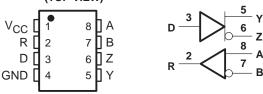
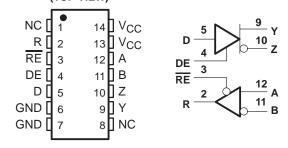
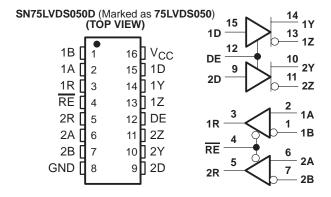
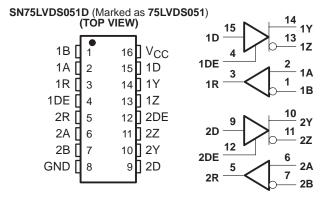
- Meets or Exceeds the Requirements of ANSI TIA/EIA-644-1995 Standard
- Signaling Rates up to 155 Mbps
- Operates From a Single 3.3-V Supply
- Low-Voltage Differential Signaling With Typical Output Voltages of 350 mV and a 100 Ω Load
- LVTTL Input Levels are 5 V Tolerant
- Driver is High Impedance When Disabled or With V_{CC} < 1.5 V
- Receiver has Open-Circuit Fail Safe
- Surface-Mount PackagingD Package (SOIC)
- Characterized For Operation From 0°C to 70°C


description

The SN75LVDS179, SN75LVDS180, SN75LVDS050, and SN75LVDS051 are differential line drivers and receivers that use low-voltage differential signaling (LVDS) to achieve signaling rates as high as 155 Mbps. The TIA/EIA-644 standard compliant electrical interface provides a minimum differential output voltage magnitude of 247 mV into a 100 Ω load and receipt of 100 mV signals with up to 1 V of ground potential difference between a transmitter and receiver.


The intended application of this device and signaling technique is for point-to-point baseband data transmission over controlled impedance media of approximately $100~\Omega$ characteristic impedance. The transmission media may be printed-circuit board traces, backplanes, or cables. (Note: The ultimate rate and distance of data transfer is dependent upon the attenuation characteristics of the media, the noise coupling to the environment, and other application specific characteristics).


The SN75LVDS179, SN75LVDS180, SN75LVDS050, and SN75LVDS051 are characterized for operation from 0°C to 70°C.


SN75LVDS179D (Marked as DS179 or 7LS179) (TOP VIEW)

SN75LVDS180D (Marked as 7LVDS180) (TOP VIEW)

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Function Tables

SN75LVDS179 RECEIVER

INPUTS	OUTPUT
$V_{ID} = V_A - V_B$	R
$V_{ID} \ge 100 \text{ mV}$	Н
-100 MV < V _{ID} < 100 mV	?
V _{ID} ≤ −100 mV	L
Open	Н

H = high level, L = low level, ? = indeterminate

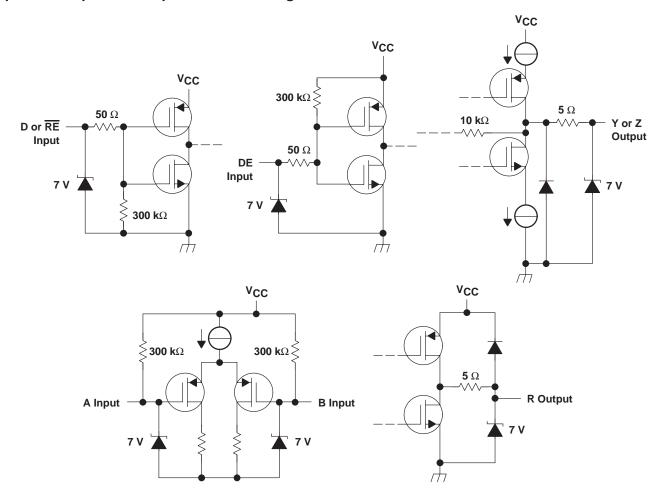
SN75LVDS179 DRIVER

INPUT	OUTPUTS			
D	Υ	Z		
L	L	Н		
Н	Н	L		
Open	L	Н		

H = high level, L = low level

SN75LVDS180, SN75LVDS050, and SN75LVDS051 RECEIVER

INPUTS	OUTPUT	
$V_{ID} = V_A - V_B$	RE	R
$V_{ID} \ge 100 \text{ mV}$	L	Н
-100 MV < V _{ID} < 100 mV	L	?
$V_{ID} \le -100 \text{ mV}$	L	L
Open	L	Н
Х	Н	Z


