

TRS3232 SLLS812B - JULY 2007 - REVISED JUNE 2021

TRS3232 3-V to 5.5-V Multichannel RS-232 Line Driver and Receiver With ±15-kV ESD Protection

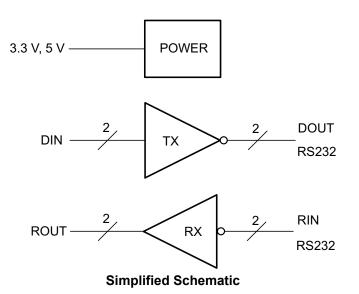
1 Features

- RS-232 Bus-terminal ESD protection exceeds ±15 kV using human-body model (HBM)
- Meets or exceeds the requirements of TIA/EIA-232-F and ITU V.28 standards
- Operates with 3-V to 5.5-V V_{CC} supply
- Operates up to 250 kbps ٠
- Two drivers and two receivers •
- Low supply current: 300-µA typical
- External capacitors: 4 × 0.1 µF
- Accepts 5-V logic input with 3.3-V supply
- Alternative high-speed terminal-compatible devices s (1 Mbps)
 - SN65C3232 (-40°C to 85°C)
 - SN75C3232 (0°C to 70°C)

2 Applications

- Industrial PCs •
- Wired networking
- Data cneter and enterprise computing
- Battery-powered systems •
- Notebooks •
- Laptops
- Palmtop PCs
- Hand-held equipment

3 Description


The TRS3232 consists of two line drivers, two line receivers, and a dual charge-pump circuit with ±15-kV ESD protection terminal-to-terminal (serialport connection terminals, including GND). The device meets the requirements of TIA/EIA-232-F and provides the electrical interface between an asynchronous communication controller and the serial-port connector. The charge pump and four small external capacitors allow operation from one

3-V to 5.5-V supply. The devices operate at datasignaling rates up to 250 kbps and a maximum of 30-V/µs driver-output slew rate.

Device Information

PART NUMBER	PACKAGE ⁽¹⁾	BODY SIZE (NOM)							
	SOIC (16)	9.90 mm × 3.91 mm							
TRS3232	SSOP (16)	6.20 mm × 5.30 mm							
1K35252	SOIC-Wide (16)	10.30 mm × 7.50 mm							
	TSSOP (16)	5.00 mm × 4.40 mm							

(1)For all available packages, see the orderable addendum at the end of the data sheet.

Page

Table of Contents

1 Features	.1
2 Applications	1
3 Description	
4 Revision History	
5 Pin Configuration and Functions	3
6 Specifications	4
6.1 Absolute Maximum Ratings	
6.2 ESD Ratings	4
6.3 Recommended Operating Conditions	
6.4 Thermal Information	5
6.5 Electrical Characteristics—Device	5
6.6 Electrical Characteristics—Driver	5
6.7 Electrical Characteristics—Receiver	6
6.8 Switching Characteristics	6
6.9 Typical Characteristics	6
7 Parameter Measurement Information	7
8 Detailed Description	
8.1 Overview	8

8.2 Functional Block Diagram	. 8
8.3 Feature Description.	
8.4 Device Functional Modes	
9 Application and Implementation1	
9.1 Application Information1	
9.2 Typical Application1	
10 Power Supply Recommendations	
11 Layout1	
11.1 Layout Guidelines1	
11.2 Layout Example1	
12 Device and Documentation Support1	
12.1 Receiving Notification of Documentation Updates1	
12.2 Support Resources1	
12.3 Trademarks1	
12.4 Electrostatic Discharge Caution1	13
12.5 Glossary1	
13 Mechanical, Packaging, and Orderable	
Information	13

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Cł	nanges from Revision A (July 2015) to Revision B (June 2021)	Page
•	Added Applications: Industrial PCs, Wired networking, and Data center and enterprise computing	1
•	Added additional thermal parameters for all packages in Thermal Information table	5

Changes from Revision * (July 2007) to Revision A (June 2015)

5 Pin Configuration and Functions

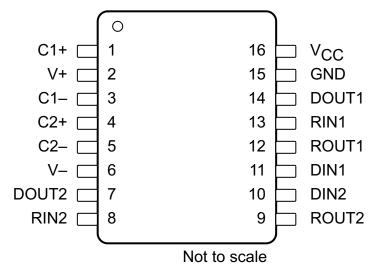


Figure 5-1. D, DB, DW, PW Packages 16-Pin SOIC, SSOP, SOIC (Wide), TSSOP Top View

