

PI7C9X2G1616PR

PCI EXPRESS GEN 2 PACKET SWITCH 2/3/4/6/7/9/10/13/16-Port/ 16-Lane PCI Express Gen 2 Switch Green Package Family

DATASHEET REVISION 7

December 2020

A Product Line of Diodes Incorporated

1545 Barber Lane Milpitas, CA 95035 Telephone: 408-232-9100 FAX: 408-434-1040 Internet: <u>http://www.diodes.com</u>

Document Number DS40340 Rev 7-2

IMPORTANT NOTICE

1. DIODES INCORPORATED AND ITS SUBSIDIARIES ("DIODES") MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO ANY INFORMATION CONTAINED IN THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

2. The Information contained herein is for informational purpose only and is provided only to illustrate the operation of Diodes products described herein and application examples. Diodes does not assume any liability arising out of the application or use of this document or any product described herein. This document is intended for skilled and technically trained engineering customers and users who design with Diodes products. Diodes products may be used to facilitate safety-related applications; however, in all instances customers and users are responsible for (a) selecting the appropriate Diodes products for their applications, (b) evaluating the suitability of the Diodes products for their intended applications, (c) ensuring their applications, which incorporate Diodes products, comply the applicable legal and regulatory requirements as well as safety and functional-safety related standards, and (d) ensuring they design with appropriate safeguards (including testing, validation, quality control techniques, redundancy, malfunction prevention, and appropriate treatment for aging degradation) to minimize the risks associated with their applications.

3. Diodes assumes no liability for any application-related information, support, assistance or feedback that may be provided by Diodes from time to time. Any customer or user of this document or products described herein will assume all risks and liabilities associated with such use, and will hold Diodes and all companies whose products are represented herein or on Diodes' websites, harmless against all damages and liabilities.

4. Products described herein may be covered by one or more United States, international or foreign patents and pending patent applications. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks and trademark applications. Diodes does not convey any license under any of its intellectual property rights or the rights of any third parties (including third parties whose products and services may be described in this document or on Diodes' website) under this document.

5 Diodes products are provided subiect to Diodes' Standard Terms and Conditions of Sale (https://www.diodes.com/about/company/terms-and-conditions/terms-and-conditions-of-sales/) or other applicable terms. This document does not alter or expand the applicable warranties provided by Diodes. Diodes does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.

6. Diodes products and technology may not be used for or incorporated into any products or systems whose manufacture, use or sale is prohibited under any applicable laws and regulations. Should customers or users use Diodes products in contravention of any applicable laws or regulations, or for any unintended or unauthorized application, customers and users will (a) be solely responsible for any damages, losses or penalties arising in connection therewith or as a result thereof, and (b) indemnify and hold Diodes and its representatives and agents harmless against any and all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim relating to any noncompliance with the applicable laws and regulations, as well as any unintended or unauthorized application.

7. While efforts have been made to ensure the information contained in this document is accurate, complete and current, it may contain technical inaccuracies, omissions and typographical errors. Diodes does not warrant that information contained in this document is error-free and Diodes is under no obligation to update or otherwise correct this information. Notwithstanding the foregoing, Diodes reserves the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes.

8. Any unauthorized copying, modification, distribution, transmission, display or other use of this document (or any portion hereof) is prohibited. Diodes assumes no responsibility for any losses incurred by the customers or users or any third parties arising from any such unauthorized use.

Copyright © 2020 Diodes Incorporated

www.diodes.com

Page 2 of 198 www.diodes.com

REVISION HISTORY

Date	Revision Number	Description
06/11/2015	0.1	Preliminary Datasheet (Short-Form)
		Updated Section 3 Pin Description
		Updated Table 5-1
		Updated Section 6 Functional Description
		Updated Section 7 EEPROM Interface and System Management/I2C Bus
12/23/2015	0.2	Updated Section 8 Register Description
		Updated Section 9 Clock Scheme
		Updated Section 10 Power Management
		Updated Section 11 IEEE 1149.1 Compatible JTAG Controller
		Updated Section 12 Electrical and Timing Specifications
01/13/2016	0.3	Removed Section 8.4.76 EEPROM_Scratchpad
		Updated Section 12.2 DC Specifications
		Update Figure 6-2 Intelligent Adaptor Architecture Updated Section 8.2.87 NT-UP Port Selection Register
		Updated Section 8.2.87 M1-OP Polt Selection Register
		Updated Section 8.2.142 Non Transfer Mode Register
		Updated Section 8.2.152 Transaction Layer Csr Register
		Removed Section 8.2.182 Clock Buffer Control Register
		Removed Section 8.2.183 Clock Buffer Port Select Register
		Updated Section 8.3.74 NT-UP Port Selection Register
03/29/2016	0.4	Updated Section 8.3.75 Hot Plug Configuration Register
		Updated Section 8.3.111 Non Transfer Mode Register
		Updated Section 8.3.117 Transaction Layer Csr Register
		Removed Section 8.3.161 Clock Buffer Control Register
		Removed Section 8.3.162 Clock Buffer Port Select Register
		Updated Section 8.4.36 Link Control Register 2
		Added Section 8.6 DMA Engine Interface Registers
		Added Section 11 Power Sequence
		Updated Section 8.2 Transparent Mode Configuration Registers
		Updated Section 13.2 DC Specifications
01/26/2017	1.0	Updated the Logo
		Updated Section 13.1 Absolute Maximum Ratings
		Added Section 13.4 Operating Ambient Temperature
		Updated Section 7 EEPROM Interface and System Management/I2C Bus Updated Section 8 REGISTER DESCRIPTION
		Updated Section 13.1 Absolute Maximum Ratings
10/16/2017	2	Updated Table 13.2 DC Electrical Characteristics
10/10/2017	-	Added Table 13-8 Power Consumption
		Added Section 14 Thermal Data
		Revision numbering system changed to whole number
		Updated Section 3.6 Power Pins (137 Balls)
11/16/2017	3	Updated Section 3.2 Port Specific Signals (31 Balls)
		Updated Table 13-1 Absolute Maximum Ratings
		Updated Section 1 Features
		Updated Section 8.2.117 PHY Parameter 2 Register
		Updated Section 8.2.118 PHY Parameter 3 Register
01/23/2018	4	Updated Section 8.2.136 Port MISC 0 Register
01/25/2010	-	Updated Table 12-3 JTAG Boundary Scan Register Definition
		Updated Table 13-8 Power Consumption
		Updated Section 16 Ordering Information
ļ		Updated Figure 15-2 Part Marking
		Updated Section 1 Features
05/15/2010	F	Updated Section 7 EEPROM Interface and System Management/I2C Bus
05/15/2019	5	Updated Section 8.2.114 Switch Operation Mode Register – Offset 850h (Upstream Port
		Only) Updated Section 3.1 PCI Express Interface Signals (76 Balls)
05/14/2020	6	Updated Section 3.1 PCI Express Interface Signals (76 Balls)
05/14/2020	6	

PI7C9X2G1616PR Document Number DS40340 Rev 7-2 Page 3 of 198 www.diodes.com

Date	Revision Number	Description
		Updated Section 3.2 Port Specific Signals (31 Balls)
		Updated Section 6.1 Physical Layer Circuit
		Updated Section 8.2.53 Link Control Register 2
		Updated Section 8.2.126 EEPROM Control Register
		Updated Section 16 Ordering Information
12/15/2020	7	For Datasheet Status Change Updated Section 3.5 JTAG BOUNDARY SCAN SIGNALS (5 Balls)

TABLE OF CONTENTS

1	1 FEATURES	
2	2 GENERAL DESCRIPTION	
3	3 PIN DESCRIPTION	
-		
	 3.1 PCI EXPRESS INTERFACE SIGNALS (76 BALLS) 3.2 PORT SPECIFIC SIGNALS (31 BALLS) 	
	3.3 EEPROM AND SMBUS/I2C SIGNALS (10 BALLS)	
	3.4 MISCELLANEOUS SIGNALS (65 BALLS)	
	3.5 JTAG BOUNDARY SCAN SIGNALS (5 BALLS)	
	3.6 POWER PINS (137 BALLS)	
4	4 PIN DESCRIPTION	24
	4.1 PIN LIST OF 324-BALL HSBGA	
5	5 MODE SELECTION AND PORT-LANE MAPPING	
	5.1 MODE SELECTION	2.7
	5.2 LANE MAPPING	
	5.3 PORT-LANE MAPPING.	
6		
U		
	6.1 PHYSICAL LAYER CIRCUIT	
	6.1.1 RECEIVER DETECTION	
	6.1.2 RECEIVER SIGNAL DETECTION	
	6.1.3 RECEIVER EQUALIZATION	
	6.1.4 TRANSMITTER SWING	
	6.1.5 DRIVE AMPLITUDE AND DE-EMPHASIS SETTINGS	
	6.1.6 DRIVE AMPLITUDE	
	6.1.7 DRIVE DE-EMPHASIS	
	6.1.8 TRANSMITTER ELECTRICAL IDLE LATENCY	
	6.2 DATA LINK LAYER (DLL)	
	6.3 TRANSACTION LAYER RECEIVE BLOCK (TLP DECAPSULATION	
	6.4 ROUTING	
	6.5 TC/VC MAPPING	
	6.6 QUEUE	
	6.6.1 PH	
	6.6.2 PD	
	6.6.3 NPHD	
	6.6.4 CPLH	
	6.6.5 CPLD	
	6.7 TRANSACTION ORDERING	
	6.8 PORT ARBITRATION	
	6.9 VC ARBITRATION	
	6.10 FLOW CONTROL	
	6.11 TRANSATION LAYER TRANSMIT BLOCK (TLP ENCAPSULATION	,
	6.12 ACCESS CONTROL SERVICE	
	6.13 NON-TRANSPARENT BRIDGING (NT MODE ONLY)	
	6.13.1 Device Type Identification	
	6.13.2 Intelligent Adaptor	
	6.13.3 Interrupts Request (IRQ) Registers	
	6.13.4 Scratchpad Registers	
	6.13.5 NT Base Address Registers	

Page 5 of 198 www.diodes.com

	6.13.6	Routing ID Translation	20
		EGRATED DMA ENGINE	
	6.14.1	Data Structure	
	6.14.2	Traffic Models	
	6.14.3	Data Transfer Sequence	
	6.14.4	DMA Pause	
	6.14.5	DMA I uuse DMA Abort	
	6.14.6	DMA Abort	
	6.14.7	Descriptor Prefetch	46
7		M INTERFACE AND SYSTEM MANAGEMENT/I2C BUS	
'			
		PROM INTERFACE	
	7.1.1	AUTO MODE EEPROM ACCESS	
	7.1.2	EEPROM MODE AT RESET	
	7.1.3	EEPROM SPACE ADDRESS MAP	
		BUS INTERFACE	
	7.2.1	SMBUS BLOCK WRITE	
	7.2.2	SMBUS BLOCK READ	
	7.2.3	CSR READ, USING SMBUS BLOCK READ – BLOCK WRITE PROCESS CALL	
		SLAVE INTERFACE	54
	7.3.1	I ² C REGISTER WRITE ACCESS	55
	7.3.2	I ² C REGISTER READ ACCESS	57
8	REGIST	ER DESCRIPTION	
	8.1 RE0	GISTER TYPES	60
		ANSPARENT MODE CONFIGURATION REGISTERS	
	8.2.1	VENDOR ID REGISTER – OFFSET 00h	
	8.2.2	DEVICE ID REGISTER – OFFSET 00h	
	8.2.2 8.2.3	COMMAND REGISTER – OFFSET 001	
	8.2.3 8.2.4	PRIMARY STATUS REGISTER – OFFSET 04h	
	8.2.4 8.2.5	REVISION ID REGISTER – OFFSET 08h	
	8.2.5 8.2.6	CLASS REGISTER – OFFSET 08h	
	8.2.0 8.2.7	CACHE LINE REGISTER – OFFSET 0Ch	
	8.2.7	PRIMARY LATENCY TIMER REGISTER – OFFSET 0Ch	
	8.2.8 8.2.9	HEADER TYPE REGISTER – OFFSET 0Ch	
	8.2.10	BASE ADDRESS 0 REGISTER – OFFSET 10h (Upstream Port Only)	
	8.2.10	BASE ADDRESS 0 REGISTER – OFFSET 10h (Opstream 1 on Only) BASE ADDRESS 1 REGISTER – OFFSET 14h (Upstream Port Only)	
	8.2.12	PRIMARY BUS NUMBER REGISTER – OFFSET 14n (Opsileum 1 on Omy)	05
	8.2.12	SECONDARY BUS NUMBER REGISTER – OFFSET 18h	
	8.2.13	SUBORDINATE RUS NUMBER REGISTER – OFFSET 18h	
	8.2.15	SECONDARY LATENCY TIMER REGISTER – OFFSET 18h	
	8.2.16	I/O BASE ADDRESS REGISTER – OFFSET 1Ch	
	8.2.17	I/O LIMIT ADDRESS REGISTER – OFFSET 1Ch	
	8.2.18	SECONDARY STATUS REGISTER – OFFSET 1Ch	
	8.2.19	MEMORY BASE ADDRESS REGISTER – OFFSET 20h	
	8.2.20	MEMORY LIMIT ADDRESS REGISTER – OFFSET 20h	
	8.2.21	PREFETCHABLE MEMORY BASE ADDRESS REGISTER – OFFSET 2011	
	8.2.22	PREFETCHABLE MEMORY LIMIT ADDRESS REGISTER – OFFSET 24h	
	8.2.23	PREFETCHABLE MEMORY BASE ADDRESS VEOISTER – OFFSET 24	
	8.2.23	PREFETCHABLE MEMORY LIMIT ADDRESS UPPER 32-BITS REGISTER – OFFSET 2Ch	
	8.2.24 8.2.25	I/O BASE ADDRESS UPPER 16-BITS REGISTER – OFFSET 30h	
	8.2.25	I/O BASE ADDRESS UPPER 16-BITS REGISTER – OFFSET 30h	
	8.2.20	CAPABILITY POINTER REGISTER – OFFSET 34h	
	8.2.28	INTERRUPT LINE REGISTER – OFFSET 3Ch	
	8.2.29	INTERRUPT PIN REGISTER – OFFSET 3Ch	
	0.4.41		

PI7C9X2G1616PR Document Number DS40340 Rev 7-2

Page 6 of 198 www.diodes.com

8.2.30 E	BRIDGE CONTROL REGISTER – OFFSET 3Ch	69
8.2.31 H	POWER MANAGEMENT CAPABILITIES REGISTER – OFFSET 40h	70
	POWER MANAGEMENT DATA REGISTER – OFFSET 44h	
8.2.33 H	PPB SUPPORT EXTENSIONS REGISTER – OFFSET 44h	71
	DATA REGISTER– OFFSET 44h	
8.2.35 N	ASI CAPABILITIES REGISTER – OFFSET 48h	71
8.2.36 N	IESSAGE ADDRESS REGISTER – OFFSET 4Ch	71
8.2.37 N	AESSAGE UPPER ADDRESS REGISTER – OFFSET 50h	72
	IESSAGE DATA REGISTER – OFFSET 54h	
8.2.39 H	PCI EXPRESS CAPABILITIES REGISTER – OFFSET 68h	72
8.2.40 L	DEVICE CAPABILITIES REGISTER – OFFSET 6Ch	72
8.2.41 L	DEVICE CONTROL REGISTER – OFFSET 70h	73
8.2.42 L	DEVICE STATUS REGISTER – OFFSET 70h	73
8.2.43 L	INK CAPABILITIES REGISTER – OFFSET 74h	74
8.2.44 L	INK CONTROL REGISTER – OFFSET 78h	75
8.2.45 L	INK STATUS REGISTER – OFFSET 78h	75
8.2.46 S	SLOT CAPABILITIES REGISTER – OFFSET 7Ch (Downstream Port Only)	76
8.2.47 S	SLOT CONTROL REGISTER – OFFSET 80h (Downstream Port Only)	76
8.2.48 S	SLOT STATUS REGISTER – OFFSET 80h (Downstream Port Only)	77
8.2.49 L	DEVICE CAPABILITIES REGISTER 2 – OFFSET 8Ch	78
8.2.50 L	DEVICE CONTROL REGISTER 2 – OFFSET 90h	78
	DEVICE STATUS REGISTER 2 – OFFSET 90h	
8.2.52 L	INK CAPABILITIES REGISTER 2 – OFFSET 94h	78
8.2.53 L	INK CONTROL REGISTER 2 – OFFSET 98h	78
8.2.54 L	INK STATUS REGISTER 2 – OFFSET 98h	79
8.2.55 S	SLOT CAPABILITIES REGISTER 2 – OFFSET 9Ch	79
8.2.56 S	SLOT CONTROL REGISTER 2 – OFFSET A0h	79
	SLOT STATUS REGISTER 2 – OFFSET A0h	
8.2.58 S	SID/SSVID CAPATILITIES REGISTER – OFFSET A4h	79
	SUBSYSTEM VENDOR ID REGISTER – OFFSET A8h	
8.2.60 S	SUBSYSTEM ID REGISTER – OFFSET A8h	79
8.2.61 E	3AR 0-1 CONFIGURATION REGISTER – OFFSET E4h (Upstream Port Only)	80
	DEVICE SERIAL NUMBER ENHANCED CAPABILITY HEADER REGISTER – OFFSET 100h	
	DEVICE SERIAL NUMBER LOWER DW REGISTER – OFFSET 104h	
	DEVICE SERIAL NUMBER HIGHER DW REGISTER – OFFSET 108h	
8.2.65 H	PCI EXPRESS POWER BUDGETING ENHANCED CAPABILITY HEADER REGISTER – OFFS	SET
	tream Port Only)	
8.2.66 L	DATA SELECT REGISTER – OFFSET 13Ch (Upstream Port Only)	81
8.2.67 H	POWER BUDGETING DATA REGISTER – OFFSET 140h (Upstream Port Only)	81
8.2.68 H	POWER BUDGET CAPABILITY REGISTER – OFFSET 144h (Upstream Port Only)	81
8.2.69 H	PCI EXPRESS VIRTUAL CHANNEL ENHANCED CAPABILITY HEADER REGISTER – OFFSE	ET
148h 8	BI	
8.2.70 H	PORT VC CAPABILITY REGISTER 1 – OFFSET 14Ch	82
8.2.71 H	PORT VC CAPABILITY REGISTER 2 – OFFSET 150h	82
8.2.72 H	PORT VC CONTROL REGISTER – OFFSET 154h	82
8.2.73 H	PORT VC STATUS REGISTER – OFFSET 154h	82
8.2.74 V	C RESOURCE CAPABILITY REGISTER (0) – OFFSET 158h	83
8.2.75 V	C RESOURCE CONTROL REGISTER (0) – OFFSET 15Ch	83
8.2.76 V	C RESOURCE STATUS REGISTER (0) – OFFSET 160h	83
	C RESOURCE CAPABILITY REGISTER (1) – OFFSET 164h	
8.2.78 V	C RESOURCE CONTROL REGISTER (1) – OFFSET 168h	84
8.2.79 V	C RESOURCE STATUS REGISTER (1) – OFFSET 16Ch	84
8.2.80 V	C ARBITRATION TABLE REGISTER – OFFSET 188h	85
	PORT ARBITRATION TABLE REGISTER (0) and (1) – OFFSET 198h and 1A8h	
8.2.81 H	OKI AKDIIKAIION IADLE KEOISIEK (0) unu (1) = OIIISEI IJON unu IAON	