H = high level, L = low level, Z = high impedance, X = don't care

SN75LVDS180, SN75LVDS050, and SN75LVDS051 DRIVER

INPL	JTS	OUTI	PUTS
D	DE	Υ	Z
L	Н	L	Н
Н	Н	Н	L
Open	Н	L	Н
Х	L	Z	Z

H = high level, L = low level, Z = high impedance, X = don't care

equivalent input and output schematic diagrams

SN75LVDS179, SN75LVDS180, SN75LVDS050, SN75LVDS051 HIGH-SPEED DIFFERENTIAL LINE DRIVERS AND RECEIVERS

SLLS361A - JUNE 1999 - REVISED MARCH 2000

absolute maximum ratings over operating free-air temperature (unless otherwise noted)†

Supply voltage range, V _{CC} (see Note 1)	0.5 V to 4 V
Voltage range (D, R, DE, RE)	0.5 V to 6 V
Continuous power dissipation	
Storage temperature range	–65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	250°C

- NOTES: 1. All voltage values, except differential I/O bus voltages are with respect to network ground terminal.
 - 2. Tested in accordance with MIL-STD-883C Method 3015.7.

DISSIPATION RATING TABLE

PACKAGE	$\begin{array}{ccc} & & & & & T_{\mbox{\sc A}} \leq 25^{\circ}\mbox{\sc C} \\ \mbox{\sc POWER RATING} & & & & \end{array}$		T _A = 70°C POWER RATING		
D8	725 mW	5.8 mW/°C	464 mW		
D14 or D16	950 mW	7.8 mW/°C	608 mW		

[†] This is the inverse of the junction-to-ambient thermal resistance when board-mounted and with no air flow.

recommended operating conditions

	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	3	3.3	3.6	V
High-level input voltage, VIH	2			V
Low-level input voltage, V _{IL}			0.8	V
Magnitude of differential input voltage, V _{ID}	0.1		0.6	V
Common-mode input voltage, V _{IC} (see Figure 6)	$\frac{\left V_{\text{ID}}\right }{2}$:	$\frac{ V_{1D} }{2}$	V
Operating free–air temperature, T _A	0	-	V _{CC} -0.8	°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

SN75LVDS179, SN75LVDS180, SN75LVDS050, SN75LVDS051 HIGH-SPEED DIFFERENTIAL LINE DRIVERS AND RECEIVERS

SLLS361A - JUNE 1999 - REVISED MARCH 2000

device electrical characteristics over recommended operating conditions (unless otherwise noted)

	PARAME	ΓER	TEST CONDITIONS	MIN	TYP [†]	MAX	UNIT
		SN75LVDS179	No receiver load, driver $R_L = 100 \Omega$		9	12	mA
	Driver and receiver enabled, No receiver load, Driver RL = 100 Ω			9	12		
		SN75LVDS180	Driver enabled, receiver disabled, $R_L = 100 \Omega$		5	7	mA
		Driver disabled, receiver enabled, No load		1.5	2		
			Disabled		0.5	1	
Icc	Supply current	Supply current $SN75LVDS050 = \begin{cases} Drivers and receivers enabled, no receiver loads, \\ Driver R_L = 100 \ \Omega \end{cases}$ $Drivers enabled, receivers disabled, R_L = 100 \ \Omega $ $Drivers disabled, receivers enabled, no loads$ $Disabled$			12	20	
			Drivers enabled, receivers disabled, $R_L = 100 \Omega$		10	16	mA
				3	6		
			Disabled		0.5	1	
		SN75LVDS051	Drivers enabled, no receiver loads, driver $R_L = 100 \Omega$		12	20	mA
		3147 3EV D303 1	Drivers disabled, No loads		3	6	шА