PIN TYPE		TYPE	DESCRIPTION			
NAME	NO.		DESCRIPTION			
C1+	1	_	Positive lead of C1 capacitor			
C1–	3	_	Negative lead of C1 capacitor			
C2+	4	_	ve lead of C2 capacitor			
C2–	5	_	Negative lead of C2 capacitor			
DIN1	11	I	Logic data input (from UART)			
DIN2	10	I	Logic data input (from UART)			
DOUT1	14	0	RS232 line data output (to remote RS232 system)			
DOUT2	7	0	RS232 line data output (to remote RS232 system)			
GND	15	_	Ground			
RIN1	13	I	RS232 line data input (from remote RS232 system)			
RIN2	8	I	RS232 line data input (from remote RS232 system)			
ROUT1	12	0	Logic data output (to UART)			
ROUT2	9	0	Logic data output (to UART)			
V+	2	0	Positive charge pump output for storage capacitor only			
V–	6	0	legative charge pump output for storage capacitor only			
V _{CC}	16	_	Supply Voltage, Connect to external 3-V to 5.5-V power supply			

Table 5-1. Pin Functions

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) ⁽¹⁾

				MIN	MAX	UNIT
V _{CC}	Supply voltage ⁽²⁾			-0.3	6	V
V ₊	Positive output supply voltage ⁽²⁾			-0.3	7	V
V_	Negative output supply voltage ⁽²⁾			-7	0.3	V
$V_+ - V$	Supply voltage difference ⁽²⁾			13	V	
V	Input voltage	Drivers		-0.3	6	V
VI	Input voltage	Receivers		-25	25	v
V	Quitaut voltage	Drivers		-13.2	13.2	V
Vo	Output voltage	Receivers		-0.3	V _{CC} + 0.3	v
TJ	Operating virtual junction temperature			150	°C	
T _{stg}	Storage temperature			-65	150	°C

(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.

(2) All voltages are with respect to network GND.

6.2 ESD Ratings

			VALUE	UNIT
V _(ESD)		Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 RIN , DOUT, and GND pins $^{(1)}$	±15000	
	Electrostatic discharge	rostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 All other pins ⁽¹⁾	±3000	V
		Charged device model (CDM), per JEDEC specification JESD22-C101, all $pins^{(2)}$	±1000	

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

(see Figure 9-1)⁽¹⁾

				MIN	NOM	MAX	UNIT
V _{CC}	Supply voltage	V _{CC} = 3.3 V		3	3.3	3.6	V
V CC	Supply voltage	V _{CC} = 5 V	4.5	5	5.5	v	
VIH	Driver high-level input voltage	DIN	V _{CC} = 3.3 V	2			V
		DIN	V _{CC} = 5 V	2.4			
VIL	Driver low-level input voltage	DIN				0.8	V
V	Driver input voltage	DIN		0		5.5	V
VI	Receiver input voltage	RIN		-25		25	v
Ŧ		TRS3232	С	0		70	°C
T _A	Operating free-air temperature TRS323		l	-40		85	°C

(1) Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V.

6.4 Thermal Information

		TRS3232					
	THERMAL METRIC ⁽¹⁾	D (SOIC)	DB (SSOP)	DW (SOIC-wide)	PW (TSSOP)	UNIT	
		16 PINS	16 PINS	16 PINS	16 PINS		
R _{0JA}	Junction-to-ambient thermal resistance	73	82	57	108	°C/W	
R _{0JC(top)}	Junction-to-case (bottom) thermal resistance	38.5	45.8	32.4	39	°C/W	
R _{θJB}	Junction-to-board thermal resistance	36.3	44.6	31.9	54.4	°C/W	
ΨJT	Junction-to-top characterization parameter	8.0	11.1	8.4	3.3	°C/W	
Ψ _{JB}	Junction-to-board characterization parameter	36.0	44	31.5	53.8	°C/W	
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	N/A	N/A	N/A	N/A	°C/W	

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application (1) report (SPRA953).

6.5 Electrical Characteristics—Device

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)⁽²⁾ (see Figure 9-1)

PARAMETER		TEST CONDITIONS		MIN	TYP ⁽¹⁾	MAX	UNIT
I _{CC}	Supply current	No load,	V_{CC} = 3.3 V to 5 V		0.3	1	mA

(1)

All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C. Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V. (2)

6.6 Electrical Characteristics—Driver

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)⁽¹⁾ (see Figure 9-1)