PI7C9X2G1616PR Document Number DS40340 Rev 7-2 Page 7 of 198 www.diodes.com

8.2.83	NT-UP PORT SELECTION REGISTER – OFFSET 1DCh (Global)	
8.2.84	HOT PLUG CONFIGURATION REGISTER – OFFSET 1E0h	
8.2.85	SOFTWARE LANE STATUS REGISTER – OFFSET 1F4h (Global)	
8.2.86	DE-EMPHASIS AND RATE CONTROL REGISTER – OFFSET 208h (Upstream Port Only)	
8.2.87	COMPLIANCE MODE CONTROL REGISTER – OFFSET 20Ch	
8.2.88	EVEN PORT PHYSICAL LAYER COMMAND AND STATUS REGISTER – OFFSET 220h (G	
0.2.00	87	10001)
8.2.89	ODD PORT PHYSICAL LAYER COMMAND AND STATUS REGISTER – OFFSET 224h (Gl	obal) 88
8.2.90	EVEN PORT DISABLE/QUIET/TEST PATTERN RATE REGISTER – OFFSET 230h (Global	
8.2.90 8.2.91	ODD PORT DISABLE/QUIET/TEST PATTERN RATE REGISTER – OFFSET 230h (Global)	
8.2.91 8.2.92	LI PM SUBSTATES ENHANCED CAPABILITY HEADER – OFFSET 270h	
8.2.92 8.2.93	LI PM SUBSTATES ENHANCED CATABILITT HEADER – OFFSET 270h LI PM SUBSTATES CAPABILITY REGISTER – OFFSET 274h	
8.2.93 8.2.94	LI PM SUBSTATES CAPABILITI REGISTER – OFFSET 274n LI PM SUBSTATES CONTROL 1 REGISTER – OFFSET 278h	
8.2.94 8.2.95	LI PM SUBSTATES CONTROL 1 REGISTER – OFFSET 278n LI PM SUBSTATES CONTROL 2 REGISTER – OFFSET 27Ch	
8.2.96	SMBUS CONTROL AND STATUS REGISTER – OFFSET 344h (Upstream Port Only)	
8.2.97	DISABLE DOWNSTREAM PORT HOT RESET REGISTER – OFFSET 34Ch (Upstream Port	Only)
8.2.98	ACS ENHANCED CAPABILITY HEADER REGISTER – OFFSET 520h (Downstream Port C	
8.2.99	ACS CAPABILITY REGISTER – OFFSET 524h (Downstream Port Only)	
8.2.100	EGRESS CONTROL VECTOR REGISTER – OFFSET 528h (Downstream Port Only)	
8.2.101	GPIO 0-15 DIRECTION CONTROL REGISTER – OFFSET 62Ch (Upstream Port Only)	
8.2.102	GPIO 16-31 DIRECTION CONTROL REGISTER – OFFSET 630h (Upstream Port Only)	
8.2.103	GPIO INPUT DE-BOUNCE REGISTER – OFFSET 638h (Upstream Port Only)	
8.2.104	GPIO 0-15 INPUT DATA REGISTER – OFFSET 63Ch (Global)	
8.2.105	GPIO 16-31 INPUT DATA REGISTER – OFFSET 640h (Global)	
8.2.106	GPIO 0-15 OUTPUT DATA REGISTER – OFFSET 644h (Upstream Port Only)	
8.2.107	GPIO 16-31 OUTPUT DATA REGISTER – OFFSET 648h (Upstream Port Only)	100
8.2.108	GPIO 0-31 INTERRUPT POLARITY REGISTER – OFFSET 64Ch (Upstream Port Only)	
8.2.109	GPIO 0-31 INTERRUPT STATUS REGISTER – OFFSET 650h (Global)	
8.2.110	GPIO 0-31 INTERRUPT MASK REGISTER – OFFSET 654h (Upstream Port Only)	
8.2.111	XPIP CSR 0 REGISTER – OFFSET 844h	
8.2.112	XPIP CSR 1 REGISTER – OFFSET 848h	
8.2.113	DECODE VGA REGISTER – OFFSET 84Ch	
8.2.114	SWITCH OPERATION MODE REGISTER – OFFSET 850h (Upstream Port Only)	
8.2.115	XPIP CSR 2 REGISTER – OFFSET 854h	
8.2.116	PHY PARAMETER 1 REGISTER – OFFSET 854h (Upstream Port Only)	
8.2.117	PHY PARAMETER 2 REGISTER – OFFSET 858h	
8.2.118	PHY PARAMETER 3 REGISTER – OFFSET 856h	
8.2.119	PHY PARAMETER 4 REGISTER - OFFSET 860h (Upstream Port Only)	
8.2.120	XPIP CSR 3 REGISTER – OFFSET 864h	
8.2.120	XPIP CSR 4 REGISTER – OFFSET 868h (Upstream Port Only)	
8.2.121	XPIP_CSR 4 REGISTER – OFFSET 8080 (Opstream Fort Only) XPIP_CSR 5 REGISTER – OFFSET 86Ch	
	NON TRANSFER MODE REGISTER – OFFSET 80Ch NON TRANSFER MODE REGISTER – OFFSET 870h (Upstream Port Only)	
8.2.123		
8.2.124	OPERATION MODE REGISTER – OFFSET 874h	
8.2.125	DEVICE SPECIFIC POWER MANAGEMENT EVENT- OFFSET 878h (Downstream Port	Only)
	105	
8.2.126	EEPROM CONTROL REGISTER – OFFSET 87Ch (Upstream Port Only)	
8.2.127	EEPROM ADDRESS AND DATA REGISTER – OFFSET 880h (Upstream Port Only)	
8.2.128	DEBUGOUT CONTROL REGISTER – OFFSET 884h (Upstream Port Only)	
8.2.129	DEBUGOUT DATA REGISTER – OFFSET 888h (Upstream Port Only)	
8.2.130	LTSSM_CSR REGISTER – OFFSET 88Ch (Downstream Port Only)	
8.2.131	MAC_CSR REGISTER – OFFSET 890h	
8.2.132	POWER SAVING DISABLE REGISTER – OFFSET 8A4h	
	TRANGACTION LAVER CORRECTOTER OFFICET 0 401	107
8.2.133	TRANSACTION LAYER CSR REGISTER – OFFSET 8A8h REPLAY TIME-OUT COUNTER REGISTER – OFFSET 8ACh	

PI7C9X2G1616PR Document Number DS40340 Rev 7-2 Page 8 of 198 www.diodes.com

8.2.135	ACKNOWLEDGE LATENCY TIMER REGISTER – OFFSET 8ACh	108
8.2.136	PORT MISC 0 REGISTER – OFFSET 8B0h	
8.2.137	PHY PARAMETER 0 REGISTER – OFFSET 8B0h (Upstream Port Only)	108
8.2.138	PORT MISC 1 REGISTER – OFFSET 8B4h	108
8.2.139	XPIP CSR 6 REGISTER – OFFSET 8B4h	
8.2.140	XPIP ⁻ CSR 7 REGISTER – OFFSET 8B4h	109
8.2.141	PORT MISC 2 REGISTER – OFFSET 8B8h	
8.2.142	LED DISPLAY CSR REGISTER – OFFSET 8BCh (Global)	109
8.2.143	MULTI-CAST ENHANCED CAPABILITY HEADER REGISTER – OFFSET 900h	109
8.2.144	MULTI-CAST CAPABILITY REGISTER – OFFSET 904h	110
8.2.145	MULTI-CAST CONTROL REGISTER – OFFSET 904h	110
8.2.146	MULTI-CAST BASE ADDRESS 0 REGISTER – OFFSET 908h	110
8.2.147	MULTI-CAST BASE ADDRESS 1 REGISTER – OFFSET 90Ch	110
8.2.148	MULTI-CAST RECEIVER REGISTER – OFFSET 910h	110
8.2.149	MULTI-CAST BLOCK ALL REGISTER – OFFSET 918h	110
8.2.150	MULTI-CAST BLOCK UNTRANSLATED REGISTER – OFFSET 920h	111
8.2.151	EEPROM SCRATCHPAD REGISTER - OFFSET FB0h	
8.2.152	PCI EXPRESS ADVANCED ERROR REPORTING ENHANCED CAPABILITY HEADER	
REGIST	ER – OFFSET FB4h	111
8.2.153	UNCORRECTABLE ERROR STATUS REGISTER – OFFSET FB8h	111
8.2.154	UNCORRECTABLE ERROR MASK REGISTER – OFFSET FBCh	112
8.2.155	UNCORRECTABLE ERROR SEVERITY REGISTER – OFFSET FC0h	112
8.2.156	CORRECTABLE ERROR STATUS REGISTER – OFFSET FC4h	
8.2.157	CORRECTABLE ERROR MASK REGISTER – OFFSET FC8h	
8.2.158	ADVANCE ERROR CAPABILITIES AND CONTROL REGISTER – OFFSET FCCh	114
8.2.159	HEADER LOG REGISTER – OFFSET From FD0h to FDCh	
8.3 NO	N TRANSPARENT PORT LINK INTERFACE CONFIGURATION REGISTERS – NT MODE	
115		
8.3.1	VENDOR ID REGISTER – OFFSET 00h	118
8.3.2	DEVICE ID REGISTER – OFFSET 00h	118
8.3.3	COMMAND REGISTER – OFFSET 04h	118
8.3.4	PRIMARY STATUS REGISTER – OFFSET 04h	
8.3.5	REVISION ID REGISTER – OFFSET 08h	119
8.3.6	CLASS CODE REGISTER – OFFSET 08h	
8.3.7	CACHE LINE REGISTER – OFFSET 0Ch	119
8.3.8	PRIMARY LATENCY TIMER REGISTER – OFFSET 0Ch	
8.3.9	HEADER TYPE REGISTER – OFFSET 0Ch	120
8.3.10	BAR 0 REGISTER – OFFSET 10h	120
8.3.11	BAR 1 REGISTER – OFFSET 14h	
8.3.12	BAR 2 REGISTER – OFFSET 18h	120
8.3.13	BAR 3 REGISTER – OFFSET 1Ch	120
8.3.14	BAR 4 REGISTER – OFFSET 20h	
8.3.15	BAR 5 REGISTER – OFFSET 24h	
8.3.16	SUBSYSTEM VENDOR ID REGISTER – OFFSET 2Ch	
8.3.17	SUBSYSTEM ID REGISTER – OFFSET 2Ch	121
8.3.18	CAPABILITY POINTER REGISTER – OFFSET 34h	
8.3.19	INTERRUPT LINE REGISTER – OFFSET 3Ch	
8.3.20	INTERRUPT PIN REGISTER – OFFSET 3Ch	
8.3.21	POWER MANAGEMENT CAPABILITIES REGISTER – OFFSET 40h	
8.3.22	POWER MANAGEMENT DATA REGISTER – OFFSET 44h	
8.3.23	PPB SUPPORT EXTENSIONS – OFFSET 44h	
8.3.24	DATA REGISTER – OFFSET 44h	
8.3.25	MSI CAPABILITIES REGISTER – OFFSET 48h	
8.3.26	MESSAGE ADDRESS REGISTER – OFFSET 40h	
8.3.27	MESSAGE UPPER ADDRESS REGISTER – OFFSET 50h	

Page 9 of 198 www.diodes.com

8.3.28	MESSAGE DATA REGISTER – OFFSET 54h	
8.3.29	PCI EXPRESS CAPABILITIES REGISTER – OFFSET 68h	
8.3.30	DEVICE CAPABILITIES REGISTER – OFFSET 6Ch	
8.3.31	DEVICE CONTROL REGISTER – OFFSET 70h	
8.3.32	DEVICE STATUS REGISTER – OFFSET 70h	
8.3.33	LINK CAPABILITIES REGISTER – OFFSET 74h	
8.3.34	LINK CONTROL REGISTER – OFFSET 78h	
8.3.35	LINK STATUS REGISTER – OFFSET 78h	
8.3.36	LINK CONTROL REGISTER 2 – OFFSET 94h	
8.3.37	LINK CONTROL REGISTER 2 – OFFSET 98h	
8.3.38	LINK STATUS REGISTER 2 – OFFSET 98h	
8.3.39	SSID/SSVID CAPABILITIES REGISTER – OFFSET A4h	
8.3.40	SUBSYSTEM VENDOR ID REGISTER – OFFSET A8h	
8.3.41	SUBSYSTEM ID REGISTER – OFFSET A8h	
8.3.42	VENDOR SPECIFIC CAPABILITIES REGISTER – OFFSET C8h	
8.3.43	VENDOR SPECIFIC HEADER REGISTER – OFFSET CCh	
8.3.44	NT PORT LINK INTERFACE BAR 0-1 CONFIGURATION REGISTER – OFFSET E4h	
8.3.45	NT PORT LINK INTERFACE BAR 2 CONFIGURATION REGISTER – OFFSET E8h	
8.3.46	NT PORT LINK INTERFACE BAR 2-3 CONFIGURATION REGISTER – OFFSET ECh	
8.3.47	NT PORT LINK INTERFACE BAR 4 CONFIGURATION REGISTER – OFFSET F0h	
8.3.48	NT PORT LINK INTERFACE BAR 4-5 CONFIGURATION REGISTER – OFFSET F4h	
8.3.49	DEVICE SERIAL NUMBER ENHANCED CAPABILITY HEADER REGISTER – OFFSET 100	h131
8.3.50	DEVICE SERIAL NUMBER LOWER DW REGISTER – OFFSET 104h	
8.3.51	DEVICE SERIAL NUMBER HIGHTER DW REGISTER – OFFSET 108h	
8.3.52	PCI EXPRESS POWER BUDGETING ENHANCED CAPABILITY HEADER REGISTER – OF	FSET
138h	131	
8.3.53	DATA SELECT REGISTER – OFFSET 13Ch	
8.3.54	POWER BUDGETING DATA REGISTER – OFFSET 140h	
8.3.55	POWER BUDGET CAPABILITY REGISTER – OFFSET 144h	
8.3.56	PCI EXPRESS VIRTUAL CHANNEL ENHANCED CAPABILITY HEADER REGISTER – OFF	SET
148h	132	
8.3.57	PORT VC CAPABILITY REGISTER 1 – OFFSET 14Ch	
8.3.58	PORT VC CAPABILITY REGISTER 2 – OFFSET 150h	
8.3.59	PORT VC CONTROL REGISTER – OFFSET 154h	
8.3.60	VC STATUS REGISTER – OFFSET 154h	
8.3.61	VC RESOURCE CAPABILITY REGISTER (0) – OFFSET 158h	
8.3.62	VC RESOURCE CONTROL REGISTER (0) – OFFSET 15Ch	
8.3.63	VC RESOURCE STATUS REGISTER (0) – OFFSET 160h	
8.3.64	VC RESOURCE CAPABILITY REGISTER (1) – OFFSET 164h	
8.3.65	VC RESOURCE CONTROL REGISTER (1) – OFFSET 168h	
8.3.66	VC RESOURCE STATUS REGISTER (1) – OFFSET 16Ch	
8.3.67	VC ARBITRATION TABLE REGISTER – OFFSET 188h	
8.3.68	PORT ARBITRATION TABLE REGISTER (0) and (1) – OFFSET 198h and 1A8h	
8.3.69	XPIP_CSR 0 REGISTER – OFFSET 844h	
8.3.70	XPIP_CSR 1 REGISTER – OFFSET 848h	
8.3.71	DECODE VGA REGISTER – OFFSET 84Ch	
8.3.72	XPIP_CSR 2 REGISTER – OFFSET 854h	
8.3.73	PHY PARAMETER 2 REGISTER – OFFSET 858h	
8.3.74	PHY PARAMETER 3 REGISTER – OFFSET 85Ch	
8.3.75	XPIP_CSR 3 REGISTER – OFFSET 864h	
8.3.76	XPIP_CSR 5 REGISTER – OFFSET 86Ch	
8.3.77	OPERATION MODE REGISTER – OFFSET 874h (Global)	
8.3.78	MAC_CSR REGISTER – OFFSET 890h	
8.3.79	POWER SAVING DISABLE REGISTER – OFFSET 8A4h	138