[†] All typical values are at 25°C and with a 3.3-V supply.

driver electrical characteristics over recommended operating conditions (unless otherwise noted)

	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
IV _{OD} I	Differential output voltage magnitude		B 1000	247	340	454	
Δ V _{OD}	Change in differential output voltage magnitude betwee states	een logic	$R_L = 100Ω$, See Figure 1 and Figure 2	-50		50	mV
Voc(ss)	Steady-state common-mode output voltage			1.125	1.2	1.375	V
ΔV _{OC} (SS)	Change in steady-state common-mode output voltage logic states	between	See Figure 3			50	mV
VOC(PP)	Peak-to-peak common-mode output voltage				50	150	mV
l	High-level input current	DE	V = 5 V		-0.5	-20	μΑ
lіН	riigir-ievei iripat carrent	D	V _{IH} = 5 V		2	20	μΑ
1	Low-level input current	DE	V _{II} = 0.8 V		-0.5	-10	μА
۱۱۲	Low-level input current	D	VIL = 0.0 V	2	10	μΑ	
loo	Short-circuit output current		VOY or $VOZ = 0$ V		3	10	mA
los	Short-circuit output current		V _{OD} = 0 V		3	10	ША
1	Lligh impodence output output		V _{OD} = 600 mV			±1	^
loz	High-impedance output current	$V_O = 0 V \text{ or } V_{CC}$				±1	μΑ
lO(OFF)	Power-off output current		$V_{CC} = 0 \text{ V}, V_{O} = 3.6 \text{ V}$			±1	μΑ
C _{IN}	Input capacitance				3		pF

SN75LVDS179, SN75LVDS180, SN75LVDS050, SN75LVDS051 HIGH-SPEED DIFFERENTIAL LINE DRIVERS AND RECEIVERS

SLLS361A - JUNE 1999 - REVISED MARCH 2000

receiver electrical characteristics over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP [†]	MAX	UNIT
V _{ITH+}	Positive-going differential input voltage threshold	See Figure 5 and Table 1			100	mV
V _{ITH} _	Negative-going differential input voltage threshold	See Figure 5 and Table 1	-100			IIIV
VOH	High-level output voltage	I _{OH} = -8 mA	2.4			V
VOL	Low-level output voltage	I _{OL} = 8 mA			0.4	V
1.	Input current (A or B inputs)	V _I = 0	-2	-11	-20	μА
<u> </u>	input current (A or B inputs)	V _I = 2.4 V	-1.2	-3		μΑ
I _I (OFF)	Power-off input current (A or B inputs)	VCC = 0			±20	μΑ
۱н	High-level input current (enables)	V _{IH} = 5 V			±10	μΑ
IJL	Low-level input current (enables)	V _{IL} = 0.8 V			±10	μΑ
loz	High-impedance output current	V _O = 0 or 5 V			±10	μΑ
Cl	Input capacitance			5		pF

[†] All typical values are at 25°C and with a 3.3-V supply.

driver switching characteristics over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP [†]	MAX	UNIT
tPLH	Propagation delay time, low-to-high-level output				6	ns
tPHL	Propagation delay time, high-to-low-level output				6	ns
t _r	Differential output signal rise time	$R_{I} = 100\Omega$		0.8	1.2	ns
t _f	Differential output signal fall time	$C_{L} = 10 \text{ pF},$		0.8	1.2	ns
t _{sk(p)}	Pulse skew (t _{pHL} - t _{pLH}) [‡]	See Figure 6			0.6	ps
t _{sk(o)}	Channel-to-channel output skew§				0.6	ps
t _{sk(pp)}	Part-to-part skew¶				1	ps
^t PZH	Propagation delay time, high-impedance-to-high-level output				25	ns
tPZL	Propagation delay time, high-impedance-to-low-level output	Coo Figure 7			25	ns
^t PHZ	Propagation delay time, high-level-to-high-impedance output	See Figure 7			25	ns
^t pLZ	Propagation delay time, low-level-to-high-impedance output				25	ns

[†] All typical values are at 25°C and with a 3.3-V supply.