	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽²⁾	MAX	UNIT
V _{OH}	High-level output voltage	D_{OUT} at $R_L = 3 k\Omega$ to GND, $D_{IN} = GND$	5	5.4		V
V _{OL}	Low-level output voltage	D_{OUT} at $R_L = 3 k\Omega$ to GND, $D_{IN} = V_{CC}$	-5	-5.4		V
I _{IH}	High-level input current	V _I = V _{CC}		±0.01	±1	μA
IIL	Low-level input current	V _I at GND		±0.01	±1	μA
I _{OS} ⁽³⁾	Short-circuit output current	$V_{CC} = 3.6 V$ $V_{O} = 0 V$		+25	±60	mA
los (Short-circuit output current	$V_{CC} = 5.5 V$ $V_{O} = 0 V$		±35	TOO	ША
r _O	Output resistance	$V_{CC} = 0 V, V_{+} = 0 V, and V_{-} V_{O} = \pm 2 V$	300	10M		Ω

Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 (1)

All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C. (2)

Short-circuit durations should be controlled to prevent exceeding the device absolute power dissipation ratings, and not more than one (3) output should be shorted at a time.

6.7 Electrical Characteristics—Receiver

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)⁽¹⁾ (see Figure 9-1)

	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽²⁾	MAX	UNIT
V _{OH}	High-level output voltage	I _{OH} = -1 mA	V _{CC} - 0.6	V _{CC} – 0.1		V
V _{OL}	Low-level output voltage	I _{OL} = 1.6 mA			0.4	V
V	Positive-going input threshold voltage	V _{CC} = 3.3 V		1.5	2.4	V
V _{IT+}	Positive-going input the should voltage	V _{CC} = 5 V		1.8	2.4	v
V	Negative-going input threshold voltage	V _{CC} = 3.3 V	0.6	1.2		V
V _{IT-}	Negative-going input theshold voltage	V _{CC} = 5 V	0.8	1.5		v
V _{hys}	Input hysteresis (V _{IT+} – V _{IT} –)			0.3		V
r _l	Input resistance	$V_1 = \pm 3 V$ to $\pm 25 V$	3	5	7	kΩ

Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V. (1)

(2)All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C.

6.8 Switching Characteristics

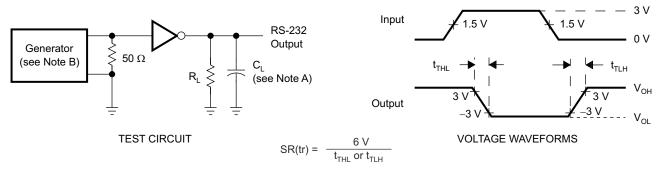
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)⁽¹⁾ (see Figure 9-1)

	PARAMETER	TEST C	TEST CONDITIONS			MAX	UNIT
	Maximum data rate	$R_L = 3 k\Omega$,	C _L = 1000 pF	150	250		kbps
		One D _{OUT} switching, See Figure 7-1		150	250		kops
+	Driver Pulse skew ⁽³⁾	$R_1 = 3 k\Omega$ to 7 k Ω .	C _L = 150 to 2500 pF		300		ns
t _{sk(p)}	Driver Pulse skew(3)	$R_{L} = 3 K_{12} 10 7 K_{12},$	See Figure 7-2		300		115
	Driver Slew rate, transition region (see Figure 7-1)	$R_L = 3 k\Omega$ to 7 k Ω ,	C _L = 150 to 1000 pF	6		30	V/µs
SR(tr)		V _{CC} = 5 V	C _L = 150 to 2500 pF	4		30	
t _{PLH}	Receiver Propagation delay time, low- to high-level output	0 - 150 pF			300		ns
t _{PHL}	Receiver Propagation delay time, high- to low-level output	C _L = 150 pF			300		ns
t _{sk(p)}	Receiver Pulse skew ⁽¹⁾				300		ns

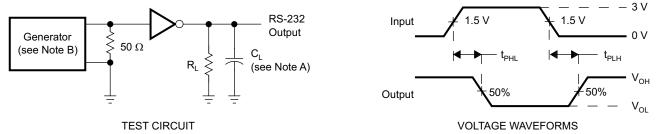

Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V. All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C. (1)

(2)

Pulse skew is defined as $|t_{PLH} - t_{PHL}|$ of each channel of the same device. (3)

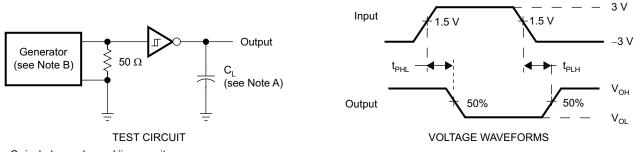

6.9 Typical Characteristics

 $V_{CC} = 3.3 V$


7 Parameter Measurement Information

A. C_L includes probe and jig capacitance.

B. The pulse generator has the following characteristics: PRR = 250 kbps, Z_0 = 50 Ω , 50% duty cycle, $t_r \le 10$ ns, $t_f \le 10$ ns.