PI7C9X2G1616PR Document Number DS40340 Rev 7-2 Page 10 of 198 www.diodes.com

 8.3.81 REPLAY TIME-OUT COUNTER REGISTER – OFFSET 8ACh	139 139 139 140 140 140 140 141 141
 8.3.83 PORT MISC 0 REGISTER – OFFSET 8B0h 8.3.84 PORT MISC 1 REGISTER – OFFSET 8B4h 8.3.85 XPIP_CSR 6 REGISTER – OFFSET 8B4h 8.3.86 XPIP_CSR 7 REGISTER – OFFSET 8B4h 8.3.87 PORT MISC 2 REGISTER – OFFSET 8B8h 8.3.88 VENDOR SPECIFIC CAPABILITIES HEADER REGISTER – OFFSET C34h 8.3.89 VENDOR SPECIFIC HEADER REGISTER – OFFSET C38h 8.3.90 MEMORY BAR 2 ADDRESS TRANSLATION REGISTER – OFFSET C30h 8.3.91 MEMORY BAR 3 ADDRESS TRANSLATION REGISTER – OFFSET C40h 	139 139 140 140 140 140 141 141
 8.3.84 PORT MISC 1 REGISTER – OFFSET 8B4h 8.3.85 XPIP_CSR 6 REGISTER – OFFSET 8B4h 8.3.86 XPIP_CSR 7 REGISTER – OFFSET 8B4h 8.3.87 PORT MISC 2 REGISTER – OFFSET 8B8h 8.3.88 VENDOR SPECIFIC CAPABILITIES HEADER REGISTER – OFFSET C34h 8.3.89 VENDOR SPECIFIC HEADER REGISTER – OFFSET C38h 8.3.90 MEMORY BAR 2 ADDRESS TRANSLATION REGISTER – OFFSET C3Ch 8.3.91 MEMORY BAR 3 ADDRESS TRANSLATION REGISTER – OFFSET C40h 	139 140 140 140 140 141 141
 8.3.85 XPIP_CSR 6 REGISTER – OFFSET 8B4h	140 140 140 140 141 141
 8.3.86 XPIP_CSR 7 REGISTER – OFFSET 8B4h	140 140 140 141 141
 8.3.87 PORT MISC 2 REGISTER – OFFSET 8B8h 8.3.88 VENDOR SPECIFIC CAPABILITIES HEADER REGISTER – OFFSET C34h 8.3.89 VENDOR SPECIFIC HEADER REGISTER – OFFSET C38h 8.3.90 MEMORY BAR 2 ADDRESS TRANSLATION REGISTER – OFFSET C3Ch 8.3.91 MEMORY BAR 3 ADDRESS TRANSLATION REGISTER – OFFSET C40h 	140 140 141 141
 8.3.88 VENDOR SPECIFIC CAPABILITIES HEADER REGISTER – OFFSET C34h 8.3.89 VENDOR SPECIFIC HEADER REGISTER – OFFSET C38h 8.3.90 MEMORY BAR 2 ADDRESS TRANSLATION REGISTER – OFFSET C3Ch 8.3.91 MEMORY BAR 3 ADDRESS TRANSLATION REGISTER – OFFSET C40h 	140 141 141
 8.3.89 VENDOR SPECIFIC HEADER REGISTER – OFFSET C38h 8.3.90 MEMORY BAR 2 ADDRESS TRANSLATION REGISTER – OFFSET C3Ch 8.3.91 MEMORY BAR 3 ADDRESS TRANSLATION REGISTER – OFFSET C40h 	141 141
8.3.90 MEMORY BAR 2 ADDRESS TRANSLATION REGISTER – OFFSET C3Ch 8.3.91 MEMORY BAR 3 ADDRESS TRANSLATION REGISTER – OFFSET C40h	141
8.3.91 MEMORY BAR 3 ADDRESS TRANSLATION REGISTER – OFFSET C40h	
8.3.92 MEMORY BAR4 ADDRESS TRANSLATION REGISTER – OFFSET C44h	. 141
8.3.93 MEMORY BAR 5 ADDRESS TRANSLATION REGISTER – OFFSET C48h	. 141
8.3.94 VIRTUAL IF IRQ SET REGISTER – OFFSET C4Ch	. 141
8.3.95 VIRTUAL IF IRQ CLEAR REGISTER – OFFSET C50h	. 141
8.3.96 VIRTUAL IF IRQ MASK SET REGISTER – OFFSET C54h	. 142
8.3.97 VIRTUAL IF IRQ MASK CLEAR REGISTER – OFFSET C58h	142
8.3.98 LINK IF IRQ SET REGISTER – OFFSET C5Ch	
8.3.99 LINK IF IRQ CLEAR REGISTER – OFFSET C60h	
8.3.100 LINK IF IRQ MASK SET REGISTER – OFFST C64h	
8.3.101 LINK IF IRQ MASK CLEAR REGISTER – OFFSET C68h	. 142
8.3.102 SCRATCHPAD 0 REGISTER – OFFSET C6Ch	
8.3.103 SCRATCHPAD 1 REGISTER – OFFSET C70h	. 143
8.3.104 SCRATHPAD 2 REGISTER – OFFSET C74h	
8.3.105 SCRATCHPAD 3 REGISTER – OFFSET C78h	
8.3.106 SCRATHPAD 4 REGISTER – OFFSET C7Ch	
8.3.107 SCRATCHPAD 5 REGISTER – OFFSET C80h	
8.3.108 SCRATCHPAD 6 REGISTER – OFFSET C84h	
8.3.109 SCRATCHPAD 7 REGISTER – OFFSTE C88h	
8.3.110 VIRTUAL PORT 32-BITS LTT ENTRY 0-7 – OFFSET D94h to DB0h	
8.3.111 LINK PORT 16-BITS LTT ENTRY 0-31 REGISTER – OFFSET DB4h – DF4h	
8.3.112 FAIL-OVER CSR REGISTER – OFFSET DF4h	
8.3.113 EEPROM_SCRATCHPAD REGISTER – OFFSET FB0h	. 145
8.3.114 PCI EXPRESS ADVANCED ERROR REPORTING ENHANCED CAPABILITY HEADER	
REGISTER – OFFSET FB4h	
8.3.115 UNCORRECTABLE ERROR STATUS REGISTER – OFFSET FB8h	
8.3.116 UNCORRECTABLE ERROR MASK REGISTER – OFFSET FBCh	
8.3.117 UNCORRECTABLE ERROR SEVERITY REGISTER – OFFSET FC0h	
8.3.118 CORRECTABLE ERROR STATUS REGISTER – OFFSET FC4 h	
8.3.119 CORRECTABLE ERROR MASK REGISTER – OFFSET FC8 h	
8.3.120 ADVANCE ERROR CAPABILITIES AND CONTROL REGISTER – OFFSET FCCh	
8.3.121 HEADER LOG REGISTER – OFFSET From FD0h to FDCh	
8.4 NON TRANSPARENT PORT VIRTUAL INTERFACE CONFIGURATION REGISTERS – NT MO	DE
ONLY 149	
8.4.1 VENDOR ID REGISTER – OFFSET 00h	
8.4.2 DEVICE ID REGISTER – OFFSET 00h	
8.4.3 COMMAND REGISTER – OFFSET 04h	
8.4.4 PRIMARY STATUS REGISTER – OFFSET 04h	
8.4.5 REVISION ID REGISTER – OFFSET 08h	
8.4.6 CLASS CODE REGISTER – OFFSET 08h	
8.4.7 CACHE LINE REGISTER – OFFSET 0Ch	
8.4.8 PRIMARY LATENCY TIMER REGISTER – OFFSET 0Ch	
8.4.9 HEADER TYPE REGISTER – OFFSET 0Ch	
8.4.10 BAR 0 REGISTER – OFFSET 10h	
8.4.11 BAR 1 REGISTER – OFFSET 14h	. 153

PI7C9X2G1616PR Document Number DS40340 Rev 7-2 Page 11 of 198 www.diodes.com

8.4.12	BAR 2 REGISTER – OFFSET 18h	. 153
8.4.13	BAR 3 REGISTER – OFFSET 1Ch	
8.4.14	BAR 4 REGISTER – OFFSET 20h	
8.4.15	BAR 5 REGISTER – OFFSET 24h	. 154
8.4.16	SUBSYSTEM VENDOR ID REGISTER – OFFSET 2Ch	
8.4.17	SUBSYSTEM ID REGISTER – OFFSET 2Ch	. 154
8.4.18	CAPABILITY POINTER REGISTER – OFFSET 34h	
8.4.19	INTERRUPT LINE REGISTER – OFFSET 3Ch	
8.4.20	INTERRUPT PIN REGISTER – OFFSET 3Ch	
8.4.21	POWER MANAGEMENT CAPABILITIES REGISTER – OFFSET 40h	. 155
8.4.22	POWER MANAGEMENT DATA REGISTER – OFFSET 44h	. 155
8.4.23	PPB SUPPORT EXTENSIONS – OFFSET 44h	
8.4.24	DATA REGISTER – OFFSET 44h	
8.4.25	MSI CAPABILITIES REGISTER – OFFSET 48h	
8.4.26	MESSAGE ADDRESS REGISTER – OFFSET 4Ch	. 156
8.4.27	MESSAGE UPPER ADDRESS REGISTER – OFFSET 50h	
8.4.28	MESSAGE DATA REGISTER – OFFSET 54h	. 157
8.4.29	PCI EXPRESS CAPABILITIES REGISTER – OFFSET 68h	
8.4.30	DEVICE CAPABILITIES REGISTER – OFFSET 6Ch	
8.4.31	DEVICE CONTROL REGISTER – OFFSET 70h	
8.4.32	DEVICE STATUS REGISTER – OFFSET 70h	
8.4.33	LINK CAPABILITIES REGISTER – OFFSET 74h	
8.4.34	LINK CONTROL REGISTER – OFFSET 78h	
8.4.35	LINK STATUS REGISTER – OFFSET 78h	
8.4.36	LINK CONTROL REGISTER 2 – OFFSET 98h	.160
8.4.37	LINK STATUS REGISTER 2 – OFFSET 98h	
8.4.38	SSID/SSVID CAPABILITIES REGISTER – OFFSET A4h	
8.4.39	SUBSYSTEM VENDOR ID REGISTER – OFFSET A8h	
8.4.40	SUBSYSTEM ID REGISTER – OFFSET A8h	
8.4.41	VENDOR SPECIFIC CAPABILITIES REGISTER – OFFSET C8h	
8.4.42	VENDOR SPECIFIC HEADER REGISTER – OFFSET CCh	
8.4.43	NT PORT VIRTUAL INTERFACE BAR 0-1 CONFIGURATION REGISTER - OFFSET D0h	. 161
8.4.44	NT PORT VIRTUAL INTERFACE BAR 2 CONFIGURATION REGISTER – OFFSET D4h	
8.4.45	NT PORT VIRTUAL INTERFACE BAR 2-3 CONFIGURATION REGISTER – OFFSET D8h	
8.4.46	NT PORT VIRTUAL INTERFACE BAR 4 CONFIGURATION REGISTER – OFFSET DCh	
8.4.47	NT PORT VIRTUAL INTERFACE BAR 4/5 CONFIGURATION REGISTER – OFFSET E0h	
8.4.48	DEVICE SERIAL NUMBER ENHANCED CAPABILITY HEADER REGISTER – OFFSET 100h	
8.4.49	DEVICE SERIAL NUMBER LOWER DW REGISTER – OFFSET 104h	
8.4.50	DEVICE SERIAL NUMBER HIGHER DW REGISTER – OFFSET 108h	
8.4.51	VENDOR SPECIFIC ENHANCED CAPABILIY HEADER REGISTER – OFFSET C34h	
8.4.52	VENDOR SPECIFIC HEADER REGISTER – OFFSET C38h	
8.4.53	MEMORY BAR 2 ADDRESS TRANSLATION REGISTER – OFFSET C3Ch	
8.4.54	MEMORY BAR 3 ADDRESS TRANSLATION REGISTER – OFFSET C40h	
8.4.55	MEMORY BAR4 ADDRESS TRANSLATION REGISTER – OFFSET C44h	
8.4.56	MEMORY BAR 5 ADDRESS TRANSLATION REGISTER – OFFSET C48h	
8.4.57	VIRTUAL IF IRQ SET REGISTER – OFFSET C4Ch	
8.4.58	VIRTUAL IF IRQ CLEAR REGISTER – OFFSET C50h	
8.4.59	VIRTUAL IF IRQ MASK SET REGISTER – OFFSET C54h	
8.4.60	VIRTUAL IF IRQ MASK CLEAR REGISTER – OFFSET C58h	
8.4.61	LINK IF IRQ SET REGISTER – OFFSET C5Ch	
8.4.62	LINK IF IRQ CLEAR REGISTER – OFFSET C60h	
8.4.63	LINK IF IRQ MASK SET REGISTER – OFFSET C64h	
8.4.64	LINK IF IRQ MASK CLEAR REGISTER – OFFSET C68h	
8.4.65	SCRATCHPAD 0 REGISTER – OFFSET C6Ch	
8.4.66	SCRATCHPAD 1 REGISTER – OFFSET C70h	. 166

