Assembly/Test Site, One Fabrication Site

- Extended Temperature Performance of -55°C to 125°C
- Enhanced Diminishing Manufacturing Sources (DMS) Support
- Enhanced Product-Change Notification
- Qualification Pedigree (1)
- RS-232 Bus-Pin ESD Protection Exceeds ±15 kV Using Human-Body Model (HBM)
- Meets or Exceeds the Requirements of TIA/EIA-232-F and ITU v.28 Standards
- Operates With 3-V to 5.5-V V_{CC} Supply
- Operates up to 250 kbit/s
- One Driver and One Receiver
- Low Standby Current . . . 1 μA Typical
- External Capacitors . . . 4 \times 0.1 μF
- Accepts 5-V Logic Input With 3.3-V Supply
- Alternative High-Speed Pin-Compatible
 Device (1 Mbit/s)

- SNx5C3221

(1) Component qualification in accordance with JEDEC and industry standards to ensure reliable operation over an extended temperature range. This includes, but is not limited to, Highly Accelerated Stress Test (HAST) or biased 85/85, temperature cycle, autoclave or unbiased HAST, electromigration, bond intermetallic life, and mold compound life. Such qualification testing should not be viewed as justifying use of this component beyond specified performance and environmental limits.

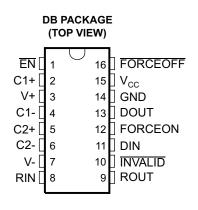
DESCRIPTION/ORDERING INFORMATION

The MAX3221 consists of one line driver, one line receiver, and a dual charge-pump circuit with \pm 15-kV ESD protection pin to pin (serial-port connection pins, including GND). The device meets the requirements of TIA/EIA-232-F and provides the electrical interface between an asynchronous communication controller and the serial-port connector. The charge pump and four small external capacitors allow operation from a single 3-V to 5.5-V supply. These devices operate at data signaling rates up to 250 kbit/s and a maximum of 30-V/µs driver output slew rate.

ORDERING INFORMATION

T _A	PACK	AGE ⁽¹⁾	ORDERABLE PART NUMBER	TOP-SIDE MARKING
–55°C to 125°C	SSOP – DB	Reel of 2000	MAX3221MDBREP	MB3221M

(1) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Auto-Powerdown Feature Automatically
 Disables Drivers for Power Savings

APPLICATIONS

- Battery-Powered, Hand-Held, and Portable Equipment
- PDAs and Palmtop PCs
- Notebooks, Subnotebooks, and Laptops
- Digital Cameras
- Mobile Phones and Wireless Devices

MAX3221-EP 3-V TO 5.5-V SINGLE-CHANNEL RS-232 LINE DRIVER/RECEIVER WITH $\pm 15\text{-kV}$ ESD PROTECTION

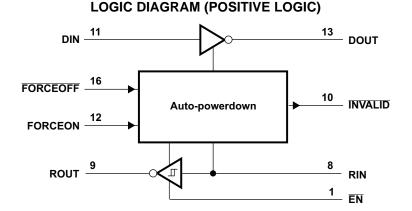
SLLS751-OCTOBER 2006

DESCRIPTION/ORDERING INFORMATION (CONTINUED)

Flexible control options for power management are available when the serial port is inactive. The auto-powerdown feature functions when FORCEON is low and FORCEOFF is high. During this mode of operation, if the device does not sense a valid RS-232 signal on the receiver input, the driver output is disabled. If FORCEOFF is set low and enable (EN) is high, both the driver and receiver are shut off, and the supply current is reduced to 1 μ A. Disconnecting the serial port or turning off the peripheral drivers causes the auto-powerdown condition to occur. Auto-powerdown can be disabled when FORCEON and FORCEOFF are high. With auto-powerdown enabled, the device is activated automatically when a valid signal is applied to the receiver input. The INVALID output notifies the user if an RS-232 signal is present at the receiver input. INVALID is high (valid data) if the receiver input voltage is greater than 2.7 V or less than -2.7 V, or has been between -0.3 V and 0.3 V for less than 30 μ s. See Figure 5 for receiver input levels.