Figure 7-1. Driver Slew Rate

A. C_L includes probe and jig capacitance.

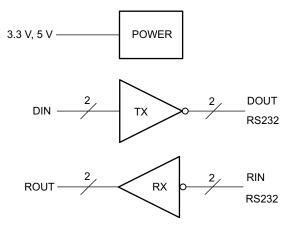
B. The pulse generator has the following characteristics: PRR = 250 kbps, $Z_0 = 50 \Omega$, 50% duty cycle, $t_r \le 10$ ns, $t_f \le 10$ ns.

Figure 7-2. Driver Pulse Skew

A. C_L includes probe and jig capacitance.

B. The pulse generator has the following characteristics: $Z_0 = 50 \Omega$, 50% duty cycle, $t_r \le 10$ ns, $t_f \le 10$ ns.

Figure 7-3. Receiver Propagation Delay Times



8 Detailed Description

8.1 Overview

The TRS3232 device consists of two line drivers, two line receivers, and a dual charge-pump circuit with \pm 15-kV ESD protection terminal to terminal (serial-port connection terminals, including GND). The device meets the requirements of TIA/EIA-232-F and provides the electrical interface between an asynchronous communication controller and the serial-port connector. The charge pump and four small external capacitors allow operation from one 3-V to 5.5-V supply. The device operates at data signaling rates up to 250 kbps and a maximum of 30-V/µs driver output slew rate. Outputs are protected against shorts to ground.

8.2 Functional Block Diagram

8.3 Feature Description

8.3.1 Power

The power block increases, inverts, and regulates voltage at V_+ and V_- pins using a charge pump that requires four external capacitors.

8.3.2 RS232 Driver

Two drivers interface the standard logic level to RS232 levels. Both DIN inputs must be valid high or low.

8.3.3 RS232 Receiver

Two receivers interface RS232 levels to standard logic levels. An open input results in a high output on ROUT. Each RIN input includes an internal standard RS232 load.

8.4 Device Functional Modes

INPUT DIN ⁽¹⁾	OUTPUT DOUT
L	Н
Н	L

Table 8-1. Each Driver

(1) H = high level, L = low level

Table 8-2. Each Receiver

INPUT RIN ⁽¹⁾	OUTPUT ROUT							
L	н							
Н	L							
Open	Н							

(1) H = high level, L = low level,

Open = input disconnected or connected driver off

8.4.1 V_{CC} Powered by 3 V to 5.5 V

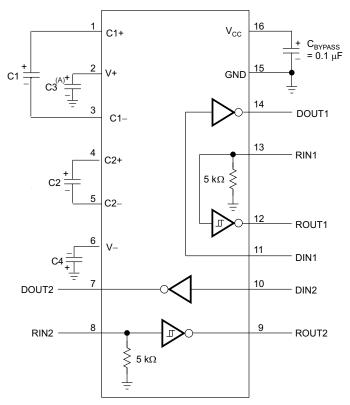
The device is in normal operation.

8.4.2 V_{CC} Unpowered, V_{CC} = 0 V

When the TRS3232 device is unpowered, it can be safely connected to an active remote RS232 device.

9 Application and Implementation

Note


Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

9.1 Application Information

The TRS3232 is designed to convert single-ended signals into RS232-compatible signals, and vice-versa.

This device can be used in any application where an RS232 line driver or receiver is required. One benefit of this device is its ESD protection, which helps protect other components on the board when the RS232 lines are tied to a physical connector.

9.2 Typical Application

- A. C3 can be connected to V_{CC} or GND.
- B. Resistor values shown are nominal.
- C. Nonpolarized ceramic capacitors are acceptable. If polarized tantalum or electrolytic capacitors are used, they must be connected as shown.
- D. See Table 9-1 for capacitor values.

Figure 9-1. Typical Operating Circuit

9.2.1 Design Requirements

- Recommended V_{CC} is 3.3 V or 5 V
- 3 V to 5.5 V is also possible
- Maximum recommended bit rate is 250 kbites

Table 9-1. V _{CC} versus Capacitor values									
Vcc	C1	C2, C3, C4							
3.3 V ± 0.3 V	0.1 µF	0.1 µF							
5 V ± 0.5 V	0.047 µF	0.33 µF							
3 V to 5.5 V	0.1 µF	0.47 µF							

Table 9-1. V_{CC} versus Capacitor Values

9.2.2 Detailed Design Procedure

For proper operation, add capacitors as shown in Figure 9-1 and Table 9-1.