PI7C9X2G1616PR Document Number DS40340 Rev 7-2

Page 12 of 198 www.diodes.com

84.60 SCRATTHPAD 2 REGISTER – OFFSET C76h 166 84.68 SCRATTCHPAD 3 REGISTER – OFFSET C77h 166 84.70 SCRATTCHPAD 5 REGISTER – OFFSET C77h 166 84.70 SCRATTCHPAD 5 REGISTER – OFFSET C77h 166 84.70 SCRATTCHPAD 7 REGISTER – OFFSET C87h 166 84.71 SCRATTCHPAD 7 REGISTER – OFFSET C88h 166 84.72 SCRATTCHPAD 7 REGISTER – OFFSET C88h 167 84.73 VIRTUAL PORT 32-BITS LTT ENTRY 0-7 – OFFSET D94h to DB0h 167 84.74 LINK PORT 16-BITS LITT ENTRY 0-7 – OFFSET D94h to DB0h 166 84.75 SCRATCHPAD 2 REGISTER – OFFSET 04h 166 85.1 VENDOR 1D REGISTER – OFFSET 04h 167 85.2 DEVICE 1D REGISTER – OFFSET 04h 177 85.3 COMMAND REGISTER – OFFSET 04h 177 85.4 PRIMARY LATUCY TIMER REGISTER – OFFSET 06h 171 85.7 CACHE LINE REGISTER – OFFSET 06h 171 85.8 VENDOR 1D REGISTER – OFFSET 06h 171 85.9 HEADER TYPE REGISTER – OFFSET 06h 171 85.1 VENDOR	0 1 (7		1//
8.4.69 SCRATTIPAD 4 REGISTER - OFFSET C8h 166 8.4.70 SCRATCHPAD 5 REGISTER - OFFSET C8h 166 8.4.71 SCRATCHPAD 7 REGISTER - OFFSET C8h 166 8.4.72 SCRATCHPAD 7 REGISTER - OFFSET C8h 166 8.4.73 NERVAL PORT 16-BITS LIT ENTRY 0-7 OFFSET D94h to D80h 167 8.4.74 LINK PORT 16-BITS LIT ENTRY 0-7 OFFSET D94h to D80h 167 8.4.74 LINK PORT 16-BITS LIT ENTRY 0-7 OFFSET D94h 166 8.5.7 DAM ENGINE CONFIGURATION REGISTER OFFSET 00h 166 8.5.1 VENDOR ID REGISTER - OFFSET 00h 166 8.5.2 DEVICE ID REGISTER - OFFSET 04h 177 8.5.4 REVISION ID REGISTER - OFFSET 04h 177 8.5.5 REVISION ID REGISTER - OFFSET 04h 177 8.5.6 REVISION ID REGISTER - OFFSET 04h 177 8.5.7 CACHE LINE REGISTER - OFFSET 04h 177 8.5.8 REVISION ID REGISTER - OFFSET 04h 177 8.5.7 CACHE LINE REGISTER - OFFSET 04h 177 8.5.8 REMARY LATENCY TIMER REGISTER - OFFSET 04h 177 8.5.7	8.4.67	SCRATHPAD 2 REGISTER – OFFSET C74h	
8.4.70 SCRATCHPAD 5 REGISTER - OFFSET C80h 166 8.4.71 SCRATCHPAD 7 REGISTER - OFFSET C84h 166 8.4.72 SCRATCHPAD 7 REGISTER - OFFSET C84h 167 8.4.73 VIRTUAL PORT 32-BITS LIT ENTRY 0-31 REGISTER - OFFSET D94h to D80h 167 8.4.74 LINK PORT 16-BITS LIT ENTRY 0-31 REGISTER - OFFSET D94h 166 8.4.74 LINK PORT 16-BITS LIT ENTRY 0-31 REGISTER - OFFSET D94h 166 8.5 DMA ENGINE CONFIGURATION REGISTER OFFSET 04h 166 8.5.1 VENDOR ID REGISTER - OFFSET 04h 166 8.5.2 DEVICE ID REGISTER - OFFSET 04h 177 8.5.4 PRIMARY STATU'S REGISTER - OFFSET 04h 177 8.5.5 CAMMAD REGISTER - OFFSET 06h 171 8.5.6 CLASS CODE REGISTER - OFFSET 06h 171 8.5.7 CACHE LINE REGISTER - OFFSET 06h 171 8.5.8 REMARY LATENCY TIMER REGISTER - OFFSET 06h 171 8.5.9 HEADER TYPE REGISTER - OFFSET 06h 171 8.5.11 SUBSYSTEM TENCY THREACY TIMER REGISTER - OFFSET 26h 172 8.5.12 SUBSYSTEM TENCY THREACY THEREGISTER - OFFSET 36h			
8.4.71 SCRATCHPAD 7 REGISTER – OFFSET C84h 166 8.4.72 SCRATCHPAD 7 REGISTER – OFFSET C88h 167 8.4.73 VIRTUAL PORT 32-BITS LIT ENTRY 0-7 – OFFSET D94h to D80h 167 8.4.74 LINK PORT 16-BITS LIT ENTRY 0-7 – OFFSET D94h to D80h 166 8.4.75 VIRTUAL PORT 32-BITS LIT ENTRY 0-7 – OFFSET D94h 166 8.4.74 LINK PORT 16-BITS LIT ENTRY 0-7 – OFFSET D94h 166 8.5 DMA ENGINE CONFIGURATION REGISTER – OFFSET 00h 166 8.5.1 VENDOR ID REGISTER – OFFSET 00h 167 8.5.2 DEVICE ID REGISTER – OFFSET 04h 177 8.5.4 COMMAD REGISTER – OFFSET 04h 177 8.5.5 REVISION ID REGISTER – OFFSET 04h 177 8.5.6 CLASS CODE REGISTER – OFFSET 06h 171 8.5.7 CACHE LINE REGISTER – OFFSET 06h 171 8.5.7 CACHE LINE REGISTER – OFFSET 07Ch 171 8.5.8 PRIMARY LATENCY TIMER REGISTER – OFFSET 02h 171 8.5.10 BAR ØREGISTER – OFFSET 10h 171 8.5.11 SUBSYSTEM VENDOR ID REGISTER – OFFSET 22h 172			
8.4.72 SCRATCHPAD 7 REGISTER - OFFSET C88h 163 8.4.73 VIRTUAL PORT 32-BITS LTT ENTRY 0-7 - OFFSET D94h to DB0h 167 8.4.74 LINK PORT 10-BITS LTT ENTRY 0-37 REGISTER - OFFSET D84h - DF4h 166 8.4.74 LINK PORT 10-BITS LTT ENTRY 0-37 REGISTER - OFFSET D84h - DF4h 166 8.5 DMA ENGINE CONFIGURATION REGISTER FISE (FUNCI) 166 8.5.1 VENDOR ID REGISTER - OFFSET 04h 166 8.5.2 DEVICE ID REGISTER - OFFSET 04h 170 8.5.3 COMMAND REGISTER - OFFSET 04h 177 8.5.4 PRIMARY STATU'S REGISTER - OFFSET 04h 177 8.5.5 CLASS CODE REGISTER - OFFSET 04h 177 8.5.6 CLASS CODE REGISTER - OFFSET 06h 171 8.5.7 CACHE LINE REGISTER - OFFSET 06h 171 8.5.8 REMARY LATENCY TIMER REGISTER - OFFSET 06h 171 8.5.9 HEADER TYPE REGISTER - OFFSET 06h 171 8.5.1 SUBSYSTEM VENDOR ID REGISTER - OFFSET 26h 172 8.5.1 SUBSYSTEM VENDOR ID REGISTER - OFFSET 36h 172 8.5.12 SUBSYSTEM VENDOR ID REGISTER - OFFSET 36h 172 8.5.13 SUBSYSTEM VENDOR ID REGISTER - O			
8.4.73 VIRTUAL PORT 32-BITS LIT ENTRY 0-7 - OFFSET D94h to DB0h. 167 8.4.74 LINK PORT 16-BITS LIT ENTRY 0-31 REGISTER - OFFSET DB4h - DF4h. 166 8.4.75 FAIL-OVER CSR REGISTER - OFFSET D0h. 166 8.4.75 FAIL-OVER CSR REGISTER - OFFSET 00h. 166 8.5.1 VENDOR ID REGISTER - OFFSET 00h. 166 8.5.2 DEVICE ID REGISTER - OFFSET 04h. 170 8.5.4 PRIMARY STATUS REGISTER - OFFSET 04h. 170 8.5.5 REVISION ID REGISTER - OFFSET 04h. 171 8.5.6 REVISION ID REGISTER - OFFSET 06h. 171 8.5.7 CACHE LINE REGISTER - OFFSET 06h. 171 8.5.8 PRIMARY STATUS REGISTER - OFFSET 06h. 171 8.5.9 HEADER TYPE REGISTER - OFFSET 0Ch. 171 8.5.10 BAR 0 REGISTER - OFFSET 0Ch. 171 8.5.11 SUBSYSTEM ID REGISTER - OFFSET 2Ch. 171 8.5.12 SUBSYSTEM ID REGISTER - OFFSET 3Ch. 172 8.5.13 CAPABILITY POINTER REGISTER - OFFSET 3Ch. 172 8.5.14 INTERRUPT PIN REGISTER - OFFSET 3Ch. 172 <			
8.4.74 LINK PORT 16-BITS LTT ENTRY 0-31 REGISTER - OFFSET DB4h - DF4h	8.4.72	SCRATCHPAD 7 REGISTER – OFFSTE C88h	167
84.75 FAIL-OVER CSR REGISTER – OFFSET DF4h	8.4.73		
8.5 DMA ENGINE CONFIGURATION REGISTERS (FUNC1) 169 8.5.1 VENDOR ID REGISTER – OFFSET 00h. 169 8.5.2 DEVICE ID REGISTER – OFFSET 04h. 170 8.5.4 PRIMARY STATUS REGISTER – OFFSET 04h. 177 8.5.5 REVISION ID REGISTER – OFFSET 08h. 171 8.5.6 CLASS CODE REGISTER – OFFSET 08h. 171 8.5.7 REVISION ID REGISTER – OFFSET 08h. 171 8.5.8 PRIMARY LATENCY TIMER REGISTER – OFFSET 0Ch. 171 8.5.7 CACHE LINE REGISTER – OFFSET 10h. 171 8.5.8 PRIMARY LATENCY TIMER REGISTER – OFFSET 2Ch. 172 8.5.10 SUBSYSTEM VENDOR ID REGISTER – OFFSET 2Ch. 171 8.5.11 SUBSYSTEM VENDOR ID REGISTER – OFFSET 3Ch. 172 8.5.12 SUBSYSTEM VENDOR ID REGISTER – OFFSET 3Ch. 172 8.5.13 CLPABILITY POINTER REGISTER – OFFSET 3Ch. 172 8.5.14 INTERRUPT IN REGISTER – OFFSET 3Ch. 172 8.5.15 POWER MANGEMENT CATA REGISTER – OFFSET 44h. 173 8.5.16 POWER MANGEMENT CATA REGISTER – OFFSET 44h. 173 8.5.17 POWER MANGEMENT CATA REGISTER – OFFSET 44h. 1	8.4.74		
8.5.1 VENDOR ID REGISTER – OFFSET 00h			
8.5.2 DEVICE ID REGISTER - OFFSET 00h	8.5 DN	IA ENGINE CONFIGURATION REGISTERS (FUNC1)	
8.5.2 DEVICE ID REGISTER - OFFSET 00h			
8.5.3 COMMAND REGISTER - OFFSET 04h. 170 8.5.4 PRIMARY STATUS REGISTER - OFFSET 04h. 171 8.5.5 REVISION ID REGISTER - OFFSET 08h. 171 8.5.6 CLASS CODE REGISTER - OFFSET 08h. 171 8.5.7 CACHE LINE REGISTER - OFFSET 08h. 171 8.5.8 PRIMARY LATENCY TIMER REGISTER - OFFSET 0Ch. 171 8.5.9 HEADER TYPE REGISTER - OFFSET 0Ch. 171 8.5.9 HEADER TYPE REGISTER - OFFSET 2Ch. 172 8.5.10 SUBSYSTEM VENDOR ID REGISTER - OFFSET 2Ch. 172 8.5.11 SUBSYSTEM VENDOR ID REGISTER - OFFSET 34h. 172 8.5.12 SUBSYSTEM ID REGISTER - OFFSET 34h. 172 8.5.14 INTERRUPT PIN REGISTER - OFFSET 34h. 172 8.5.15 INTERRUPT PIN REGISTER - OFFSET 34h. 172 8.5.16 INTERRUPT PIN REGISTER - OFFSET 34h. 173 8.5.17 POWER MANAGEMENT DATA REGISTER - OFFSET 44h. 173 8.5.18 PPB SUPPORT EXTENSIONS - OFFSET 44h. 173 8.5.20 MSI CAPABILITIES REGISTER - OFFSET 44h. 173 8.5.21 MESSAGE DATA REGISTER - OFFSET 54h. 174	8.5.2		
8.5.4 PRIMARY STATUS REGISTER – OFFSET 04h	8.5.3		
8.5.5 REVISION ID REGISTER – OFFSET 08h	0.0.0		
8.5.6 CLASS CODE REGISTER – OFFSET 08h			
8.5.7 CACHE LINE REGISTER – OFFSET 0Ch. 171 8.5.8 PRIMARY LATENCY TIMER REGISTER – OFFSET 0Ch. 171 8.5.9 HEADER TYPE REGISTER – OFFSET 10h. 171 8.5.10 BAR 0 REGISTER – OFFSET 10h. 171 8.5.11 SUBSYSTEM VENDOR ID REGISTER – OFFSET 2Ch. 172 8.5.12 SUBSYSTEM VENDOR ID REGISTER – OFFSET 34h. 172 8.5.13 CAPABILITY POINTER REGISTER – OFFSET 3Ch. 172 8.5.14 INTERRUPT LINE REGISTER – OFFSET 3Ch. 172 8.5.15 INTERRUPT PIN REGISTER – OFFSET 3Ch. 172 8.5.16 POWER MANAGEMENT CAPABILITIES REGISTER – OFFSET 44h. 173 8.5.17 POWER MANAGEMENT CAPABILITIES REGISTER – OFFSET 44h. 173 8.5.18 PPB SUPPORT EXTENSIONS – OFFSET 44h. 173 8.5.20 MSI CAPABILITIES REGISTER – OFFSET 44h. 173 8.5.21 MESSAGE DATA REGISTER – OFFSET 44h. 173 8.5.22 MESSAGE DATA REGISTER – OFFSET 54h. 174 8.5.23 MESSAGE DATA REGISTER – OFFSET 54h. 174 8.5.24 PCI EXPRESS CAPABILITIES REGISTER – OFFSET 66h. 174 8.5.25 DEVICE CONTROL REGISTER – OFFSET 70h			
8.5.8 PRIMARY LATENCY TIMER REGISTER – OFFSET 0Ch. 171 8.5.9 HEADER TYPE REGISTER – OFFSET 10ch. 171 8.5.10 BAR 0 REGISTER – OFFSET 10h. 171 8.5.11 SUBSYSTEM VENDOR ID REGISTER – OFFSET 2Ch. 172 8.5.12 SUBSYSTEM ID REGISTER – OFFSET 2Ch. 172 8.5.13 CAPABILITY POINTER REGISTER – OFFSET 3Ch. 172 8.5.14 INTERRUPT LINE REGISTER – OFFSET 3Ch. 172 8.5.15 INTERRUPT IN REGISTER – OFFSET 3Ch. 172 8.5.16 POWER MANAGEMENT CAPABILITIES REGISTER – OFFSET 40h. 173 8.5.17 POWER MANAGEMENT DATA REGISTER – OFFSET 44h. 173 8.5.18 PPB SUPPORT EXTENSIONS – OFFSET 44h. 173 8.5.19 DATA REGISTER – OFFSET 44h. 173 8.5.20 MSI CAPABILITIES REGISTER – OFFSET 44h. 174 8.5.21 MESSAGE ADDRESS REGISTER – OFFSET 46h. 174 8.5.22 MESSAGE ADDRESS REGISTER – OFFSET 48h. 174 8.5.23 MESSAGE DATA REGISTER – OFFSET 48h. 174 8.5.24 DEVICE CAPABILITIES REGISTER – OFFSET 74h. 174 8.5.25 DEVICE CAPABILITIES REGISTER – OFFSET 74h. <			
8.5.9 HEADER TYPE REGISTER – OFFSET 10h. 171 8.5.10 BAR 0 REGISTER – OFFSET 10h. 171 8.5.11 SUBSYSTEM VENDOR ID REGISTER – OFFSET 2Ch. 172 8.5.12 SUBSYSTEM ID REGISTER – OFFSET 2Ch. 172 8.5.13 CAPABILITY POINTER REGISTER – OFFSET 34h. 172 8.5.14 INTERRUPT INR REGISTER – OFFSET 3Ch. 172 8.5.15 INTERRUPT PIN REGISTER – OFFSET 3Ch. 172 8.5.16 POWER MANAGEMENT CAPABILITIES REGISTER – OFFSET 40h. 173 8.5.17 POWER MANAGEMENT DATA REGISTER – OFFSET 44h. 173 8.5.18 PUB SUPPORT EXTENSIONS – OFFSET 44h. 173 8.5.19 DATA REGISTER – OFFSET 44h. 173 8.5.20 MSI CAPABILITIES REGISTER – OFFSET 4Ch. 174 8.5.21 MESSAGE UPPER ADDRESS REGISTER – OFFSET 4Ch. 174 8.5.22 MESSAGE UPPER ADDRESS REGISTER – OFFSET 50h. 174 8.5.23 MESSAGE DATA REGISTER – OFFSET 54h. 174 8.5.24 PCI EXPRESS CAPABILITIES REGISTER – OFFSET 70h. 174 8.5.25 DEVICE CONTROL REGISTER – OFFSET 70h. 175 8.5.26 DEVICE CONTROL REGISTER – OFFSET 70h.		DDIMADY LATENCY TIMED DECISTED OF CELET OCH	1/1
8.5.10 BAR 0 REGISTER - OFFSET 10h			
8.5.11 SUBSYSTEM VENDOR ID REGISTER – OFFSET 2Ch. 172 8.5.12 SUBSYSTEM ID REGISTER – OFFSET 2Ch. 172 8.5.13 CAPABILITY POINTER REGISTER – OFFSET 3Ch. 172 8.5.14 INTERRUPT LINE REGISTER – OFFSET 3Ch. 172 8.5.15 INTERRUPT PIN REGISTER – OFFSET 3Ch. 172 8.5.16 POWER MANAGEMENT CAPABILITIES REGISTER – OFFSET 44h. 173 8.5.17 POWER MANAGEMENT DATA REGISTER – OFFSET 44h. 173 8.5.18 PPB SUPPORT EXTENSIONS – OFFSET 44h. 173 8.5.19 DATA REGISTER – OFFSET 44h. 173 8.5.20 MSI CAPABILITIES REGISTER – OFFSET 44h. 173 8.5.21 MESSAGE UPPER ADDRESS REGISTER – OFFSET 42h. 174 8.5.22 MESSAGE UPPER ADDRESS REGISTER – OFFSET 54h. 174 8.5.23 MESSAGE DATA REGISTER – OFFSET 54h. 174 8.5.24 PCI EXPRESS CAPABILITIES REGISTER – OFFSET 50h. 174 8.5.25 DEVICE CONTROL REGISTER – OFFSET 70h. 175 8.5.26 DEVICE CONTROL REGISTER – OFFSET 70h. 175 8.5.27 DEVICE STATUS REGISTER – OFFSET 70h. 176 8.5.28 LINK CAPABILITIES REGISTER – OFF	0.0.1		
8.5.12 SUBSYSTEM ID REGISTER – OFFSET 2Ch. 172 8.5.13 CAPABILITY POINTER REGISTER – OFFSET 34h 172 8.5.14 INTERRUPT LINE REGISTER – OFFSET 3Ch. 172 8.5.15 INTERRUPT PIN REGISTER – OFFSET 3Ch. 172 8.5.16 POWER MANAGEMENT CAPABILITIES REGISTER – OFFSET 44h. 173 8.5.17 POWER MANAGEMENT DATA REGISTER – OFFSET 44h. 173 8.5.18 PPB SUPPORT EXTENSIONS – OFFSET 44h. 173 8.5.19 DATA REGISTER – OFFSET 44h. 173 8.5.20 MSI CAPABILITIES REGISTER – OFFSET 44h. 173 8.5.21 MESSAGE ADDRESS REGISTER – OFFSET 46h. 174 8.5.22 MESSAGE DATA REGISTER – OFFSET 46h. 174 8.5.23 MESSAGE DATA REGISTER – OFFSET 50h. 174 8.5.24 PCI EXPRESS CAPABILITIES REGISTER – OFFSET 66h. 174 8.5.25 DEVICE CAPABILITIES REGISTER – OFFSET 70h. 175 8.5.26 DEVICE CAPABILITIES REGISTER – OFFSET 70h. 175 8.5.27 DEVICE STATUS REGISTER – OFFSET 78h. 176 8.5.28 LINK CONTROL REGISTER – OFFSET 78h. 176 8.5.29 LINK CONTROL REGISTER – OFFSET 78h.			
8.5.13 CAPABILITY POINTER REGISTER – OFFSET 34h 172 8.5.14 INTERRUPT LINE REGISTER – OFFSET 3Ch 172 8.5.15 INTERRUPT PIN REGISTER – OFFSET 3Ch 172 8.5.16 POWER MANAGEMENT CAPABILITIES REGISTER – OFFSET 40h 172 8.5.17 POWER MANAGEMENT DATA REGISTER – OFFSET 44h 173 8.5.18 PPB SUPPORT EXTENSIONS – OFFSET 44h 173 8.5.19 DATA REGISTER – OFFSET 44h 173 8.5.20 MSI CAPABILITIES REGISTER – OFFSET 44h 173 8.5.21 MESSAGE ADDRESS REGISTER – OFFSET 4ch 174 8.5.22 MESSAGE DATA REGISTER – OFFSET 4ch 174 8.5.23 MESSAGE DATA REGISTER – OFFSET 54h 174 8.5.24 PCI EXPRESS CAPABILITIES REGISTER – OFFSET 56h 174 8.5.25 DEVICE CAPABILITIES REGISTER – OFFSET 66h 174 8.5.26 DEVICE CONTROL REGISTER – OFFSET 70h 175 8.5.27 DEVICE STATUS REGISTER – OFFSET 70h 175 8.5.28 LINK CONTROL REGISTER – OFFSET 78h 176 8.5.30 LINK CONTROL REGISTER – OFFSET 78h 176 8.5.31 LINK CONTROL REGISTER – OFFSET 78h 177 <td></td> <td></td> <td></td>			
8.5.14INTERRUPT LINE REGISTER – OFFSET 3Ch.1728.5.15INTERRUPT PIN REGISTER – OFFSET 3Ch.1728.5.16POWER MANAGEMENT CAPABILITIES REGISTER – OFFSET 40h.1728.5.17POWER MANAGEMENT DATA REGISTER – OFFSET 44h.1738.5.18PPB SUPPORT EXTENSIONS – OFFSET 44h.1738.5.19DATA REGISTER – OFFSET 44h.1738.5.20MSI CAPABILITIES REGISTER – OFFSET 48h.1738.5.21MESSAGE ADDRESS REGISTER – OFFSET 4Ch.1748.5.22MESSAGE UPPER ADDRESS REGISTER – OFFSET 50h.1748.5.23MESSAGE DATA REGISTER – OFFSET 54h.1748.5.24PCI EXPRESS CAPABILITIES REGISTER – OFFSET 6Ch.1748.5.25DEVICE CONTROL REGISTER – OFFSET 70h.1758.5.27DEVICE CONTROL REGISTER – OFFSET 70h.1758.5.28LINK CAPABILITIES REGISTER – OFFSET 70h.1758.5.29LINK CONTROL REGISTER – OFFSET 70h.1768.5.20LINK STATUS REGISTER – OFFSET 78h.1768.5.31LINK STATUS REGISTER – OFFSET 78h.1768.5.32LINK STATUS REGISTER – OFFSET 78h.1768.5.33SUD/SSVID CAPABILITIES REGISTER – OFFSET 78h.1768.5.34SUBSYSTEM VENDOR ID REGISTER – OFFSET 78h.1778.5.35SUBSYSTEM VENDOR ID REGISTER – OFFSET 44h.1788.6.1GLOBAL DMA CONTROL AND STATUS REGISTER – OFFSET 48h.1788.6.2DESCRIPTOR OWNERSHIP REGISTER – OFFSET 48h.1788.6.3CHANNEL 0/1 DESCRIPTOR RING BASE POINTER (HIGH 32-bit) REGISTER – OFFSET			
8.5.15INTERRUPT PIN REGISTER – OFFSET 3Ch1728.5.16POWER MANAGEMENT CAPABILITIES REGISTER – OFFSET 40h1728.5.17POWER MANAGEMENT DATA REGISTER – OFFSET 44h1738.5.18PPB SUPPORT EXTENSIONS – OFFSET 44h1738.5.19DATA REGISTER – OFFSET 44h1738.5.20MSI CAPABILITIES REGISTER – OFFSET 44h1738.5.21MESSAGE ADDRESS REGISTER – OFFSET 4Ch1748.5.22MESSAGE UPPER ADDRESS REGISTER – OFFSET 50h1748.5.23MESSAGE DATA REGISTER – OFFSET 54h1748.5.24PCI EXPRESS CAPABILITIES REGISTER – OFFSET 56h1748.5.25DEVICE CAPABILITIES REGISTER – OFFSET 66h1748.5.26DEVICE CONTROL REGISTER – OFFSET 70h1758.5.27DEVICE CONTROL REGISTER – OFFSET 70h1758.5.28LINK CAPABILITIES REGISTER – OFFSET 78h1768.5.29LINK CONTROL REGISTER – OFFSET 78h1768.5.30LINK STATUS REGISTER – OFFSET 78h1768.5.31LINK STATUS REGISTER – OFFSET 78h1768.5.32LINK STATUS REGISTER – OFFSET 78h1768.5.33SUBSYSTEM VENDOR 1D REGISTER – OFFSET 44h1768.5.34SUBSYSTEM VENDOR 1D REGISTER – OFFSET 48h1758.6.1GLOBAL DMA CONTROL AND STATUS REGISTER – OFFSET 48h1768.6.3SUBSYSTEM ID REGISTER – OFFSET 78h1768.6.4CHANNEL 0/1 DESCRIPTOR RING BASE POINTER (HIGH 32-bit) REGISTER – OFFSET 24h/3Ch1818.6.4CHANNEL 0/1 DESCRIPTOR RING BASE POINTER (HIGH 32-bit) REGISTER	8.5.13		
8.5.16POWER MANAGEMENT CAPABILITIES REGISTER – OFFSET 40h.1728.5.17POWER MANAGEMENT DATA REGISTER – OFFSET 44h.1738.5.18PPB SUPPORT EXTENSIONS – OFFSET 44h.1738.5.19DATA REGISTER – OFFSET 44h.1738.5.20MSI CAPABILITIES REGISTER – OFFSET 48h.1738.5.21MESSAGE ADDRESS REGISTER – OFFSET 48h.1748.5.22MESSAGE UPPER ADDRESS REGISTER – OFFSET 50h.1748.5.23MESSAGE DATA REGISTER – OFFSET 54h.1748.5.24PCI EXPRESS CAPABILITIES REGISTER – OFFSET 68h.1748.5.25DEVICE CAPABILITIES REGISTER – OFFSET 68h.1748.5.26DEVICE CONTROL REGISTER – OFFSET 70h.1758.5.27DEVICE CONTROL REGISTER – OFFSET 70h.1758.5.28LINK CAPABILITIES REGISTER – OFFSET 74h.1768.5.29LINK CONTROL REGISTER – OFFSET 78h.1768.5.20LINK STATUS REGISTER – OFFSET 78h.1768.5.31LINK CONTROL REGISTER – OFFSET 78h.1768.5.32LINK STATUS REGISTER – OFFSET 78h.1778.5.31LINK STATUS REGISTER – OFFSET 78h.1778.5.32LINK STATUS REGISTER – OFFSET 78h.1778.5.33SUBSYSTEM VENDOR ID REGISTER – OFFSET 78h.1778.5.34SUBSYSTEM VENDOR ID REGISTER – OFFSET 78h.1778.5.35SUBSYSTEM VENDOR ID REGISTER – OFFSET 78h.1788.5.35SUBSYSTEM VENDOR ID REGISTER – OFFSET 78h.1768.5.35SUBSYSTEM VENDOR ID REGISTER – OFFSET 78h.1768.5.35S	8.5.14		
8.5.17POWER MANAGEMENT DATA REGISTER – OFFSET 44h.1738.5.18PPB SUPPORT EXTENSIONS – OFFSET 44h.1738.5.19DATA REGISTER – OFFSET 44h.1738.5.20MSI CAPABILITIES REGISTER – OFFSET 48h.1738.5.21MESSAGE ADDRESS REGISTER – OFFSET 4Ch.1748.5.22MESSAGE DATA REGISTER – OFFSET 54h.1748.5.23MESSAGE DATA REGISTER – OFFSET 54h.1748.5.24PCI EXPRESS CAPABILITIES REGISTER – OFFSET 68h.1748.5.25DEVICE CAPABILITIES REGISTER – OFFSET 66h.1748.5.26DEVICE CONTROL REGISTER – OFFSET 70h.1758.5.27DEVICE CONTROL REGISTER – OFFSET 70h.1758.5.29LINK CONTROL REGISTER – OFFSET 74h.1768.5.20LINK CONTROL REGISTER – OFFSET 74h.1768.5.29LINK CONTROL REGISTER – OFFSET 74h.1768.5.30LINK STATUS REGISTER – OFFSET 78h.1768.5.31LINK STATUS REGISTER 2 – OFFSET 98h.1778.5.32LINK STATUS REGISTER 2 – OFFSET 98h.1788.5.33SSID/SSVID CAPABILITIES REGISTER – OFFSET 44h.1788.5.34SUBSYSTEM VENDOR ID REGISTER – OFFSET 48h.1788.6.1GLOBAL DMA CONTROL AND STATUS REGISTER – OFFSET 00h.1798.6.2DESCRIPTOR OWNERSHIP REGISTER 0/1/2/3 – OFFSET 04h/08h/0Ch/10h.1818.6.3CHANNEL 0/1 DESCRIPTOR RING BASE POINTER (HIGH 32-bit) REGISTER – OFFSET 24h/3Ch8.6.4CHANNEL 0/1 DESCRIPTOR RING BASE POINTER (HIGH 32-bit) REGISTER – OFFSET 24h/3Ch8.6.4CHANNEL 0/1 DESCRI	8.5.15		
8.5.18PPB SUPPORT EXTENSIONS – OFFSET 44h.1738.5.19DATA REGISTER – OFFSET 44h.1738.5.20MSI CAPABILITIES REGISTER – OFFSET 48h.1738.5.21MESSAGE ADDRESS REGISTER – OFFSET 4Ch.1748.5.22MESSAGE DATA REGISTER – OFFSET 50h.1748.5.23MESSAGE DATA REGISTER – OFFSET 54h.1748.5.24PCI EXPRESS CAPABILITIES REGISTER – OFFSET 68h.1748.5.25DEVICE CAPABILITIES REGISTER – OFFSET 6Ch.1748.5.26DEVICE CONTROL REGISTER – OFFSET 70h.1758.5.27DEVICE STATUS REGISTER – OFFSET 70h.1758.5.28LINK CONTROL REGISTER – OFFSET 70h.1768.5.29LINK CONTROL REGISTER – OFFSET 74h.1768.5.29LINK CONTROL REGISTER – OFFSET 78h.1768.5.30LINK STATUS REGISTER – OFFSET 78h.1778.5.31LINK CONTROL REGISTER 2 – OFFSET 98h.1758.5.33SUD/SSVID CAPABILITIES REGISTER – OFFSET 44h.1788.5.34SUBSYSTEM VENDOR ID REGISTER – OFFSET 48h.1788.5.35SUBSYSTEM VENDOR ID REGISTER – OFFSET 48h.1788.6.1GLOBAL DMA CONTROL AND STATUS REGISTER – OFFSET 04h/08h/0Ch/10h.1818.6.2DESCRIPTOR OWNERSHIP REGISTER 0/1/2/3 – OFFSET 04h/08h/0Ch/10h.1818.6.4CHANNEL 0/1 DESCRIPTOR RING BASE POINTER (HIGH 32-bit) REGISTER – OFFSET 24h/3Ch1818.6.4CHANNEL 0/1 DESCRIPTOR RING BASE POINTER (HIGH 32-bit) REGISTER – OFFSET 24h/3Ch1818.6.4CHANNEL 0/1 DESCRIPTOR RING BASE POINTER (HIGH 32-bit) REGISTER –	8.5.16	POWER MANAGEMENT CAPABILITIES REGISTER – OFFSET 40h	172
8.5.19DATA REGISTER – OFFSET 44h1738.5.20MSI CAPABILITIES REGISTER – OFFSET 48h1738.5.21MESSAGE ADDRESS REGISTER – OFFSET 4Ch1748.5.22MESSAGE UPPER ADDRESS REGISTER – OFFSET 50h1748.5.23MESSAGE DATA REGISTER – OFFSET 54h1748.5.24PCI EXPRESS CAPABILITIES REGISTER – OFFSET 68h1748.5.25DEVICE CAPABILITIES REGISTER – OFFSET 6Ch1748.5.26DEVICE CONTROL REGISTER – OFFSET 70h1758.5.27DEVICE STATUS REGISTER – OFFSET 70h1758.5.28LINK CAPABILITIES REGISTER – OFFSET 70h1768.5.29LINK CONTROL REGISTER – OFFSET 78h1768.5.20LINK CONTROL REGISTER – OFFSET 78h1768.5.21LINK CONTROL REGISTER – OFFSET 78h1768.5.22LINK CONTROL REGISTER – OFFSET 78h1778.5.31LINK STATUS REGISTER – OFFSET 78h1768.5.32LINK STATUS REGISTER 2 – OFFSET 98h1778.5.33SSID/SSVID CAPABILITIES REGISTER – OFFSET 44h1788.5.34SUBSYSTEM VENDOR ID REGISTER – OFFSET A8h1788.5.35SUBSYSTEM ID REGISTER – OFFSET A8h1788.6.1GLOBAL DMA CONTROL AND STATUS REGISTER – OFFSET 00h1798.6.2DESCRIPTOR OWNERSHIP REGISTER 0/1/2/3 – OFFSET 04h/08h/0Ch/10h1818.6.4CHANNEL 0/1 DESCRIPTOR RING BASE POINTER (HIGH 32-bit) REGISTER – OFFSET 24h/3Ch8.6.4CHANNEL 0/1 DESCRIPTOR RING BASE POINTER (HIGH 32-bit) REGISTER – OFFSET 24h/3Ch8.6.4CHANNEL 0/1 DESCRIPTOR RING BASE POIN	8.5.17	POWER MANAGEMENT DATA REGISTER – OFFSET 44h	173
8.5.19DATA REGISTER – OFFSET 44h1738.5.20MSI CAPABILITIES REGISTER – OFFSET 48h1738.5.21MESSAGE ADDRESS REGISTER – OFFSET 4Ch1748.5.22MESSAGE UPPER ADDRESS REGISTER – OFFSET 50h1748.5.23MESSAGE DATA REGISTER – OFFSET 54h1748.5.24PCI EXPRESS CAPABILITIES REGISTER – OFFSET 68h1748.5.25DEVICE CAPABILITIES REGISTER – OFFSET 6Ch1748.5.26DEVICE CONTROL REGISTER – OFFSET 70h1758.5.27DEVICE STATUS REGISTER – OFFSET 70h1758.5.28LINK CAPABILITIES REGISTER – OFFSET 70h1768.5.29LINK CONTROL REGISTER – OFFSET 78h1768.5.20LINK CONTROL REGISTER – OFFSET 78h1768.5.21LINK CONTROL REGISTER – OFFSET 78h1768.5.22LINK CONTROL REGISTER – OFFSET 78h1778.5.31LINK STATUS REGISTER – OFFSET 78h1768.5.32LINK STATUS REGISTER 2 – OFFSET 98h1778.5.33SSID/SSVID CAPABILITIES REGISTER – OFFSET 44h1788.5.34SUBSYSTEM VENDOR ID REGISTER – OFFSET A8h1788.5.35SUBSYSTEM ID REGISTER – OFFSET A8h1788.6.1GLOBAL DMA CONTROL AND STATUS REGISTER – OFFSET 00h1798.6.2DESCRIPTOR OWNERSHIP REGISTER 0/1/2/3 – OFFSET 04h/08h/0Ch/10h1818.6.4CHANNEL 0/1 DESCRIPTOR RING BASE POINTER (HIGH 32-bit) REGISTER – OFFSET 24h/3Ch8.6.4CHANNEL 0/1 DESCRIPTOR RING BASE POINTER (HIGH 32-bit) REGISTER – OFFSET 24h/3Ch8.6.4CHANNEL 0/1 DESCRIPTOR RING BASE POIN	8.5.18	PPB SUPPORT EXTENSIONS – OFFSET 44h	
8.5.20MSI CAPABILITIES REGISTER - OFFSET 48h	8.5.19		
8.5.21MESSAGE ADDRESS REGISTER - OFFSET 4Ch			
8.5.22MESSAGE UPPER ADDRESS REGISTER – OFFSET 50h1748.5.23MESSAGE DATA REGISTER – OFFSET 54h1748.5.24PCI EXPRESS CAPABILITIES REGISTER – OFFSET 66h1748.5.25DEVICE CAPABILITIES REGISTER – OFFSET 6Ch1748.5.26DEVICE CONTROL REGISTER – OFFSET 70h1758.5.27DEVICE STATUS REGISTER – OFFSET 70h1758.5.28LINK CAPABILITIES REGISTER – OFFSET 74h1768.5.29LINK CONTROL REGISTER – OFFSET 78h1768.5.20LINK STATUS REGISTER – OFFSET 78h1768.5.30LINK STATUS REGISTER – OFFSET 78h1778.5.31LINK CONTROL REGISTER 2 – OFFSET 98h1778.5.32LINK STATUS REGISTER 2 – OFFSET 98h1778.5.33SSID/SSVID CAPABILITIES REGISTER – OFFSET A4h1788.5.34SUBSYSTEM VENDOR ID REGISTER – OFFSET A8h1788.5.35SUBSYSTEM VENDOR ID REGISTER – OFFSET A8h1788.6DMA ENGINE INTERFACE REGISTERS1798.6.1GLOBAL DMA CONTROL AND STATUS REGISTER – OFFSET 00h1798.6.2DESCRIPTOR OWNERSHIP REGISTER 0/1/2/3 – OFFSET 00h1818.6.4CHANNEL 0/1 DESCRIPTOR RING BASE POINTER (HIGH 32-bit) REGISTER – OFFSET 24h/3Ch8.6.4CHANNEL 0/1 DESCRIPTOR RING BASE POINTER (HIGH 32-bit) REGISTER – OFFSET28h/40h181			
8.5.23MESSAGE DATA REGISTER – OFFSET 54h			
8.5.24PCI EXPRESS CAPABILITIES REGISTER – OFFSET 68h1748.5.25DEVICE CAPABILITIES REGISTER – OFFSET 6Ch1748.5.26DEVICE CONTROL REGISTER – OFFSET 70h1758.5.27DEVICE STATUS REGISTER – OFFSET 70h1758.5.28LINK CAPABILITIES REGISTER – OFFSET 74h1768.5.29LINK CONTROL REGISTER – OFFSET 78h1768.5.30LINK STATUS REGISTER – OFFSET 78h1768.5.31LINK CONTROL REGISTER – OFFSET 78h1778.5.32LINK STATUS REGISTER – OFFSET 78h1778.5.31LINK CONTROL REGISTER 2 – OFFSET 98h1778.5.32SID/SSVID CAPABILITIES REGISTER – OFFSET 98h1788.5.33SSID/SSVID CAPABILITIES REGISTER – OFFSET A4h1788.5.34SUBSYSTEM VENDOR ID REGISTER – OFFSET A4h1788.5.35SUBSYSTEM VENDOR ID REGISTER – OFFSET A8h1788.6.1GLOBAL DMA CONTROL AND STATUS REGISTER – OFFSET 04h/08h/0Ch/10h1818.6.4CHANNEL 0/1 DESCRIPTOR RING BASE POINTER (LOW 32-bit) REGISTER – OFFSET 24h/3Ch 1811818.6.4CHANNEL 0/1 DESCRIPTOR RING BASE POINTER (HIGH 32-bit) REGISTER – OFFSET 28h/40h 181181	0.00.000		
8.5.25DEVICE CAPABILITIES REGISTER – OFFSET 6Ch.1748.5.26DEVICE CONTROL REGISTER – OFFSET 70h.1758.5.27DEVICE STATUS REGISTER – OFFSET 70h.1758.5.28LINK CAPABILITIES REGISTER – OFFSET 74h.1768.5.29LINK CONTROL REGISTER – OFFSET 78h.1768.5.30LINK STATUS REGISTER – OFFSET 78h.1778.5.31LINK CONTROL REGISTER – OFFSET 78h.1778.5.32LINK STATUS REGISTER 2 – OFFSET 98h.1778.5.33SSID/SSVID CAPABILITIES REGISTER – OFFSET 44h.1788.5.34SUBSYSTEM VENDOR ID REGISTER – OFFSET A8h.1788.5.35SUBSYSTEM ID REGISTER – OFFSET A8h.1788.6.1GLOBAL DMA CONTROL AND STATUS REGISTER – OFFSET 00h.1798.6.1GLOBAL DMA CONTROL AND STATUS REGISTER – OFFSET 04h/08h/0Ch/10h.1818.6.4CHANNEL 0/1 DESCRIPTOR RING BASE POINTER (LOW 32-bit) REGISTER – OFFSET 24h/3Ch 181181	0.0.20		
8.5.26DEVICE CONTROL REGISTER – OFFSET 70h1758.5.27DEVICE STATUS REGISTER – OFFSET 70h1758.5.28LINK CAPABILITIES REGISTER – OFFSET 74h1768.5.29LINK CONTROL REGISTER – OFFSET 78h1768.5.30LINK STATUS REGISTER – OFFSET 78h1778.5.31LINK CONTROL REGISTER 2 – OFFSET 98h1778.5.32LINK STATUS REGISTER 2 – OFFSET 98h1778.5.33SSID/SSVID CAPABILITIES REGISTER – OFFSET A4h1788.5.34SUBSYSTEM VENDOR ID REGISTER – OFFSET A8h1788.5.35SUBSYSTEM ID REGISTER – OFFSET A8h1788.6DMA ENGINE INTERFACE REGISTERS1798.6.1GLOBAL DMA CONTROL AND STATUS REGISTER – OFFSET 00h1798.6.2DESCRIPTOR OWNERSHIP REGISTER 0/1/2/3 – OFFSET 04h/08h/0Ch/10h1818.6.4CHANNEL 0/1 DESCRIPTOR RING BASE POINTER (LOW 32-bit) REGISTER – OFFSET 24h/3Ch8.6.4CHANNEL 0/1 DESCRIPTOR RING BASE POINTER (HIGH 32-bit) REGISTER – OFFSET 28h/40h			
8.5.27DEVICE STATUS REGISTER – OFFSET 70h1758.5.28LINK CAPABILITIES REGISTER – OFFSET 74h1768.5.29LINK CONTROL REGISTER – OFFSET 78h1768.5.30LINK STATUS REGISTER – OFFSET 78h1778.5.31LINK CONTROL REGISTER 2 – OFFSET 98h1778.5.32LINK STATUS REGISTER 2 – OFFSET 98h1778.5.33SSID/SSVID CAPABILITIES REGISTER – OFFSET A4h1788.5.34SUBSYSTEM VENDOR ID REGISTER – OFFSET A8h1788.5.35SUBSYSTEM ID REGISTER – OFFSET A8h1788.6.1GLOBAL DMA CONTROL AND STATUS REGISTER – OFFSET 00h1798.6.2DESCRIPTOR OWNERSHIP REGISTER 0/1/2/3 – OFFSET 04h/08h/0Ch/10h1818.6.4CHANNEL 0/1 DESCRIPTOR RING BASE POINTER (LOW 32-bit) REGISTER – OFFSET 24h/3Ch1818.6.4CHANNEL 0/1 DESCRIPTOR RING BASE POINTER (HIGH 32-bit) REGISTER – OFFSET 28h/40h			
8.5.28LINK CAPABILITIES REGISTER – OFFSET 74h1768.5.29LINK CONTROL REGISTER – OFFSET 78h1768.5.30LINK STATUS REGISTER – OFFSET 78h1778.5.31LINK CONTROL REGISTER 2 – OFFSET 98h1778.5.32LINK STATUS REGISTER 2 – OFFSET 98h1788.5.33SSID/SSVID CAPABILITIES REGISTER – OFFSET A4h1788.5.34SUBSYSTEM VENDOR ID REGISTER – OFFSET A8h1788.5.35SUBSYSTEM VENDOR ID REGISTER – OFFSET A8h1788.6DMA ENGINE INTERFACE REGISTERS1798.6.1GLOBAL DMA CONTROL AND STATUS REGISTER – OFFSET 00h1798.6.2DESCRIPTOR OWNERSHIP REGISTER 0/1/2/3 – OFFSET 04h/08h/0Ch/10h1818.6.4CHANNEL 0/1 DESCRIPTOR RING BASE POINTER (LOW 32-bit) REGISTER – OFFSET 24h/3Ch1818.6.4CHANNEL 0/1 DESCRIPTOR RING BASE POINTER (HIGH 32-bit) REGISTER – OFFSET28h/40h181	0.0.0		
8.5.29LINK CONTROL REGISTER – OFFSET 78h1768.5.30LINK STATUS REGISTER – OFFSET 78h1778.5.31LINK CONTROL REGISTER 2 – OFFSET 98h1778.5.32LINK STATUS REGISTER 2 – OFFSET 98h1788.5.33SSID/SSVID CAPABILITIES REGISTER – OFFSET A4h1788.5.34SUBSYSTEM VENDOR ID REGISTER – OFFSET A8h1788.5.35SUBSYSTEM ID REGISTER – OFFSET A8h1788.6.1GLOBAL DMA CONTROL AND STATUS REGISTER – OFFSET 00h1798.6.2DESCRIPTOR OWNERSHIP REGISTER 0/1/2/3 – OFFSET 04h/08h/0Ch/10h1818.6.3CHANNEL 0/1 DESCRIPTOR RING BASE POINTER (LOW 32-bit) REGISTER – OFFSET 24h/3Ch1818.6.4CHANNEL 0/1 DESCRIPTOR RING BASE POINTER (HIGH 32-bit) REGISTER – OFFSET 24h/3Ch181			
 8.5.30 LINK STATUS REGISTER – OFFSET 78h			
8.5.31 LINK CONTROL REGISTER 2 - OFFSET 98h 177 8.5.32 LINK STATUS REGISTER 2 - OFFSET 98h 178 8.5.33 SSID/SSVID CAPABILITIES REGISTER - OFFSET A4h 178 8.5.34 SUBSYSTEM VENDOR ID REGISTER - OFFSET A8h 178 8.5.35 SUBSYSTEM ID REGISTER - OFFSET A8h 178 8.6.1 BLOBAL DMA CONTROL AND STATUS REGISTER - OFFSET 00h 179 8.6.2 DESCRIPTOR OWNERSHIP REGISTER 0/1/2/3 - OFFSET 04h/08h/0Ch/10h 181 8.6.3 CHANNEL 0/1 DESCRIPTOR RING BASE POINTER (LOW 32-bit) REGISTER - OFFSET 24h/3Ch 181 8.6.4 CHANNEL 0/1 DESCRIPTOR RING BASE POINTER (HIGH 32-bit) REGISTER - OFFSET 24h/3Ch 181			
8.5.32 LINK STATUS REGISTER 2 – OFFSET 98h	8.5.30		
8.5.33 SSID/SSVID CAPABILITIES REGISTER – OFFSET A4h	8.5.31		
 8.5.34 SUBSYSTEM VENDOR ID REGISTER – OFFSET A8h	8.5.32	LINK STATUS REGISTER 2 – OFFSET 98h	
8.5.35SUBSYSTEM ID REGISTER – OFFSET A8h	8.5.33	SSID/SSVID CAPABILITIES REGISTER – OFFSET A4h	
8.5.35SUBSYSTEM ID REGISTER – OFFSET A8h	8.5.34	SUBSYSTEM VENDOR ID REGISTER – OFFSET A8h	
 8.6 DMA ENGINE INTERFACE REGISTERS	8.5.35	SUBSYSTEM ID REGISTER – OFFSET A8h	
 8.6.1 GLOBAL DMA CONTROL AND STATUS REGISTER – OFFSET 00h			
 8.6.2 DESCRIPTOR OWNERSHIP REGISTER 0/1/2/3 – OFFSET 04h/08h/0Ch/10h			
 8.6.3 CHANNEL 0/1 DESCRIPTOR RING BASE POINTER (LOW 32-bit) REGISTER – OFFSET 24h/3Ch 181 8.6.4 CHANNEL 0/1 DESCRIPTOR RING BASE POINTER (HIGH 32-bit) REGISTER – OFFSET 28h/40h 181 	0.0.5		
181 8.6.4 CHANNEL 0/1 DESCRIPTOR RING BASE POINTER (HIGH 32-bit) REGISTER – OFFSET 28h/40h 181			
28h/40h 181		181	
$0.0.9 \qquad OLTOPICAL VIT DESCRIPTOR CONNENT FOR NEUTRICA CONTERNED OF FSET 200/440102$			187
8.6.6 CHANNEL 0/1 TRANSFER COUNT STATUS of DESCRIPTOR CURRENT POINTER REGISTER –			
OFFSET 30h/48h	OFFSEL	JUII/40II	