FUNCTION TABLES

		INPUTS		OUTPUT	
DIN	FORCEON	FORCEOFF	VALID RIN RS-232 LEVEL	DOUT	DRIVER STATUS
Х	Х	L	Х	Z	Powered off
L	Н	Н	Х	Н	Normal operation with
н	н	Н	Х	L	auto-powerdown disabled
L	L	Н	Yes	Н	Normal operation with
н	L	н	Yes	L	auto-powerdown enabled
L	L	Н	No	Z	Powered off by auto-powerdown
н	L	Н	No	Z	feature


EACH DRIVER⁽¹⁾

(1) H = high level, L = low level, X = irrelevant, Z = high impedance

EACH RECEIVER⁽¹⁾

	INPU	JTS	OUTPUT
RIN	ĒN	VALID RIN RS-232 LEVEL	ROUT
L	L	Х	Н
Н	L	Х	L
Х	Н	Х	Z
Open	L	No	Н

(1) H = high level, L = low level, X = irrelevant, Z = high impedance (off), Open = disconnected input or connected driver off

Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V _{CC}	Supply voltage range ⁽²⁾		-0.3	6	V
V+	Positive output supply voltage range ⁽²⁾		-0.3	7	V
V–	Negative output supply voltage range ⁽²⁾		0.3	-7	V
V+ - V-	Supply voltage difference ⁽²⁾			13	V
V	Input voltage renge	Driver (FORCEOFF, FORCEON, EN)	-0.3	6	V
VI	Input voltage range	Receiver	-25	25	v
N/	Output up have readed	Driver	-13.2	13.2	V
Vo	Output voltage range	Receiver (INVALID)	-0.3	V _{CC} + 0.3	v
θ_{JA}	Package thermal impedance ⁽³⁾⁽⁴⁾			82	°C/W
TJ	Operating virtual junction temperature			150	°C
T _{stg}	Storage temperature range		-65	150	°C

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

All voltages are with respect to network GND. (2)

Maximum power dissipation is a function of T_J(max), θ_{JA}, and T_A. The maximum allowable power dissipation at any allowable ambient (3) temperature is $P_D = (T_J(max) - T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability.

(4) The package thermal impedance is calculated in accordance with JESD 51-7.

Recommended Operating Conditions⁽¹⁾

See Figure 6

				MIN	NOM	MAX	UNIT
	Supply voltage		$V_{CC} = 3.3 V$	3	3.3	3.6	V
	Supply voltage		$V_{CC} = 5 V$	4.5	5	5.5	v
V	Driver and control high level input veltage	DIN, FORCEOFF, FORCEON, EN	$V_{CC} = 3.3 V$	2			V
VIH	H Driver and control high-level input voltage DIN, FORCEOFF, FORCEON, EN		$V_{CC} = 5 V$	2.4			v
V _{IL}	Driver and control low-level input voltage	DIN, FORCEOFF, FORCEON, EN				0.8	V
VI	Driver and control input voltage	DIN, FORCEOFF, FORCEON		0		5.5	V
VI	Receiver input voltage			-25		25	V
T _A	Operating free-air temperature			-55		125 ⁽²⁾	°C

(1) Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V.

(2)Long-term high-temperature storage and/or extended use at maximum recommended operating conditions may result in a reduction of overall device life. See http://www.ti.com/ep_quality for additional information on enhanced plastic packaging.

Electrical Characteristics⁽¹⁾

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 6)

	PAR	AMETER	TEST CONDITIONS		MIN	TYP ⁽²⁾	MAX	UNIT
I _I	Input leakage current	FORCEOFF, FORCEON, EN				±0.01	±1	μΑ
		Auto-powerdown disabled		No load, FORCEOFF and FORCEON at V _{CC}		0.3).3 2 n	mA
I _{CC}	Supply current	Powered off	$V_{CC} = 3.3 \text{ V or } 5 \text{ V},$ $T_{A} = 25^{\circ}\text{C}$	No load, FORCEOFF at GND		1	20	
	eaon	Auto-powerdown enabled		No load, FORCEOFF at V _{CC} , FORCEON at GND, All RIN are open or grounded		1	20	μΑ

(1) Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V. (2) All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C.