All DIN inputs must be connected to valid low or high logic levels.

Select capacitor values based on $V_{\mbox{\scriptsize CC}}$ level for best performance.

9.2.3 Application Curve

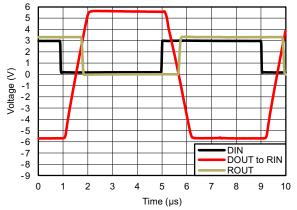


Figure 9-2. 250 kbps Driver to Receiver Loopback Timing Waveform, V_{CC}= 3.3 V

10 Power Supply Recommendations

V_{CC} must be between 3 V and 5.5 V. Charge pump capacitors must be chosen using Table 9-1.

11 Layout

11.1 Layout Guidelines

Keep the external capacitor traces short. This is more important on C1 and C2 nodes that have the fastest rise and fall times.

11.2 Layout Example

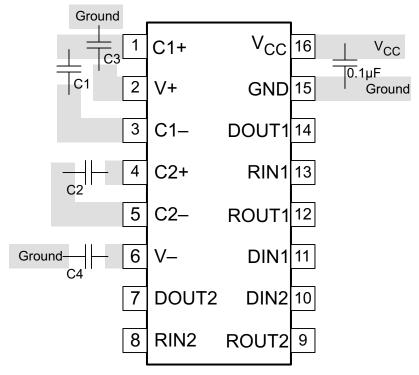


Figure 11-1. Layout Diagram

12 Device and Documentation Support

12.1 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Subscribe to updates* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

12.2 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

12.3 Trademarks

TI E2E[™] is a trademark of Texas Instruments.

All trademarks are the property of their respective owners.

12.4 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

12.5 Glossary

TI Glossary This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
	(.)		0			(=)	(6)	(0)		()	
TRS3232CDBR	ACTIVE	SSOP	DB	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	RS32C	Samples
TRS3232CDR	ACTIVE	SOIC	D	16	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	TRS3232C	Samples
TRS3232CDWR	ACTIVE	SOIC	DW	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	TRS3232C	Samples
TRS3232CPW	ACTIVE	TSSOP	PW	16	90	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	RS32C	Samples
TRS3232IDR	ACTIVE	SOIC	D	16	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	TRS32321	Samples
TRS3232IPW	ACTIVE	TSSOP	PW	16	90	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	RS321	Samples
TRS3232IPWR	ACTIVE	TSSOP	PW	16	2000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 85	RS321	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <= 1000ppm threshold. Antimony trioxide based flame retardants must also meet the <= 1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

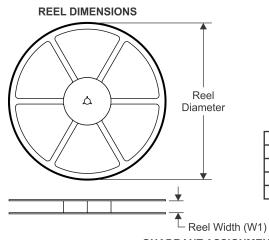
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

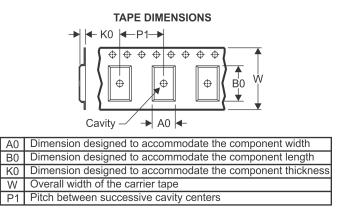
www.ti.com

PACKAGE OPTION ADDENDUM

⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

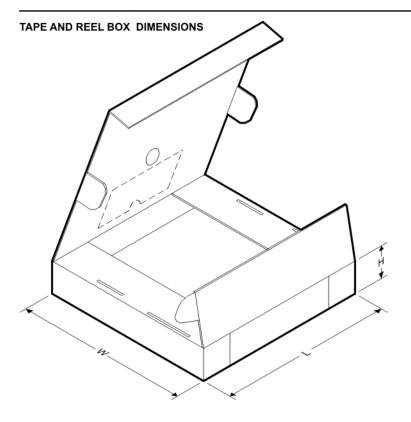

PACKAGE MATERIALS INFORMATION

Texas Instruments

www.ti.com

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TRS3232CDBR	SSOP	DB	16	2000	330.0	16.4	8.35	6.6	2.4	12.0	16.0	Q1
TRS3232CDR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
TRS3232CDWR	SOIC	DW	16	2000	330.0	16.4	10.75	10.7	2.7	12.0	16.0	Q1
TRS3232IDR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
TRS3232IPWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

www.ti.com

PACKAGE MATERIALS INFORMATION

19-Jun-2021

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TRS3232CDBR	SSOP	DB	16	2000	853.0	449.0	35.0
TRS3232CDR	SOIC	D	16	2500	333.2	345.9	28.6
TRS3232CDWR	SOIC	DW	16	2000	350.0	350.0	43.0
TRS3232IDR	SOIC	D	16	2500	333.2	345.9	28.6
TRS3232IPWR	TSSOP	PW	16	2000	853.0	449.0	35.0

D (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters).