	8.6.7 34h/4Ch	CHANNEL 0/1 DESCRIPTOR RING SIZE AND PREFETCH UPPER LIMIT REGISTER –	OFFSET	
	8.6.8	CHANNEL 0/1 DMA CONTROL AND STATUS REGISTER – OFFSET 38h/50h		
9	CLOCK	SCHEME	••••••	184
10	POWER	R MANAGEMENT	•••••	185
11	POWER	R SEQUENCE	•••••	186
12	IEEE 11	49.1 COMPATIBLE JTAG CONTROLLER		187
1	2.1 INS	STRUCTION REGISTER		
1		PASS REGISTER		
1		VICE ID REGISTER		
1		UNDARY SCAN REGISTER		
-		AG BOUNDARY SCAN REGISTER ORDER		
13	ELECT	RICAL AND TIMING SPECIFICATIONS	••••••	193
1	3.1 AB	SOLUTE MAXIMUM RATINGS		
1		SPECIFICATIONS		
1	3.3 AC	SPECIFICATIONS		
1	3.4 OP	ERATING AMBIENT TEMPERATURE		
-	3.5 PO	WER CONSUMPTION		
14	THERM	IAL DATA	•••••	196
15	РАСКА	GE INFORMATION	•••••	197
16	ORDER	ING INFORMATION		198