DRIVER SECTION

Electrical Characteristics⁽¹⁾

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 6)

	PARAMETER	TI	EST CONDITIONS	MIN	TYP ⁽²⁾	MAX	UNIT
V _{OH}	High-level output voltage	DOUT at $R_L = 3 \ k\Omega$ to	5	5.4		V	
V _{OL}	Low-level output voltage	DOUT at $R_L = 3 k\Omega t$	o GND, DIN = V _{CC}	-5	-5.4		V
I _{IH}	High-level input current	$V_{I} = V_{CC}$			±0.01	±1	μΑ
IIL	Low-level input current	V _I = GND	V _I = GND			±1	μA
	Short-circuit output	$V_{\rm CC} = 3.6 \text{ V}, \text{ V}_{\rm O} = 0 \text{ V}$	V		±35	±60	
IOS	current ⁽³⁾	$V_{\rm CC} = 5.5 \text{ V}, \text{ V}_{\rm O} = 0 \text{ V}$	V		±35	±60	mA
r _o	Output resistance	V_{CC} , V+, and V- = 0	V, $V_0 = \pm 2 V$	300	10M		Ω
	Output lookaga aurrant	FORCEOFF = GND	$V_{O} = \pm 12 \text{ V}, V_{CC} = 3 \text{ V to } 3.6 \text{ V}$			±25	۸
off	Output leakage current	FURGEOFF = GND	$V_{O} = \pm 10$ V, $V_{CC} = 4.5$ V to 5.5 V			±25	μA

 Test conditions are C1–C4 = 0.1 μF at V_{CC} = 3.3 V ± 0.3 V; C1 = 0.047 μF, C2–C4 = 0.33 μF at V_{CC} = 5 V ± 0.5 V.
 All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C.
 Short-circuit durations should be controlled to prevent exceeding the device absolute power dissipation ratings, and not more than one output should be shorted at a time.

Switching Characteristics⁽¹⁾

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 6)

	PARAMETER		TEST CONDITIONS		MIN	TYP ⁽²⁾	MAX	UNIT
	Maximum data rate	C _L = 1000 pF,	$R_L = 3 k\Omega$,	See Figure 1	150	250		kbit/s
t _{sk(p)}	Pulse skew ⁽³⁾	$C_{L} = 150 \text{ pF to } 2500 \text{ pF},$	$R_L = 3 k\Omega$ to 7 k Ω ,	See Figure 2		100		ns
SR(tr)	Slew rate, transition region (see Figure 1)	$V_{CC} = 3.3 \text{ V},$ R _L = 3 kΩ to 7 kΩ	C _L = 150 pF to 1000	pF	6		30	V/µs

(1) Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V.

(2) All typical values are at $V_{CC} = 3.3$ V or $V_{CC} = 5$ V, and $T_A = 25^{\circ}$ C. (3) Pulse skew is defined as $|t_{PLH} - t_{PHL}|$ of each channel of the same device.

ESD Protection

TERI	MINAL	TEST CONDITIONS	тур	UNIT
NAME NO.		TEST CONDITIONS	ITF	UNIT
DOUT	13	Human-Body Model (HBM)	±15	kV

RECEIVER SECTION

Electrical Characteristics⁽¹⁾

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 6)

	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽²⁾	MAX	UNIT
V _{OH}	High-level output voltage	$I_{OH} = -1 \text{ mA}$	$V_{CC} - 0.6$	V _{CC} – 0.1		V
V _{OL}	Low-level output voltage	I _{OL} = 1.6 mA			0.4	V
V	Positive-going input threshold voltage	$V_{CC} = 3.3 V$		1.6	2.4	V
V _{IT+}	Positive-going input the shold voltage	$V_{CC} = 5 V$		1.9	2.4	v
V	Negative going input threshold voltage	$V_{CC} = 3.3 V$	0.6	1.1		V
V _{IT-}	Negative-going input threshold voltage	$V_{CC} = 5 V$	0.8	1.4		v
V _{hys}	Input hysteresis (V _{IT+} – V _{IT–})			0.5		V
I _{off}	Output leakage current	FORCEOFF = 0 V		±0.05	±10	μA
r _l	Input resistance	$V_I = \pm 3 V$ to $\pm 16 V$	3	5	11	kΩ

(1) Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V. (2) All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C.