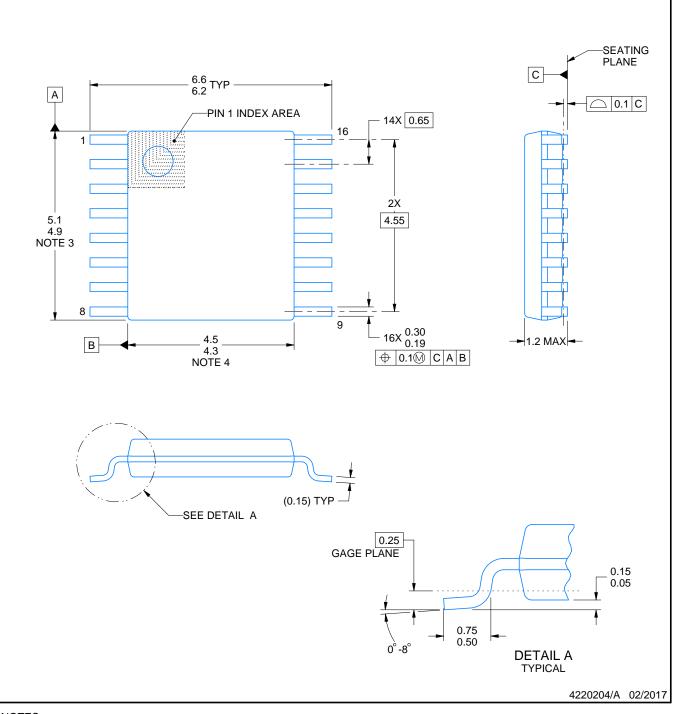
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

4211283-4/E 08/12

D (R-PDSO-G16) PLASTIC SMALL OUTLINE Stencil Openings (Note D) Example Board Layout (Note C) –16x0,55 -14x1,27 -14x1,27 16x1,50 5,40 5.40 Example Non Soldermask Defined Pad Example Pad Geometry (See Note C) 0,60 .55 Example 1. Solder Mask Opening (See Note E) -0,07 All Around

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
 E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.


PW0016A

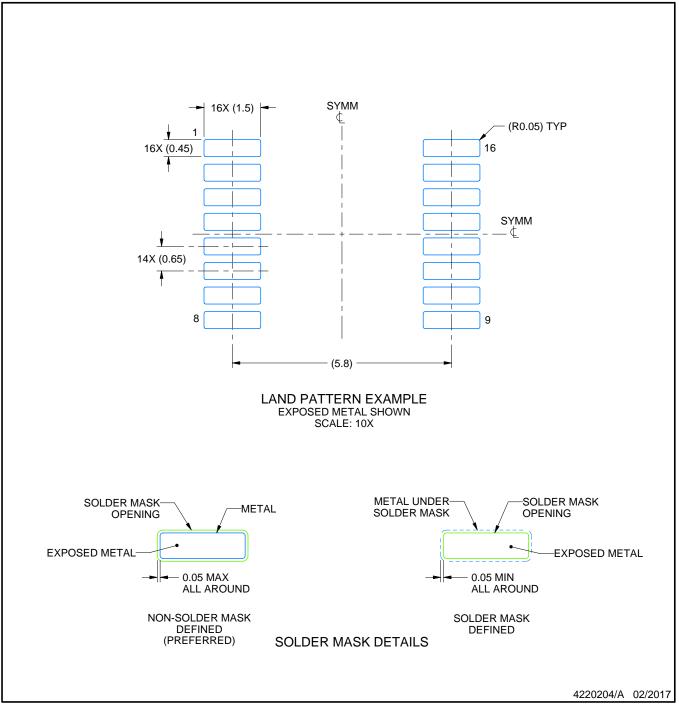
PACKAGE OUTLINE

TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.