TABLE OF FIGURES

FIGURE 4-1 PI7C9X2G1616PR BALL ASSIGNMENT	
FIGURE 6-1 DRIVER OUTPUT WAVEFORM	
FIGURE 6-2 INTELLIGENT ADAPTOR ARCHITECTURE	
FIGURE 6-3 BLOCK DIAGRAM OF INTEGRATED DMA ENGINES IN PACKET SWITCH	39
FIGURE 6-4 DMA DESCRIPTOR RING STRUCTURE	40
FIGURE 6-5 64-BIT DESCRIPTOR DATA STRUCTURE	
FIGURE 6-6 32-BIT DESCRIPTOR DATA STRUCTURE	
FIGURE 6-7 STATUS INFORMATION COLLECTION TRAFFIC MODEL	42
FIGURE 6-8 PEER-TO-PEER TRANSFER TRAFFIC MODEL	
FIGURE 6-9 INTER-PROCESSOR / DOWNSTREAM PORT TO NT PORT TRAFFIC MODEL	
FIGURE 7-1 SMBUS ARCHITECTURE IMPLEMENTATION	
FIGURE 7-2 SMBUS BLOCK WRITE COMMAND FORMAT, TO WRITE TO A PI7C9X2G1616PR REGISTER WITHOU	
FIGURE 7-3 SMBUS BLOCK WRITE COMMAND FORMAT, TO WRITE TO A PI7C9X2G1616PR REGISTER WITH PE	EC49
FIGURE 7-4 SMBUS BLOCK WRITE TO SET UP READ, AND RESULTING READ THAT RETURNS CFG REGISTER VA	
FIGURE 7-5 CSR READ OPERATION USING SMBUS BLOCK READ – BLOCK WRITE PROCESS CALL	
FIGURE 7-6 CSR READ OPERATION USING SMBUS BLOCK READ – BLOCK WRITE PROCESS CALL WITH PEC	
FIGURE 7-7 STANDARD DEVICES TO I ² C BUS CONNECTION BLOCK DIAGRAM	
FIGURE 7-8 I ² C WRITE PACKET	56
FIGURE 7-9 I ² C REGISTER WRITE ACCESS EXAMPLE	
FIGURE 7-10 I ² C WRITE COMMAND PACKET EXAMPLE	
FIGURE 7-11 I ² C READ COMMAND PACKET	
FIGURE 7-12 I ² C REGISTER READ ACCESS EXAMPLE	
FIGURE 7-13 I ² C READ COMMAND PACKET	
FIGURE 11-1 INITIAL POWER-UP SEQUENCE	
FIGURE 15-1 PACKAGE OUTLINE DRAWING	
FIGURE 15-2 PART MARKING	197

LIST OF TABLES

TABLE 6-1 RECEIVER DETECTION THRESHOLD SETTINGS	29
TABLE 6-2 RECEIVER SIGNAL DETECT THRESHOLD	30
TABLE 6-3 RECEIVER EQUALIZATION SETTINGS	30
TABLE 6-4 TRANSMITTER SWING SETTINGS	
TABLE 6-5 DRIVE AMPLITUDE BASE LEVEL REGISTERS	31
TABLE 6-6 DRIVE AMPLITUDE BASE LEVEL SETTINGS	31
TABLE 6-7 DRIVE DE-EMPHASIS BASE LEVEL REGISTER	32
TABLE 6-8 DRIVE DE-EMPHASIS BASE LEVEL SETTINGS	
TABLE 6-9 SUMMARY OF PCI EXPRESS ORDERING RULES	
TABLE 6-10 64-BIT DESCRIPTOR DATA STRUCTURE	
TABLE 6-11 32-BIT DESCRIPTOR DATA STRUCTURE	
TABLE 7-1 SMBUS ADDRESS PIN CONFIGURATION	48
TABLE 7-2 BYTES FOR SMBUS BLOCK WRITE	
TABLE 7-3 SAMPLE SMBUS BLOCK WRITE BYTE SEQUENCE	
TABLE 7-4 BYTES FOR SMBUS BLOCK READ	
TABLE 7-5 SMBUS BLOCK WRITE PORTION	
TABLE 7-6 SMBUS BLOCK READ PORTION	
TABLE 7-7 SMBUS READ COMMAND FOLLOWING REPEAT START FROM MASTER	
TABLE 7-8 SMBUS RETURN BYTES	52
TABLE 7-9 COMMAND FORMAT FOR SMBUS BLOCK READ	
TABLE 7-10 I ² C Address Pin Configuration	
TABLE 7-11 I ² C REGISTER WRITE ACCESS	
TABLE 7-12 I ² C COMMAND FORMAT FOR WRITE ACCESS	
TABLE 7-13 I ² C COMMAND FORMAT FOR READ ACCESS	
TABLE 8-1 REGISTER TYPES	
TABLE 8-2 REGISTER ARRAY LAYOUT FOR VC ARBITRATION	
TABLE 8-3 TABLE ENTRY SIZE IN 4 BITS	85
TABLE 8-4 REGISTER ARRAY LAYOUT FOR VC ARBITRATION	
TABLE 8-5 TABLE ENTRY SIZE IN 4 BITS	
TABLE 8-6 VIRTUAL PORT 32-BITS LTT ENTRY 0-7 REGISTER LOCATIONS	143
TABLE 8-7 VIRTUAL PORT 32-BITS LTT ENTRY N (N=0 THROUGH 7)	144
TABLE 8-8 LINK PORT 16-BITS LTT ENTRY 0-31 REGISTER LOCATIONS	
TABLE 8-9 LINK PORT 16-BITS LTT ENTRY N M (N M 0-1 TO 30-31)	144
TABLE 8-10 VIRTUAL PORT 32-BITS LTT ENTRY 0-7 REGISTER LOCATIONS	
TABLE 8-11 VIRTUAL PORT 32-BITS LTT ENTRY N (N=0 THROUGH 7)	167
TABLE 8-12 LINK PORT 16-BITS LTT ENTRY 0-31 REGISTER LOCATIONS	167
TABLE 8-13 LINK PORT 16-BITS LTT ENTRY N M (N M 0-1 TO 30-31)	167
TABLE 8-14 DMA BASE ADDRESS IN MEMORY MODE WHEN NT FUNCTION IS ENABLED.	179
TABLE 8-15 DMA BASE ADDRESS IN MEMORY MODE WHEN NT FUNCTION IS DISABLED.	179
TABLE 9-1 DC ELECTRICAL CHARACTERISTICS	184
TABLE 12-1 INSTRUCTION REGISTER CODES.	187
TABLE 12-2 JTAG DEVICE ID REGISTER	187
TABLE 12-3 JTAG BOUNDARY SCAN REGISTER DEFINITION	188
TABLE 13-1 ABSOLUTE MAXIMUM RATINGS	193
TABLE 13-2 DC ELECTRICAL CHARACTERISTICS	
TABLE 13-3 PCI EXPRESS INTERFACE - DIFFERENTIAL TRANSMITTER (TX) OUTPUT (5.0 GBPS) CHARACTERISTICS	193
TABLE 13-4 PCI EXPRESS INTERFACE - DIFFERENTIAL TRANSMITTER (TX) OUTPUT (2.5 GBPS) CHARACTERISTICS	
TABLE 13-5 PCI EXPRESS INTERFACE - DIFFERENTIAL RECEIVER (RX) INPUT (5.0 GBPS) CHARACTERISTICS	
TABLE 13-6 PCI EXPRESS INTERFACE - DIFFERENTIAL RECEIVER (RX) INPUT (2.5 GBPS) CHARACTERISTICS	
TABLE 13-7 OPERATING AMBIENT TEMPERATURE	
TABLE 13-8 POWER CONSUMPTION	
TABLE 14-1 THERMAL DATA	196

Page 16 of 198 www.diodes.com

1 FEATURES

- 16-lane PCI Express Gen 2 Switch with 16 PCI Express ports
- Supports "Cut-through" (Default) as well as "Store and Forward" mode for packet switching
- 150 ns typical latency for packet routed through Switch without blocking
- Supports internal Direct Memory Access (DMA) engine to move data between two address locations
- Supports Transparent and Non-Transparent Modes
- Strapped pins configurable with optional EEPROM, SMBus or I2C Bus
- SMBus interface support
- I2C Slave interface support
- Compliant with System Management (SM) Bus, Version 2.0
- Compliant with I2C Bus Specification, Version 2.1
- Compliant with PCI Express Base Specification Revision 2.1
- Compliant with PCI Express CEM Specification Revision 2.0
- Compliant with PCI-to-PCI Bridge Architecture Specification Revision 1.2
- Compliant with Advanced Configuration Power Interface (ACPI) Specification
- Reliability, Availability and Serviceability
 - Supports Data Poisoning and End-to-End CRC
 - Advanced Error Reporting and Logging
- Advanced Power Saving
 - Empty downstream ports are set to idle state to minimize power consumption
- Link Power Management
 - Supports L0, L0s, L1, L2, L2/L3_{Ready} and L3 link power states
 - Active state power management for L0s and L1 states
- Device State Power Management
 - Supports D0, D3_{Hot} and D3_{Cold} device power states
- Port Arbitration: Round Robin (RR), Weighted RR and Time-based Weighted RR
- Extended Virtual Channel capability
 - Two Virtual Channels (VC) and Eight Traffic Class (TC) support
 - Disabled VCs' buffer is assigned to enabled VCs for resource sharing
 - Independent TC/VC mapping for each port
 - Provides VC arbitration selections: Strict Priority, Round Robin (RR) and Programmable Weighted RR
- Supports Isochronous Traffic
 - Isochronous traffic class mapped to VC1 only
 - Strict time based credit policing
- Supports up to 512-byte maximum payload size
- Programmable driver current and de-emphasis level at each individual port
- Support Access Control Service (ACS)
- Support Address Translation (AT) packet for SR-IOV application
- Support Alternative Routing ID Interpretation (ARI)
- Support Multicast

_

- Support Serial Hot Plug Controller
- Low Power Dissipation: 1.33W typical in L0 normal mode
- Industrial Temperature Range -40° to 85°C
- Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
- Halogen and Antimony Free. "Green" Device (Note 3)
- For automotive applications requiring specific change control (i.e. parts qualified to AEC-Q100/101/200, PPAP capable, and manufactured in IATF 16949 certified facilities), please <u>contact us</u> or your local Diodes representative.
- https://www.diodes.com/quality/product-definitions/
- 324-pin HSBGA 19mm x 19mm package (ULA)

Notes:

See <u>https://www.diodes.com/uuality/lead-free/</u> for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
 Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.

PI7C9X2G1616PR Document Number DS40340 Rev 7-2 Page 17 of 198 www.diodes.com

^{1.} No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant.

2 GENERAL DESCRIPTION

Similar to the role of PCI/PCIX Bridge in PCI/PCIX bus architecture, the function of PCI Express (PCIE) Switch is to expand the connectivity to allow more end devices to be reached by host controllers in PCIE serial interconnect architecture. The 16-lane PCIe Switch is in 16-port type configuration. It provides users the flexibility to expand or fan-out the PCI Express lanes based on their application needs.