(2)

Switching Characteristics⁽¹⁾

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	TYP ⁽²⁾	UNIT
t _{PLH}	Propagation delay time, low- to high-level output	C _L = 150 pF, See Figure 3	150	ns
t _{PHL}	Propagation delay time, high- to low-level output	C _L = 150 pF, See Figure 3	150	ns
t _{en}	Output enable time	$C_L = 150 \text{ pF}, R_L = 3 \text{ k}\Omega$, See Figure 4	200	ns
t _{dis}	Output disable time	$C_L = 150 \text{ pF}, R_L = 3 \text{ k}\Omega$, See Figure 4	200	ns
t _{sk(p)}	Pulse skew ⁽³⁾	See Figure 3	50	ns

(1) Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V. (2) All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C. (3) Pulse skew is defined as |t_{PLH} - t_{PHL}| of each channel of the same device.

ESD Protection

TERMINAL NAME NO.		TEST CONDITIONS	тур	UNIT
NAME NO.		TEST CONDITIONS	ITP	UNIT
RIN	8	Human-Body Model (HBM)	±15	kV

MAX3221-EP 3-V TO 5.5-V SINGLE-CHANNEL RS-232 LINE DRIVER/RECEIVER WITH $\pm 15\text{-kV}$ ESD PROTECTION

SLLS751-OCTOBER 2006

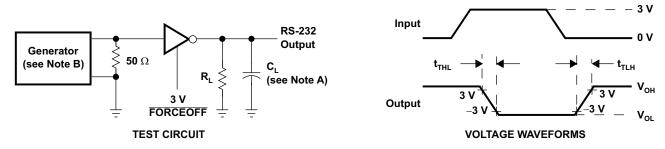
AUTO-POWERDOWN SECTION

Electrical Characteristics

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5)

	PARAMETER	TEST CON	MIN	MAX	UNIT	
V _{T+(valid)}	Receiver input threshold for INVALID high-level output voltage	FORCEON = GND, FOR	RCEOFF = V _{CC}		2.7	V
V _{T- (valid)}	Receiver input threshold for INVALID high-level output voltage	FORCEON = GND, FOF	RCEOFF = V _{CC}	-2.7		V
V _{T(invalid)}	Receiver input threshold for INVALID low-level output voltage	FORCEON = GND, FOR	RCEOFF = V _{CC}	-0.2	0.3	V
V _{OH}	INVALID high-level output voltage	$I_{OH} = -1 \text{ mA}, \text{ FORCEON} = 0$ FORCEOFF = V _{CC}	GND,	V _{CC} – 0.6		V
V _{OL}	INVALID low-level output voltage	I_{OL} = 1.6 mA, FORCEON = FORCEOFF = V _{CC}	GND,		0.4	V

Switching Characteristics

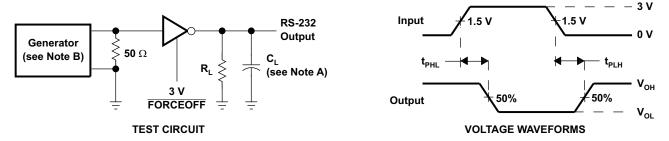

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5)

	PARAMETER	TYP ⁽¹⁾	UNIT
t _{valid}	Propagation delay time, low- to high-level output	1	μs
t _{invalid}	Propagation delay time, high- to low-level output	30	μs
t _{en}	Supply enable time	100	μs

(1) All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25 ^{\circ}C.

SLLS751-OCTOBER 2006

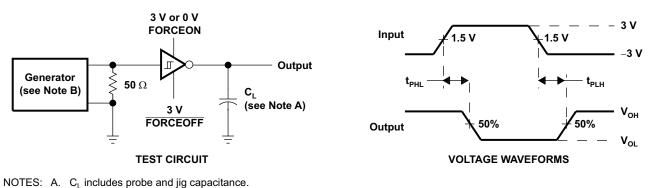
PARAMETER MEASUREMENT INFORMATION


NOTES: A. C_{L} includes probe and jig capacitance.

Texas truments

www.ti.com

B. The pulse generator has the following characteristics: PRR = 250 kbit/s, Z_0 = 50 Ω , 50% duty cycle, $t_r \le 10$ ns. $t_f \le 10$ ns.


Figure 1. Driver Slew Rate

NOTES: A. C_L includes probe and jig capacitance.

B. The pulse generator has the following characteristics: PRR = 250 kbit/s, $Z_0 = 50 \Omega$, 50% duty cycle, $t_r \le 10$ ns, $t_f \le 10$ ns.