PW0016A

EXAMPLE BOARD LAYOUT

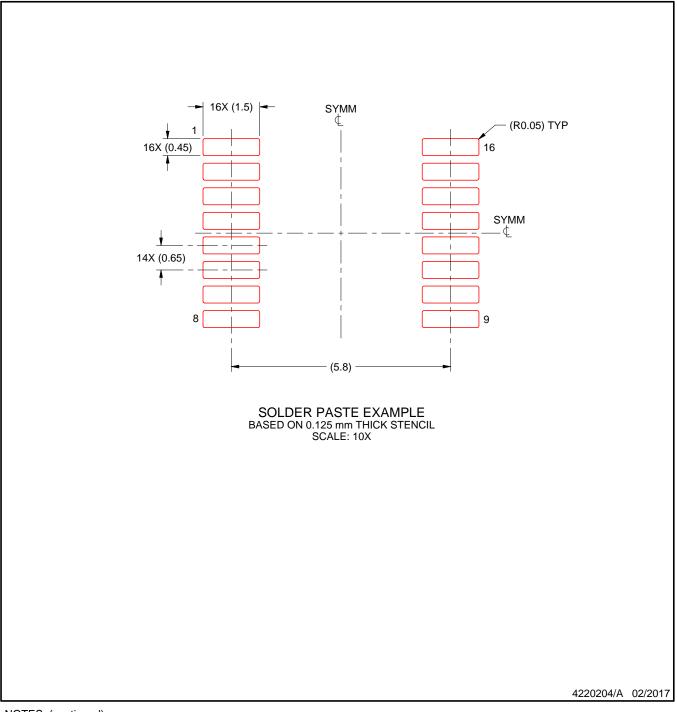
TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



PW0016A

EXAMPLE STENCIL DESIGN

TSSOP - 1.2 mm max height

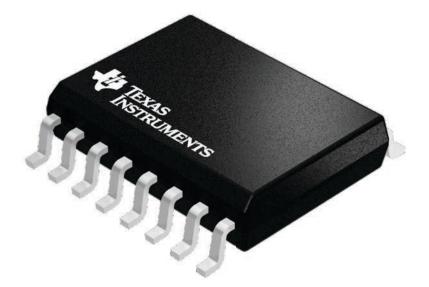
SMALL OUTLINE PACKAGE

NOTES: (continued)

9. Board assembly site may have different recommendations for stencil design.

^{8.} Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

DW 16

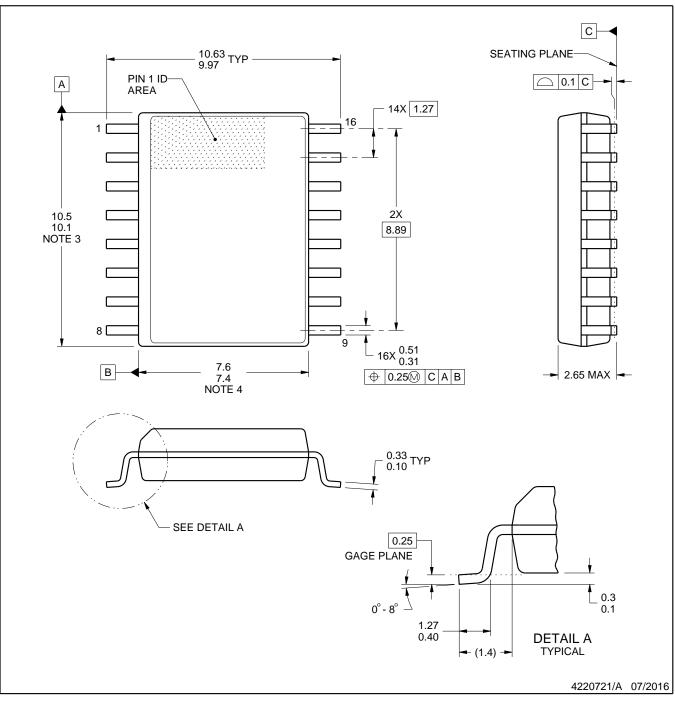

GENERIC PACKAGE VIEW

SOIC - 2.65 mm max height

SMALL OUTLINE INTEGRATED CIRCUIT

7.5 x 10.3, 1.27 mm pitch

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.