In the PCI Express Architecture, the PCIE Switch forwards posted and non-posted requests, and completion packets in either downstream or upstream direction concurrently as if a virtual PCI Bridge is in operation on each port. By visualizing the port as a virtual Bridge, the Switch can be logically viewed as two-level cascaded multiple virtual PCI-to-PCI Bridges, where one upstream-port Bridge sits on all downstream-port Bridges. Similar to a PCI Bridge during enumeration, each port is given a unique bus number, device number, and function number by the initiating software. The bus number, device number, and function number are combined to form a destination ID for each specific port. In addition to that, the memory-map and IO address ranges are exclusively allocated to each port as well. After the software enumeration is finished, the packets are routed to the dedicated port based on the embedded address or destination ID. To ensure the packet integrity during forwarding, the Switch is not allowed to split the packets to multiple small packets or merge the received packets into a large transmit packet. Also, the IDs of the requesters and completers are kept unchanged along the path between ingress and egress port.

The Switch employs the architecture of Combined Input and Output Queue (CIOQ) in implementation. The main reason for choosing CIOQ is that the required memory bandwidth of input queue equals to the bandwidth of ingress port rather than increasing proportionally with port numbers as an output queue Switch does. The CIOQ at each ingress port contains separate dedicated queues to store packets. The packets are arbitrated to the egress port based on the PCIe transaction-ordering rule. For the packets without ordering information, they are permitted to pass over each other in case that the addressed egress port is available to accept them. As to the packets required to follow the ordering rule, the Head-Of-Line (HOL) issue becomes unavoidable for packets destined to different egress ports since the operation of producer-consumer model has to be retained; otherwise the system might occur hang-up problem. On the other hand, the Switch places replay buffer at each egress port to defer the packets before sending it out. This can assure the maximum throughput being achieved and therefore the Switch works efficiently. Another advantage of implementing CIOQ in PCIe Switch is that the credit announcement to the counterpart is simplified and streamlined because of the credit-based flow control protocol. The protocol requires that each ingress port maintains the credits independently without checking other ports' credit availability, which is otherwise required by pure output queue architecture.

The Switch supports two virtual channels (VC0, VC1) and eight traffic classes (TC0 \sim TC7) at each port. The ingress port independently assigns packets into the preferred virtual channel while the egress port outputs the packet based on the predefined port and VC arbitration algorithm. For instance, the isochronous packet is given a special traffic class number other than TC0 and mapped into VC1 accordingly. By employing the strict time based credit policy for port arbitration and assigning higher priority to VC1 than VC0, the Switch can therefore guarantee the time-sensitive packet is not blocked by regular traffic to assure the quality of service. In addition, some data-centric applications only carry TC0/VC0 traffic. As a result, there are no packets that would consume VC1 bandwidth. In order to improve the efficiency of buffer usage, the unused VC1 queues can be reassigned to VC0 and enable each of the ingress ports to handle more data traffic bursts. This virtual channel resource relocation feature enhances the performance of the PCIe Switch further.

The Switch provides the advanced feature of Access Control Service (ACS). This feature regulates which components are allowed to communicate with each other within the PCIe multiple-point fabric, and allows the system to have more control over packet routing in the Switch. As a result, peer-to-peer traffic can be facilitated more accurately and efficiently. When the system also implements Address Translation Service (ATS), the peer-to-peer requests with translated address can be routed directly by enabling the corresponding option in ACS to avoid possible performance bottleneck associated with re-direction, which introduces extra latency and may increase link and RC congestion.

Page 18 of 198 www.diodes.com

Non-Transparent (NT) Bridging is supported by the packet switch. The NT bridge allows two separate Hosts to be connected together. One single port of the packet switch can be configured to operate in NT mode. While the port is in NT mode, the packet switch allows the isolation of address spaces, and the packet switch acts as an endpoint to the Host to allow inter-processor communication. NT mode is enabled and disabled by toggling the NT_EN_L strapping pin.

The packet switch supports internal Direct Memory Access (DMA) functionality to move data between two address locations. Two types of DMA engines are supported: DMA_UP and DMA_NT. The upstream port uses DMA_UP engine to move data in Host processor address domain. And the non-transparent port uses DMA_NT to move inter-processor data. The DMA engines have two built-in data channels: channel 0 and channel 1. The packet switch also provides a flexibility to manage these DMA engines. If the NT port is not enabled, all of the DMA engines would be allocated to upstream port domain.

3 PIN DESCRIPTION

3.1 PCI EXPRESS INTERFACE SIGNALS (76 BALLS)

NAME	PIN	TYPE	DESCRIPTION
REFCLKP REFCLKN	U10 V10	Ι	Reference Clock Input Pairs: Connect to 100MHz differential clock.
			The input clock signals must be delivered to the clock buffer cell through an AC-coupled interface so that only the AC information of the clock is received, converted, and buffered. It is recommended that a 0.1uF be used in the AC-coupling.
PERP[15:0]	M4, L4, J4, H4, E7, E8, E10, E11, G15, H15, K15, L15, P12, P11, P9, P8	Ι	PCI Express Data Serial Input Pairs: Differential data receive signals in sixteen ports. Please refer to Section 5 for Mapping of the Lanes to transmission and receive pairs and configuration of Port-Lane.
PERN[15:0]	M5, L5, J5, H5, D7, D8, D10, D11, G14, H14, K14, L14, R12, R11, R9, R8	Ι	
PETP[15:0]	M1, L1, J1, H1, B7, B8, B10, B11, G18, H18, K18, L18, U12, U11, U9, U8	0	PCI Express Data Serial Output Pairs: Differential data transmit signals in sixteen ports. Please refer to Section 5 for Mapping of the Lanes to transmission and receive pairs and configuration of Port-Lane.
PETN[15:0]	M2, L2, J2, H2, A7, A8, A10, A11, G17, H17, K17, L17, V12, V11, V9, V8	0	
PERST_L	P17	Ι	System Reset (Active LOW): When PERST_L is asserted, the internal states of whole chip except sticky logics are initialized. Please refer to Table 11-2 for PERST_L Spec.
REXT[3:0]	L6, F8, H13, N11	I	External Reference Resistor: Connect an external resistor (1.43K Ohm +/- 1%) to REXT_GND to provide a reference to both the bias currents and impedance calibration circuitry.
REXTGND[3:0]	K4, D9, J15, R10	Ι	External Reference Resistor Ground: Connect to an external resistor to REXT.
NT_RESET_L	P16	0	Propagate Reset in NT mode: Pulse width is 1us.

3.2 PORT SPECIFIC SIGNALS (31 BALLS)

NAME	PIN	TYPE	DESCRIPTION
LNKSTS[15:0]	T2, T1, P3, R2, E5, E13, A13, B3, E16, D17, D18, B17, U15, U16, T14, U14	0	Link Status: These signals indicate the link status of each lane. When continuously deasserts, the device is in the condition of link down. When continuously asserts, the link is up and operates at 5GT/s. When blinking, asserts and deasserts with 0.5-second intervals, the link is up and operates at 2.5GT/s. LNKSTS[x] is correspondent to Lane x, where x=0,1,2,,15. Note: In the case where the downstream port or upstream port is configured to more than x1 lane, all associated lanes' LINKSTS signals of the port behave identically regardless of the actual link mode. For example, if the port is configured as a x4 link width. All four LINKSTS of the lanes used by the port turn on/off or flash synchronously even if the port is currently operating in x1, x2 or x4 link state.

NAME	PIN	TYPE	DESCRIPTION			
UPS_PORTSEL[3:0]	E1, F2, F3, E2	Ι	Upstream Port Selection: These signals decide which port will be the upstream port.			
			Please refer to Section 5 for Port-Lane Mapping.			
			These strapping pins have no built-in internal resistors and can not be left NC. These pins require the external 5.1K-ohm pull-up resistors or 330-ohm pull-down resistors.			
PORTCFG[3:0]	C13, B2, A4,	Ι	Port-Lane Configuration: These signals decide Port-Lane configuration.			
	A5		Please refer to Section 5 for Port-Lane Mapping.			
			These strapping pins have no built-in internal resistors and cannot be left NC. These pins require the external 5.1K-ohm pull-up resistors or 330-ohm pull-down resistors.			
NT_EN_L	N18	Ι	NT Mode Enable: When tied low, NT mode is enabled. When tied high, NT mode is disabled. This strapping pin has no built-in internal resistor and can not be left NC. The pin requires an external 5.1K-ohm pull-up resistor or 330-ohm pull-down resistor.			
NT_P2P_EN_L	R5	Ι	NT PCI-to-PCI Bridge Mode Enable: When tied low, NT PCI-to-PCI bridge mode is enabled. When tied high, NT PCI-to-PCI bridge mode is disabled. This pin has internal pull-up. If no board trace is connected to this pin, the internal pull-up resistor of this pin is enough. However, if pin is connected to a board trace and not driven, it is recommended that an external 5.1K- ohm pull-up resistor be used.			
NTPORT_SEL[3:0]	P6, R1, P2, P1	Ι	NT Port Selection: These signals decide which port will be the upstream NT port. Please refer to Section 5 for Port-Lane Mapping.			
			These strapping pins have no built-in internal resistors and cannot be left NC. These pins require the external 5.1K-ohm pull-up resistors or 330-ohm pull-down resistors.			
CFG_TIMER_EN_L	U5	Ι	CFG Timer Enable: When tied high, TS pkts always advertises support for GENII data rate and autonomous change. When tied low, if the LTSSM fails during the Configuration state, TS pkts only advertises GENI data rate and no autonomous change support in next time the LTSSM exists the Detect state. If the LTSSM fails continuously in Configuration state, the LTSSM continues to alternate between GENI and GENII advertisement every time it exists the Detect state.			
			This pin has internal pull-up. If no board trace is connected to this pin, the internal pull-up resistor of this pin is enough. However, if pin is connected to a board trace and not driven, it is recommended that an external 5.1K-ohm pull-up resistor be used.			

3.3 EEPROM and SMBUS/I2C SIGNALS (10 BALLS)

NAME	PIN	TYPE	DESCRIPTION
EECK	R18	I/O	EEPROM Clock: Clock signal to 4-wire EEPROM interface.
EEDI	N15	0	EEPROM Data Input: Pericom 2G1616PR outputs data to the Data Input pin of Serial EEPROM.
EEDO	N16	Ι	EEPROM Data Output: Pericom 2G1616PR inputs data from the Data Output pin of Serial EEPROM.
EECS_L	R17	I/O	EEPROM Chip Select (Active Low): Pericom 2G1616PR asserts this signal to enable Serial EEPROM.
SCL_I2C	C17	OD	SMBUS/I2C Serial Clock: System management or I2C Bus Clock. This pin requires an external 5.1K-ohm pull-up resistor.
SDA_I2C	A17	OD	SMBUS/I2C Serial Data: Bi-Directional System Management or I2C Bus Data. This pin requires an external 5.1K-ohm pull-up resistor.
I2C_ADDR[2:0]	E18, E17, C18	Ι	SMBUS/I2C Slave Address Bit [2:0]: These pins are used to configure the value of the three least significant bits of the PI7C2G1616PR 7-bit Slave address. These pins require the external 5.1K-ohm pull-up resistors or 330-ohm pull-down resistors.

NAME	PIN	TYPE	DESCRIPTION
SMBUS_EN_L	U4	Ī	System Manage Bus Enable: Select either SMBUS or I2C protocol. When tied high, I2C protocol is selected. When tied low, SMBUS protocol is chosen. This pin has internal pull-up resistor. If no board trace is connected to this pin, the internal pull-up resistor of this pin is enough. However, if pin is connected to a board trace and not driven, it is recommended that an external 5.1K-ohm pull-up resistor be used.

3.4 MISCELLANEOUS SIGNALS (65 BALLS)

NAME	PIN	TYPE	DESCRIPTION
SHCL_I2C	B16	OD	12C Clock Signal of Serial Hot Plug Controller: It is connected to SCL pin of all 12C IO expanders. This pin requires an external 5.1K-ohm pull-up resistor.
SHDA_12C	C16	OD	I2C Data Signal of Serial Hot Plug Controller: It is connected to SDA pin of all I2C IO expanders. This pin requires an external 5.1K-ohm pull-up resistor.
SHPCINT_L	A16	Ι	Interrupt Input (Active Low) of Serial Hot Plug Controller: It is connected to INT# output pin of all I2C IO expanders. When asserted, it notifies Hot Plug Controller to access the port registers of all I/O expanders for touching changed status to de-assert INT#.
GPIO[31:0]	D4, D5, B4, B5, C5, C3, B14, E15, D16, T18, P15, R16, R14, T15, T16, P14, V6, V5, V4, R6, U6, U2, P5, P4, R3, T3, F4, D1, D2, E3, D3, E4	I/O	General Purpose Input and Output: These thirty-two general- purpose pins are programmed as either input-only or bi-directional pins by writing the GPIO output enable control register.
FATAL_ERR_L	B13	0	Fatal Error Output: It is asserted low when a Fatal error is detected.
INTA_L	P18	OD	Interrupt Output Enable: When tied low, it indicates that one or more of the following events/errors are detected: Hot Plug events, Link State events, General-Purpose Input Interrupt events, Device- Specific errors, Device-Specific NT Port Link Interface errors and events, NT-Virtual Doorbell events or NT-Link Doorbell events.
DEBUG_SEL[1:0]	T4, N17	Ι	Test Only Must be pulled up by an external 5.1K-ohm resistor.
FAST_MODE_L	C2	Ι	Test Only Must be pulled up by an external 5.1K-ohm resistor
PROBE_MODE_L	T17	Ι	Test Only Must be pulled up by an external 5.1K-ohm resistor.
SERDES_MODE_EN_L	C4	Ι	Test Only Must be pulled up by an external 5.1K-ohm resistor.
TESTMODE[3:0]	U17, V16, V15, V14	Ι	Test Only Must be pulled up by an external 5.1K-ohm resistor.
PLL_BYPASS_L	R15	Ι	Test Only Must be pulled up by an external 5.1K-ohm resistor.
TEST	U3	Ι	Test Only Must be pulled up by an external 5.1K-ohm resistor
NC	A9, A14, A15, B9, D14, E9, F1, J14, J17, J18, K1, K2, K5, P10, R4, T5, T6		No Connection: leaves these pins floating.

3.5 JTAG BOUNDARY SCAN SIGNALS (5 Balls)

Name	Pin	Туре	Description
ТСК	B15	Ι	Test Clock: Used to clock state information and data into and out of the chip during boundary scan. When JTAG boundary scan function is not implemented, this pin should be left open (NC).
TDI	E14	Ι	Test Data Input: Used (in conjunction with TCK) to shift data and instructions into the TAP in a serial bit stream. When JTAG boundary scan function is not implemented, this pin should be left open (NC).
TDO	C15	0	Test Data Output: Used (in conjunction with TCK) to shift data out of the Test Access Port (TAP) in a serial bit stream. When JTAG boundary scan function is not implemented, this pin should be left open (NC).
TMS	C14	Ι	Test Mode Select: Used to control the state of the Test Access Port controller. When JTAG boundary scan function is not implemented, this pin should be pulled low through a 330-Ohm pull-down resistor.
TRST_L	D15	Ι	Test Reset (Active LOW): Active LOW signal to reset the TAP controller into an initialized state. When JTAG boundary scan function is not implemented, this pin should be pulled low through a 330-Ohm pull-down resistor.

3.6 POWER PINS (137 BALLS)

NAME	PIN	TYP E	DESCRIPTION
VDDC	F7, F11, F12, G6, G13, H6, L13, M6, M13, N7, N8, N12	P	VDDC Supply (1.0V): Used as digital core power pins.
VDDR	F6, F13, N6, N13	Р	VDDR Supply (2.5V): Used as digital I/O power pins.
AVDD	C7, C9, C11, G16, H3, J16, K3, L16, M3, T8, T10, T12	Р	AVDD Supply (1.0V): Used as PCI Express analog power pins.
AVDDH	F9, J13, K6, N10	Р	AVDDH Supply (2.5V): Used as PCI Express analog high voltage power pins.
VSS	A1, A2, A3, A6, A12, A18, B1, B6, B12, B18, C1, C6, C8, C10, C12, D6, D12, D13, E6, E12, F5, F10, F14, F15, F16, F17, F18, G1, G2, G3, G4, G5, G7, G8, G9, G10, G11, G12, H7, H8, H9, H10, H11, H12, H16, J3, J6, J7, J8, J9, J10, J11, J12, K7, K8, K9, K10, K11, K12, K13, K16, L3, L7, L8, L9, L10, L11, L12, M7, M8, M9, M10, M11, M12, M14, M15, M16, M17, M18, N1, N2, N3, N4, N5, N9, N14, P7, P13, R7, R13, T7, T9, T11, T13, U1, U7, U13, U18, V1, V2, V3, V7, V13, V17, V18	Р	Ground: Used as ground pins.