 $[\]pm t_{sk(p)}$ is the magnitude of the time difference between the high-to-low and low-to-high propagation delay times at an output

 $[\]S$ $t_{sk(o)}$ is the magnitude of the time difference between the outputs of a single device with all of their inputs connected together.

[¶] tsk(pp) is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices operate with the same supply voltages, same temperature, and have identical packages and test circuits.

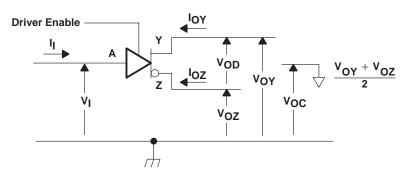
receiver switching characteristics over recommended operating conditions (unless otherwise noted)

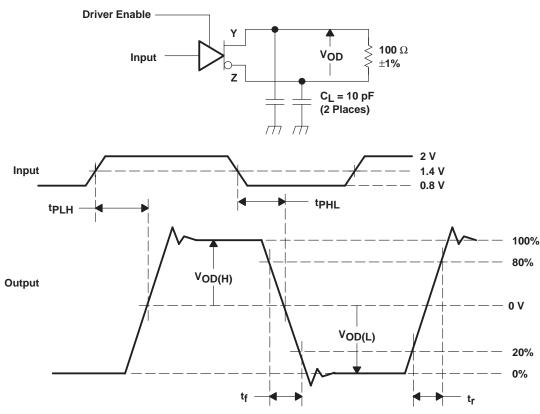
	PARAMETER	TEST CONDITIONS	MIN	TYP†	MAX	UNIT
tPLH	Propagation delay time, low-to-high-level output			2.1	6	ns
tPHL	Propagation delay time, high-to-low-level output			2.1	6	ns
t _r	Output signal rise time]		0.6	1.5	ns
t _f	Output signal fall time	C _L = 10 pF, See Figure 6		0.7	1.5	ns
t _{sk(p)}	Pulse skew (t _{pHL} - t _{pLH}) [‡]	Jeec riigare e			0.6	ns
t _{sk(o)}	Channel-to-channel output skew§				0.6	ns
t _{sk(pp)}	Part-to-part skew¶				1	ns
^t PZH	Propagation delay time, high-level-to-high-impedance output				25	ns
tPZL	Propagation delay time, low-level-to-low-impedance output	Soo Figure 7			25	ns
^t PHZ	Propagation delay time, high-impedance-to-high-level output	See Figure 7			25	ns
tPLZ	Propagation delay time, low-impedance-to-high-level output				25	ns

[†] All typical values are at 25°C and with a 3.3-V supply.

PARAMETER MEASUREMENT INFORMATION

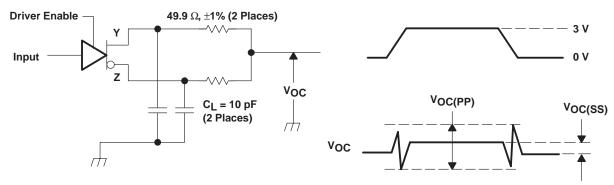
driver




Figure 1. Driver Voltage and Current Definitions

 $^{^{\}ddagger}$ $t_{Sk(p)}$ is the magnitude of the time difference between the high-to-low and low-to-high propagation delay times at an output