Figure 2. Driver Pulse Skew

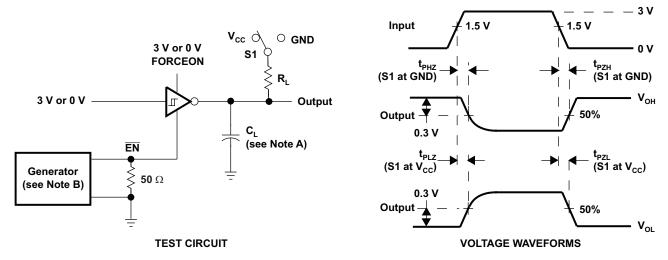
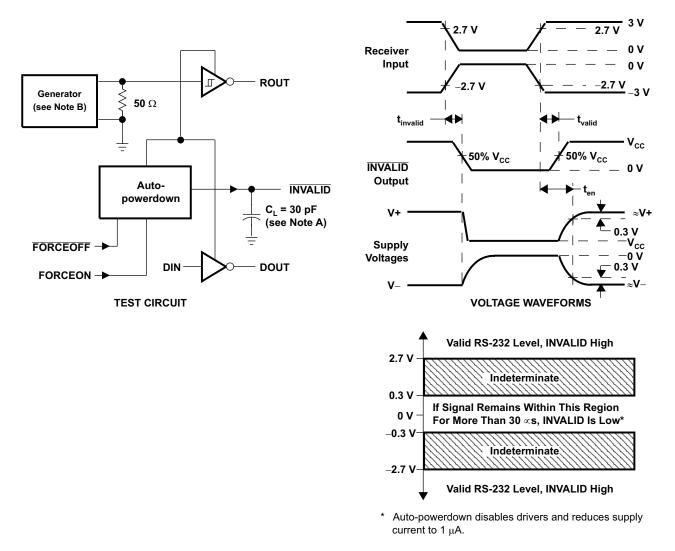

B. The pulse generator has the following characteristics: PRR = 250 kbit/s, $Z_0 = 50 \Omega$, 50% duty cycle, $t_r \le 10$ ns, $t_f \le 10$ ns.

Figure 3. Receiver Propagation Delay Times

MAX3221-EP 3-V TO 5.5-V SINGLE-CHANNEL RS-232 LINE DRIVER/RECEIVER WITH ±15-kV ESD PROTECTION SLLS751-OCTOBER 2006

PARAMETER MEASUREMENT INFORMATION (continued)



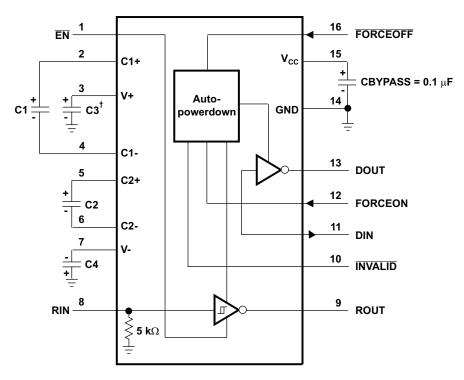
- NOTES: A. C_L includes probe and jig capacitance.
 - B. The pulse generator has the following characteristics: $Z_0 = 50 \Omega$, 50% duty cycle, $t_r \le 10$ ns, $t_f \le 10$ ns.
 - C. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
 - D. t_{PZL} and t_{PZH} are the same as t_{en} .

Figure 4. Receiver Enable and Disable Times

SLLS751-OCTOBER 2006

PARAMETER MEASUREMENT INFORMATION (continued)

NOTES: A. C_{L} includes probe and jig capacitance. B. The pulse generator has the following characteristics: PRR = 250 kbit/s, Z_{O} = 50 Ω , 50% duty cycle, $t_{r} \le 10$ ns. $t_{f} \le 10$ ns.


Figure 5. INVALID Propagation Delay Times and Driver Enabling Time

MAX3221-EP 3-V TO 5.5-V SINGLE-CHANNEL RS-232 LINE DRIVER/RECEIVER WITH ±15-kV ESD PROTECTION

SLLS751-OCTOBER 2006

 $^{\dagger}\,$ C3 can be connected to V_{CC} or GND. NOTES: A. Resistor values shown are nominal.

B. Nonpolarized ceramic capacitors are acceptable. If polarized tantalum or electrolytic capacitors are used, they should be connected as shown.