DW0016A

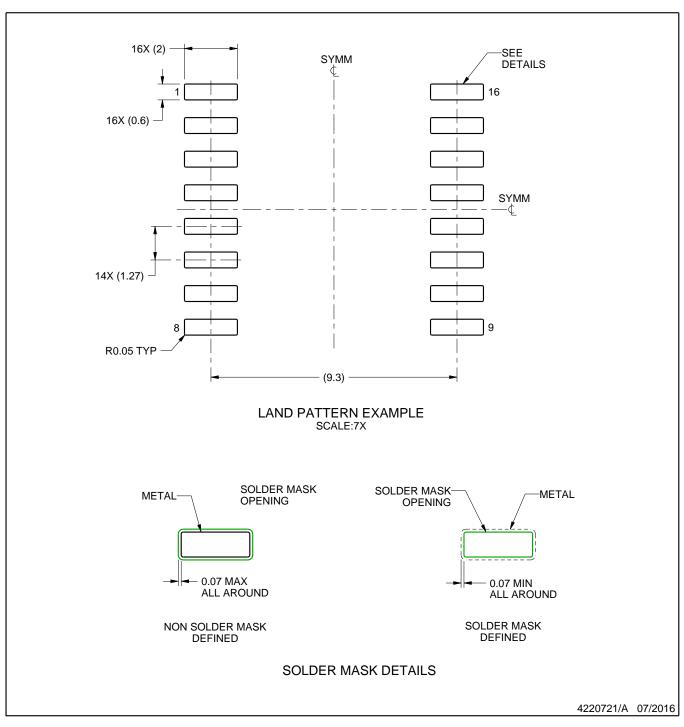
PACKAGE OUTLINE

SOIC - 2.65 mm max height

SOIC

NOTES:

- 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 This drawing is subject to change without notice.
 This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm, per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.
- 5. Reference JEDEC registration MS-013.



DW0016A

EXAMPLE BOARD LAYOUT

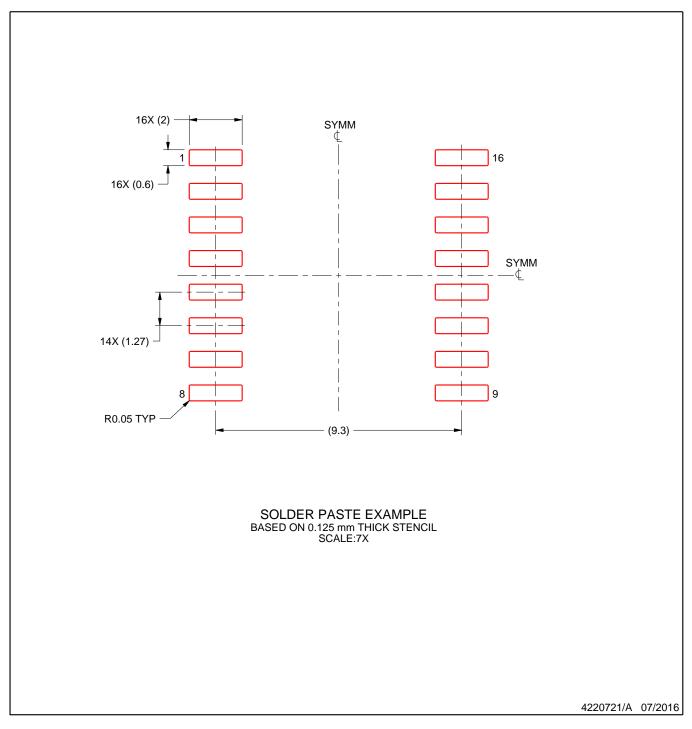
SOIC - 2.65 mm max height

SOIC

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



DW0016A

EXAMPLE STENCIL DESIGN

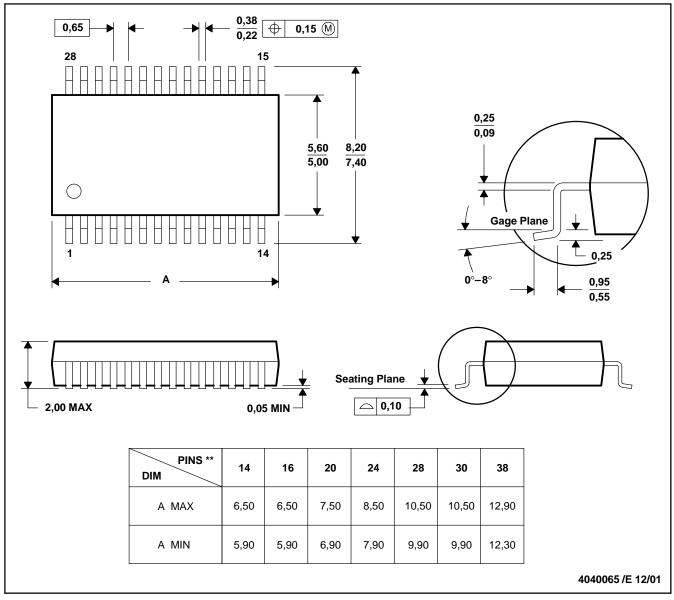
SOIC - 2.65 mm max height

SOIC

NOTES: (continued)

8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

9. Board assembly site may have different recommendations for stencil design.


MECHANICAL DATA

MSSO002E - JANUARY 1995 - REVISED DECEMBER 2001

DB (R-PDSO-G**)

PLASTIC SMALL-OUTLINE

28 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-150

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (https://www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2021, Texas Instruments Incorporated