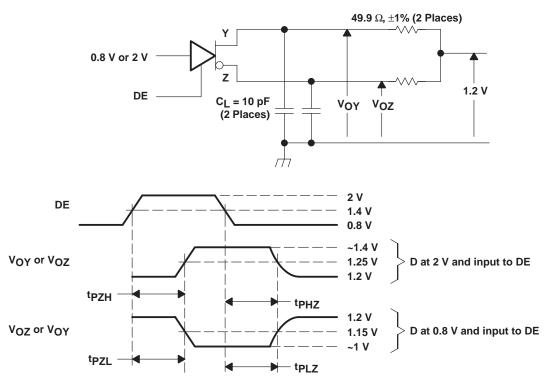
[‡]t_{sk(o)} is the magnitude of the time difference between the outputs of a single device with all of their inputs connected together.


[‡] t_{sk(o)} is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices operate with the same supply voltages, same temperature, and have identical packages and test circuits.

driver (continued)

NOTE A: All input pulses are supplied by a generator having the following characteristics: t_r or $t_f \le 1$ ns, pulse repetition rate (PRR) = 50 Mpps, pulse width = 10 ± 0.2 ns . C_L includes instrumentation and fixture capacitance within 0,06 mm of the D.U.T.

Figure 2. Test Circuit, Timing, and Voltage Definitions for the Differential Output Signal



NOTE A: All input pulses are supplied by a generator having the following characteristics: t_r or $t_f \le 1$ ns, pulse repetition rate (PRR) = 50 Mpps, pulse width = 10 ± 0.2 ns. C_L includes instrumentation and fixture capacitance within 0,06 mm of the D.U.T. The measurement of $V_{OC(PP)}$ is made on test equipment with a -3 dB bandwidth of at least 300 MHz.

Figure 3. Test Circuit and Definitions for the Driver Common-Mode Output Voltage

driver (continued)

NOTE A: All input pulses are supplied by a generator having the following characteristics: t_f or $t_f \le 1$ ns, pulse repetition rate (PRR) = 0.5 Mpps, pulse width = 500 ± 10 ns . C_1 includes instrumentation and fixture capacitance within 0,06 mm of the D.U.T.

Figure 4. Enable and Disable Time Circuit and Definitions

PARAMETER MEASUREMENT INFORMATION

receiver

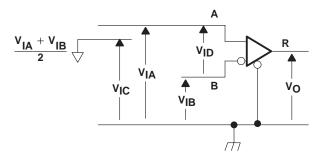
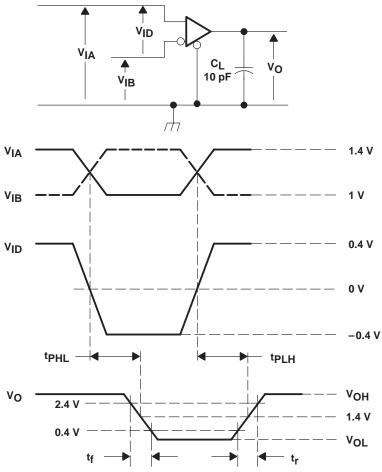



Figure 5. Receiver Voltage Definitions

Table 1. Receiver Minimum and Maximum Input Threshold Test Voltages

	VOLTAGES V)	RESULTING DIFFERENTIAL INPUT VOLTAGE (mV)	RESULTING COMMON- MODE INPUT VOLTAGE (V)		
VIA	V _{IB}	V _{ID}	V _{IC}		
1.25	1.15	100	1.2		
1.15	1.25	-100	1.2		
2.4	2.3	100	2.35		
2.3	2.4	-100	2.35		
0.1	0	100	0.05		
0	0.1	-100	0.05		
1.5	0.9	600	1.2		
0.9	1.5	-600	1.2		
2.4	1.8	600	2.1		
1.8	2.4	-600	2.1		
0.6	0	600	0.3		
0	0.6	-600	0.3		


receiver (continued)

NOTE A: All input pulses are supplied by a generator having the following characteristics: t_{Γ} or $t_{f} \le 1$ ns, pulse repetition rate (PRR) = 50 Mpps, pulse width = 10 ± 0.2 ns. C_{L} includes instrumentation and fixture capacitance within 0,06 m of the D.U.T.