V _{cc}	C1	C2, C3, and C4							
$\begin{array}{c} 3.3 \ V \pm 0.3 \ V \\ 5 \ V \pm 0.5 \ V \end{array}$	0.1 μF 0.047 μF	0.1 μF 0.33 μF							
3 V to 5.5 V	0.1 μF	0.47 μF							

V_{cc} vs CAPACITOR VALUES

10-Dec-2020

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (°C)	Device Marking (4/5)	Samples
MAX3221MDBREP	ACTIVE	SSOP	DB	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	MB3221M	Samples
V62/06642-01XE	ACTIVE	SSOP	DB	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	MB3221M	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

www.ti.com

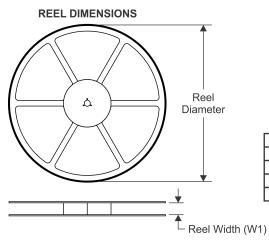
PACKAGE OPTION ADDENDUM

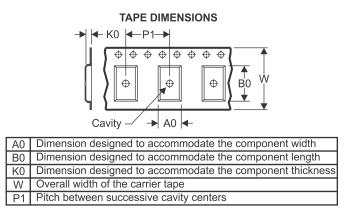
10-Dec-2020

OTHER QUALIFIED VERSIONS OF MAX3221-EP :

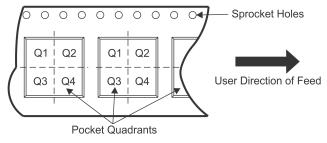
Catalog: MAX3221

NOTE: Qualified Version Definitions:


• Catalog - TI's standard catalog product

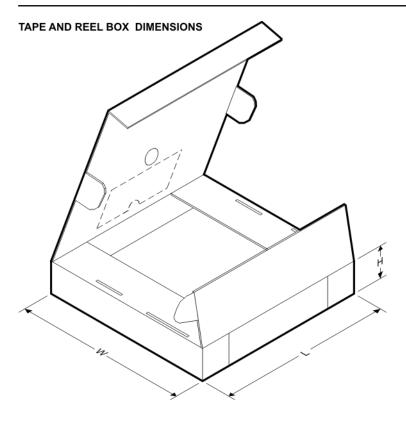

PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


,	*All dimensions are nominal												
	Device	-	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
	MAX3221MDBREP	SSOP	DB	16	2000	330.0	16.4	8.35	6.6	2.5	12.0	16.0	Q1

TEXAS INSTRUMENTS

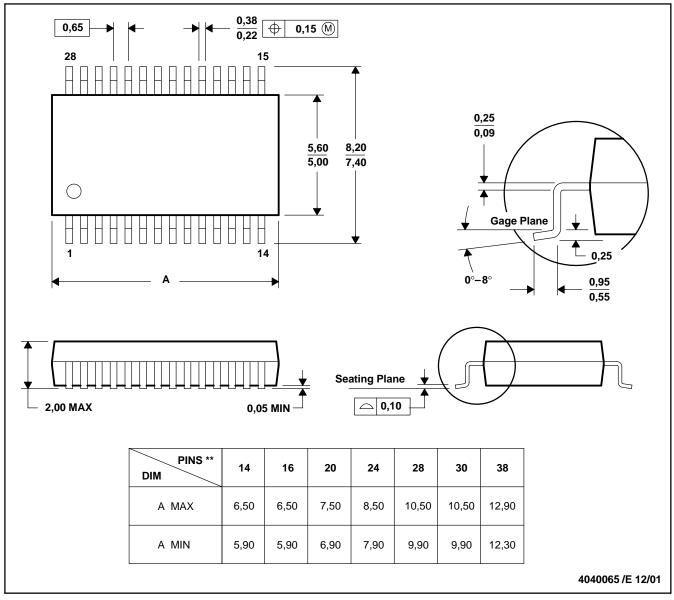
www.ti.com

PACKAGE MATERIALS INFORMATION

30-Dec-2020

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
MAX3221MDBREP	SSOP	DB	16	2000	853.0	449.0	35.0	


MECHANICAL DATA

MSSO002E - JANUARY 1995 - REVISED DECEMBER 2001

DB (R-PDSO-G**)

PLASTIC SMALL-OUTLINE

28 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-150

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (https://www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2021, Texas Instruments Incorporated