Figure 6. Timing Test Circuit and Waveforms

receiver (continued)

NOTE A: All input pulses are supplied by a generator having the following characteristics: t_f or $t_f \le 1$ ns, pulse repetition rate (PRR) = 0.5 Mpps, pulse width = 500 ± 10 ns. C_L includes instrumentation and fixture capacitance within 0,06 m of the D.U.T.

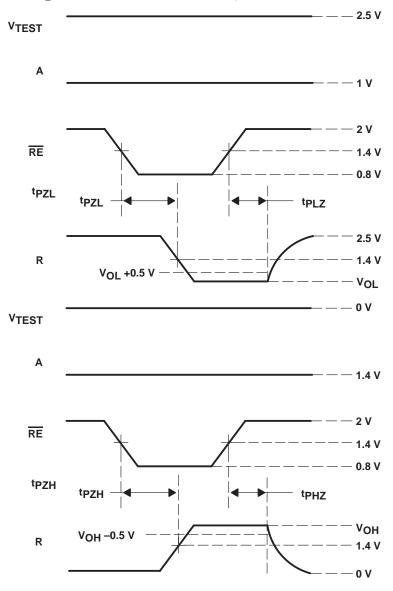
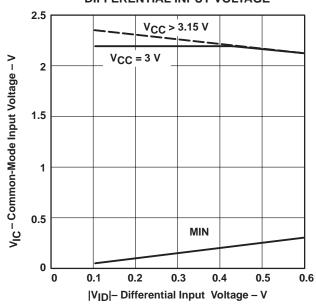
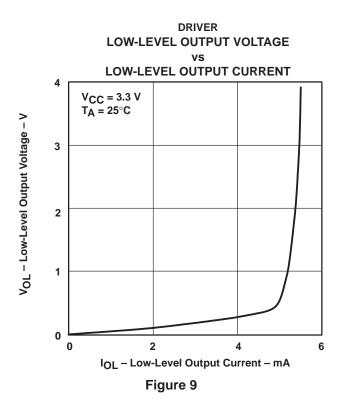
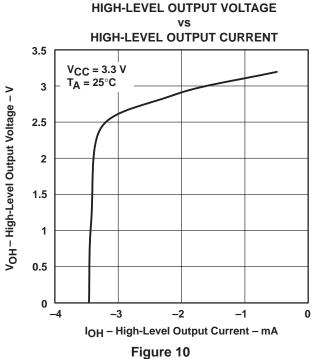
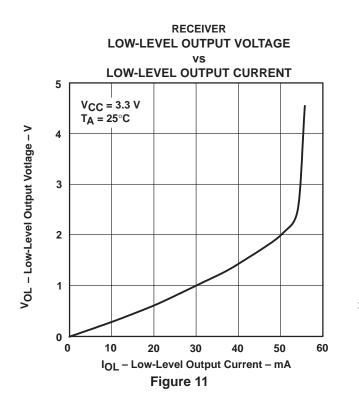


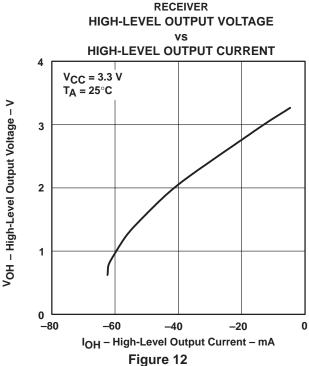
Figure 7. Enable/Disable Time Test Circuit and Waveforms

TYPICAL CHARACTERISTICS

COMMON-MODE INPUT VOLTAGE vs DIFFERENTIAL INPUT VOLTAGE


Figure 8



DRIVER

TYPICAL CHARACTERISTICS

APPLICATION INFORMATION

The devices are generally used as building blocks for high-speed point-to-point data transmission. Ground differences are less than 1 V with a low common—mode output and balanced interface for very low noise emissions. Devices can interoperate with RS-422, PECL, and IEEE-P1596. Drivers/Receivers maintain ECL speeds without the power and dual supply requirements.

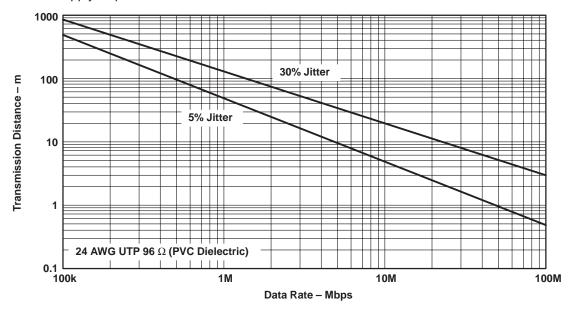


Figure 13. Data Transmission Distance Versus Rate

APPLICATION INFORMATION

fail safe

One of the most common problems with differential signaling applications is how the system responds when no differential voltage is present on the signal pair. The LVDS receiver is like most differential line receivers, in that its output logic state can be indeterminate when the differential input voltage is between –100 mV and 100 mV and within its recommended input common-mode voltage range. TI's LVDS receiver is different in how it handles the open-input circuit situation, however.

Open-circuit means that there is little or no input current to the receiver from the data line itself. This could be when the driver is in a high-impedance state or the cable is disconnected. When this occurs, the LVDS receiver will pull each line of the signal pair to near V_{CC} through 300-k Ω resistors as shown in Figure 14. The fail-safe feature uses an AND gate with input voltage thresholds at about 2.3 V to detect this condition and force the output to a high-level regardless of the differential input voltage.

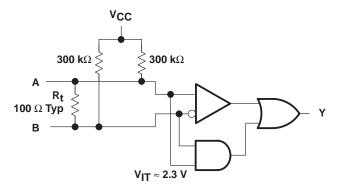
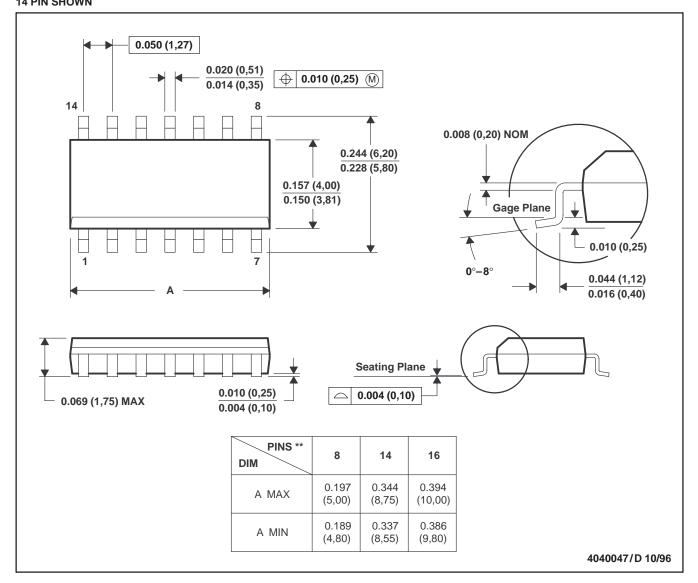


Figure 14. Open-Circuit Fail Safe of the LVDS Receiver


It is only under these conditions that the output of the receiver will be valid with less than a 100-mV differential input voltage magnitude. The presence of the termination resistor, Rt, does not affect the fail-safe function as long as it is connected as shown in the figure. Other termination circuits may allow a dc current to ground that could defeat the pullup currents from the receiver and the fail-safe feature.

MECHANICAL DATA

D (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

14 PIN SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).

D. Falls within JEDEC MS-012

PACKAGE OPTION ADDENDUM

10-Dec-2020

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
							(6)				
SN75LVDS051D	ACTIVE	SOIC	D	16	40	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	75LVDS051	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (https://www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2021, Texas Instruments Incorporated