4 PIN DESCRIPTION

4.1 PIN LIST of 324-BALL HSBGA

PIN	NAME	PIN	NAME	PIN	NAME	PIN	NAME
A1	VSS	E10	PERP[9]	K1	NC	P10	NC
A2	VSS	E11	PERP[8]	K2	NC	P11	PERP[2]
A3	VSS	E12	VSS	K3	AVDD	P12	PERP[3]
A4	PORTCFG[1]	E13	LNKSTS[10]	K4	REXT_GND[3]	P13	VSS
A5	PORTCFG[0]	E14	JTAG_TDI	K5	NC	P14	GPIO[16]
A6	VSS	E15	GPIO[24]	K6	AVDDH	P15	GPIO[21]
A7	PETN[11]	E16	LNKSTS[7]	K7	VSS	P16	NT_RESET_L
A8	PETN[10]	E17	I2C_ADDR[1]	K8	VSS	P17	PERST_L
A9	NC	E18	I2C_ADDR[2]	K9	VSS	P18	INTA_L
A10	PETN[9]	F1	NC	K10	VSS	R1	NT_PORTSEL[2]
A11	PETN[8]	F2	UPS_PORTSEL[2]	K11	VSS	R2	LNKSTS[12]
A12	VSS	F3	UPS_PORTSEL[1]	K12	VSS	R3	GPIO[7]
A13	LNKSTS[9]	F4	GPIO[5]	K13	VSS	R4	NC
A14	NC	F5	VSS	K14	PERN[5]	R5	NT_P2P_EN_L
A15	NC	F6	VDDR	K15	PERP[5]	R6	GPIO[12]
A16	SHPCINT_L	F7	VDDC	K16	VSS	R7	VSS
A17	SDA_I2C	F8	REXT[2]	K17	PETN[5]	R8	PERN[0]
A18	VSS	F9	AVDDH	K18	PETP[5]	R9	PERN[1]
B1	VSS	F10	VSS	L1	PETP[14]	R10	REXT GND[0]
B2	PORTCFG[2]	F11	VDDC	L2	PETN[14]	R11	PERN[2]
B3	LNKSTS[8]	F12	VDDC	L3	VSS	R12	PERN[3]
B4	GPIO[29]	F13	VDDR	L4	PERP[14]	R13	VSS
B5	GPIO[28]	F14	VSS	L5	PERN[14]	R14	GPIO[19]
B6	VSS	F15	VSS	L6	REXT[3]	R15	PLL_BYPASS_L
B7	PETP[11]	F16	VSS	L7	VSS	R16	GPIO[20]
B8	PETP[10]	F17	VSS	L8	VSS	R17	EECS L
B9	NC	F18	VSS	L9	VSS	R18	EECK
B10	PETP[9]	G1	VSS	L10	VSS	T1	LNKSTS[14]
B11	PETP[8]	G2	VSS	L11	VSS	T2	LNKSTS[15]
B12	VSS	G3	VSS	L12	VSS	T3	GPIO[6]
B13	FATAL_ERR_L	G4	VSS	L13	VDDC	T4	DEBUG_SEL[1]
B14	GPIO[25]	G5	VSS	L14	PERN[4]	T5	NC
B15	JTAG_TCK	G6	VDDC	L15	PERP[4]	T6	NC
B16	SHCL_I2C	G7	VSS	L16	AVDD	T7	VSS
B17	LNKSTS[4]	G8	VSS	L17	PETN[4]	T8	AVDD
B18	VSS	G9	VSS	L18	PETP[4]	T9	VSS
C1	VSS	G10	VSS	M1	PETP[15]	T10	AVDD
C2	FAST_MODE_L	G11	VSS	M2	PETN[15]	T11	VSS
C3	GPIO[26]	G12	VSS	M3	AVDD	T12	AVDD
C4	SERDES_MODE_EN_L	G13	VDDC	M4	PERP[15]	T13	VSS
C5	GPIO[27]	G14	PERN[7]	M5	PERN[15]	T14	LNKSTS[1]
C6	VSS	G15	PERP[7]	M6	VDDC	T15	GPIO[18]
C7	AVDD	G16	AVDD	M7	VSS	T16	GPIO[17]
C8	VSS	G17	PETN[7]	M8	VSS	T17	PROBE_MODE_L
C9	AVDD	G18	PETP[7]	M9	VSS	T18	GPIO[22]
C10	VSS	H1	PETP[12]	M10	VSS	U1	VSS
C11	AVDD	H2	PETN[12]	M11	VSS	U2	GPIO[10]
C12	VSS	H3	AVDD	M12	VSS	U3	TEST
C13	PORTCFG[3]	H4	PERP[12]	M13	VDDC	U4	SMBUS_EN_L
C14	JTAG_TMS	H5	PERN[12]	M14	VSS	U5	CFG_TIMER_EN_L
C15	JTAG_TDO	H6	VDDC	M15	VSS	U6	GPIO[11]
C16	SHDA_I2C	H7	VSS	M16	VSS	U7	VSS
C17	SCL_I2C	H8	VSS	M17	VSS	U8	PETP[0]
C18	I2C_ADDR[0]	H9	VSS	M18	VSS	U9	PETP[1]
D1	GPIO[4]	H10	VSS	N1	VSS	U10	REFCLKP
D2	GPIO[3]	H11	VSS	N2	VSS	U11	PETP[2]
D3	GPIO1]	H12	VSS	N3	VSS	U12	PETP[3]

PI7C9X2G1616PR Document Number DS40340 Rev 7-2 Page 24 of 198 www.diodes.com

PIN	NAME	PIN	NAME	PIN	NAME	PIN	NAME
D4	GPIO[31]	H13	REXT[1]	N4	VSS	U13	VSS
D5	GPIO[30]	H14	PERN[6]	N5	VSS	U14	LNKSTS[0]
D6	VSS	H15	PERP[6]	N6	VDDR	U15	LNKSTS[3]
D7	PERN[11]	H16	VSS	N7	VDDC	U16	LNKSTS[2]
D8	PERN[10]	H17	PETN[6]	N8	VDDC	U17	TESTMODE[3]
D9	REXT_GND[2]	H18	PETP[6]	N9	VSS	U18	VSS
D10	PERN[9]	J1	PETP[13]	N10	AVDDH	V1	VSS
D11	PERN[8]	J2	PETN[13]	N11	REXT[0]	V2	VSS
D12	VSS	J3	VSS	N12	VDDC	V3	VSS
D13	VSS	J4	PERP[13]	N13	VDDR	V4	GPIO[13]
D14	NC	J5	PERN[13]	N14	VSS	V5	GPIO[14]
D15	JTAG_TRST_L	J6	VSS	N15	EEDI	V6	GPIO[15]
D16	GPIO[23]	J7	VSS	N16	EEDO	V7	VSS
D17	LNKSTS[6]	J8	VSS	N17	DEBUG_SEL[0]	V8	PETN[0]
D18	LNKSTS[5]	J9	VSS	N18	NT_EN_L	V9	PETN[1]
E1	UPS_PORTSEL[3]	J10	VSS	P1	NT_PORTSEL[0]	V10	REFCLKN
E2	UPS_PORTSEL[0]	J11	VSS	P2	NT_PORTSEL[1]	V11	PETN[2]
E3	GPIO[2]	J12	VSS	P3	LNKSTS[13]	V12	PETN[3]
E4	GPIO[0]	J13	AVDDH	P4	GPIO[8]	V13	VSS
E5	LNKSTS[11]	J14	NC	P5	GPIO[9]	V14	TESTMODE[0]
E6	VSS	J15	REXT_GND[1]	P6	NT_PORTSEL[3]	V15	TESTMODE[1]
E7	PERP[11]	J16	AVDD	P7	VSS	V16	TESTMODE[2]
E8	PERP[10]	J17	NC	P8	PERP[0]	V17	VSS
E9	NC	J18	NC	P9	PERP[1]	V18	VSS

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
A	VSS	VSS	VSS	PORTCF G[1]	PORTCF G[0]	VSS	PETN [11]	PETN [10]	NC	PETN[9]	PETN[8]	VSS	lnksts [9]	NC	NC	SHPCIN T_L	SDA_ I2C	VSS	А
В	VSS	PORTCF G[2]	LNKSTS [8]	GPIO [29]	GPIO [28]	VSS	РЕТР [11]	PETP [10]	NC	PETP[9]	PETP[8]	VSS	FATAL_ ERR_L	GPIO [25]	ТСК	SHCL_ I2C	LNKSTS [4]	VSS	В
с	VSS	FAST_ MODE_ L	GPIO [26]	SERDES _MODE _EN_L	GPIO [27]	VSS	AVDD	VSS	AVDD	VSS	AVDD	VSS	PORTCF G[3]	TMS	TDO	SHDA_ I2C	SCL_ I2C	I2C_AD DR[0]	С
D	GPIO[4]	GPIO[3]	GPIO[1]	GPIO [31]	GPIO [30]	VSS	PERN [11]	PERN [10]	REXT_ GND[2]	PERN[9]	PERN[8]	VSS	VSS	NC	TRST_L	GPIO [23]	LNKSTS [6]	LNKSTS [5]	D
E	UPS_PO RTSEL [3]	UPS_PO RTSEL [0]	GPIO[2]	GPIO[0]	LNKSTS [11]	VSS	PERP [11]	PERP [10]	NC	PERP[9]	PERP[8]	VSS	LNKSTS [10]	TDI	GPIO [24]	LNKSTS [7]	I2C_AD DR[1]	I2C_AD DR[2]	E
F	NC	UPS_PO RTSEL [2]	UPS_PO RTSEL [1]	GPIO[5]	VSS	VDDR	VDDC	REXT[2]	<u>AVDDH</u>	VSS	VDDC	VDDC	VDDR	VSS	VSS	VSS	VSS	VSS	F
G	VSS	VSS	VSS	VSS	VSS	VDDC	VSS	VSS	VSS	VSS	VSS	VSS	VDDC	PERN[7]	PERP[7]	AVDD	PETN[7]	PETP[7]	G
Н	PETP [12]	PETN [12]	AVDD	PERP [12]	PERN [12]	VDDC	VSS	VSS	VSS	VSS	VSS	VSS	REXT[1]	PERN[6]	PERP[6]	VSS	PETN[6]	PETP[6]	н
J	PETP [13]	PETN [13]	VSS	PERP [13]	PERN [13]	VSS	VSS	VSS	VSS	VSS	VSS	VSS	AVDDH	NC	REXT_ GND[1]	AVDD	NC	NC	J
К	NC	NC	AVDD	REXT_ GND[3]	NC	AVDDH	VSS	VSS	VSS	VSS	VSS	VSS	VSS	PERN[5]	PERP[5]	VSS	PETN[5]	PETP[5]	к
L	PETP [14]	PETN [14]	VSS	PERP [14]	PERN [14]	REXT[3]	VSS	VSS	VSS	VSS	VSS	VSS	VDDC	PERN[4]	PERP[4]	AVDD	PETN[4]	PETP[4]	L
М	PETP [15]	PETN [15]	AVDD	PERP [15]	PERN [15]	VDDC	VSS	VSS	VSS	VSS	VSS	VSS	VDDC	VSS	VSS	VSS	VSS	VSS	М
Ν	VSS	VSS	VSS	VSS	VSS	VDDR	VDDC	VDDC	VSS	<u>AVDDH</u>	REXT[0]	VDDC	VDDR	VSS	EEDI	EEDO	DEBUG _SEL[0]	NT_EN_ L	N
Р		NT_POR TSEL[1]		GPIO[8]	GPIO[9]	NT_POR TSEL[3]	VSS	PERP[0]	PERP[1]	NC	PERP[2]	PERP[3]	VSS	GPIO [16]	GPIO [21]	NT_RES ET_L	PERST_	INTA_L	Р
R	NT_POR TSEL[2]	LNKSTS [12]	GPIO[7]	NC	NT_P2P _EN_L	GPIO [12]	VSS	PERN[0]	PERN[1]	REXT_ GND[0]	PERN[2]	PERN[3]	VSS	GPIO [19]	PLL_BY PASS_L	GPIO [20]	EECS_L	EECK	R
Т	LNKSTS [14]	LNKSTS [15]	GPIO[6]	DEBUG _SEL[1]	NC	NC	VSS	AVDD	VSS	AVDD	VSS	AVDD	VSS	LNKSTS [1]	GPIO [18]	GPIO [17]	PROBE_ MODE_ L	GPIO [22]	Т
U	VSS	GPIO [10]	TEST	SMBUS _EN_L	CFG_TI MER_E N_L	GPIO [11]	VSS	PETP[0]	PETP[1]	REFCL KP	PETP[2]	PETP[3]	VSS	LNKSTS [0]	LNKSTS [3]	LNKSTS [2]	TESTM ODE[3]	VSS	U
v	VSS	VSS	VSS	GPIO [13]	GPIO [14]	GPIO [15]	VSS	PETN[0]	PETN[1]	REFCL KN	PETN[2]	PETN[3]	VSS	TESTM ODE[0]	TESTM ODE[1]	TESTM ODE[2]	VSS	VSS	v
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	

Figure 4-1 PI7C9X2G1616PR Ball Assignment

PI7C9X2G1616PR Document Number DS40340 Rev 7-2 Page 26 of 198 www.diodes.com

5 MODE SELECTION AND PORT-LANE MAPPING

5.1 MODE SELECTION

PI7C9X2G1616PR can be configured into 16 Port-16 Lane, 13 Port-16 Lane, 10 Port-16 Lane, 7 Port-16 Lane, 4 Port-16 Lane, 9 Port-16 Lane, 6 Port-16 Lane, 3 Port-16 Lane and 2 Port-16 Lane modes by setting PORTCFG[3:0] pins.

PORTCFG[3]	PORTCFG[2]	PORTCFG[1]	PORTCFG[0]	Functional Mode
0	0	0	0	16Port-16Lane Configuration
0	0	0	1	13Port-16Lane Configuration
0	0	1	0	10Port-16Lane Configuration
0	0	1	1	7Port-16Lane Configuration ¹
0	1	0	0	4Port-16Lane Configuration
0	1	0	1	9Port-16Lane Configuration
0	1	1	0	6Port-16Lane Configuration
0	1	1	1	3Port-16Lane Configuration
1	0	0	0	2Port-16Lane Configuration
1	0	0	1	7Port-16Lane Configuration ²

Note 1:716 mode, x4 up port, two x4 down ports and four x1 down ports.

Note 2: 716 mode, x4 up port, six x2 down ports.

5.2 LANE MAPPING

The table below shows the mapping of the lanes to the transmission and receives pairs.

Lane	TX Pair	RX Pair
Lane 0	PETP[0]PETN[0]	PERP[0]PERN[0]
Lane 1	PETP[1]PETN[1]	PERP[1]PERN[1]
Lane 2	PTTP[2]PETN[2]	PERP[2]PERN[2]
Lane 3	PETP[3]PETN[3]	PERP[3]PERN[3]
Lane 4	PETP[4]PETN[4]	PERP[4]PERN[4]
Lane 5	PTTP[5]PETN[5]	PERP[5]PERN[5]
Lane 6	PETP[6]PETN[6]	PERP[6]PERN[6]
Lane 7	PETP[7]PETN[7]	PERP[7]PERN[7]
Lane 8	PETP[8]PETN[8]	PERP[8]PERN[8]
Lane 9	PETP[9]PETN[9]	PERP[9]PERN[9]
Lane 10	PETP[10]PETN[10]	PERP[10]PERN[10]
Lane 11	PETP[11]PETN[11]	PERP[11]PERN[11]
Lane 12	PETP[12]PETN[12]	PERP[12]PERN[12]
Lane 13	PETP[13]PETN[13]	PERP[13]PERN[13]
Lane 14	PETP[14]PETN[14]	PERP[14]PERN[14]
Lane 15	PETP[15]PETN[15]	PERP[15]PERN[15]

5.3 PORT-LANE MAPPING

The table below shows the mapping of the lanes to ports in different functional modes via UPS_PORTSEL[3:0] settings.

UDS DODTSEL (2.0) - 0	Functional Mode									
$UPS_PORTSEL[3:0] = 0$	1616	1316	1016	716	416	916	616	316	216	716*
Lane 0	P0	PO	PO	P0	P0	P0	P0	PO	P0	P0
Lane 1	P4	PO	PO	P0	P0	P0	P0	PO	P0	P0
Lane 2	P6	PO	PO	P0	P0	P0	P0	PO	P0	P0
Lane 3	P8	P0	P0	P0	P0	P0	P0	P0	P0	P0
Lane 4	P2	P2	P2	P2	P2	P0	P0	P0	P0	P2

PI7C9X2G1616PR Document Number DS40340 Rev 7-2 Page 27 of 198 www.diodes.com

UPS PORTSEL[3:0] = 0	Functional Mode									
$UFS_FORTSEL[5:0] = 0$	1616	1316	1016	716	416	916	616	316	216	716*
Lane 5	P10	P10	P10	P2	P2	P0	P0	P0	P0	P2
Lane 6	P12	P12	P12	P2	P2	P0	P0	PO	P0	P7
Lane 7	P14	P14	P14	P2	P2	P0	P0	P0	P0	P7
Lane 8	P1	P1	P1	P1	P1	P1	P1	P1	P1	P1
Lane 9	P5	P5	P1	P1	P1	P5	P1	P1	P1	P1
Lane 10	P7	P7	P1	P1	P1	P7	P1	P1	P1	P8
Lane 11	P9	P9	P1	P1	P1	P9	P1	P1	P1	P8
Lane 12	P3	P3	P3	P3	P3	P3	P3	P3	P1	P3
Lane 13	P11	P11	P11	P11	P3	P11	P11	P3	P1	P3
Lane 14	P13	P13	P13	P13	P3	P13	P13	P3	P1	P9
Lane 15	P15	P15	P15	P15	P3	P15	P15	P3	P1	P9

Notes:

1) P0: upstream port

2) P1~P15: downstream ports
 3) Only 16Port-16Lane, 10Port-16Lane, 7Port-16Lane, 4Port-16Lane and 2Port-16Lane modes support up port selection function.

The table below shows all acceptable values of UPS PORTSEL[3:0] and NT PORTSEL[3:0] in different functional mode.

Acceptable Values	UPS_PORTSEL[3:0]	NT_PORTSEL[3:0]
1616 Mode	0~15 are allowed	0~15 are allowed
1316 Mode	0 is allowed	1~15 are allowed
1016 Mode	0 and 1 are allowed	0 and 1 are allowed
716 Mode	0~2 are allowed	0~2 are allowed
416 Mode	0~3 are allowed	0~3 are allowed
916 Mode	0 is allowed	1,3,5,7,9,11,13 and 15 are allowed
616 Mode	0 is allowed	1 is allowed
316 Mode	0 is allowed	1 and 3 are allowed
216 Mode	0 and 1 are allowed	0 and 1 are allowed
Notos:		

Notes:

1) Upstream port is on P0, and NT port is on P1 if NT mode is enabled.

2) It is forbidden that NT PORTSEL and UPS PORTSEL have the same values.

2) It is follower that N1_FORTSEL and OFS_FORTSEL have the same values.
3) For example, in 1616 mode, by default, Port 0 is mapped to Lane 0 and Port 4 is mapped to Lane 1. When UPS_PORTSEL is set to 4, Port 0 will be changed to map to Lane 1 and Port 4 be changed to map to Lane 0.
4) For example, in 1616 mode, by default, Port 1 is NT port and mapped to Lane 8 if NT mode is enabled, and Port 8 is mapped to Lane 3. When UPS_PORTSEL is set to 4 and NT_PORTSEL is set to 8,

Port 0 will be changed to map to Lane 1 (Up port)

Port 4 will be changed to map to Lane 0

Port 1 will be changed to map to Lane 3 (NT port)

Port 8 will be changed to map to Lane 8

6 FUNCTIONAL DESCRIPTION

Multiple virtual PCI-to-PCI Bridges (VPPB), connected by a virtual PCI bus, reside in the Switch. Each VPPB contains the complete PCIe architecture layers that consist of the physical, data link, and transaction layer. The packets entering the Switch via one of VPPBs are first converted from serial bit-stream into parallel bus signals in physical layer, stripped off the link-related header by data link layer, and then relayed up to the transaction layer to extract out the transaction header. According to the address or ID embedded in the transaction header, the entire transaction packets are forwarded to the destination VPPB for formatting as a serial-type PCIe packet through the transmit circuits in the data link layer and physical layer. The following sections describe these function elements for processing PCIe packets within the Switch.

6.1 PHYSICAL LAYER CIRCUIT

The physical layer circuit design is based on the PHY Interface for PCI Express Architecture (PIPE). It contains Physical Media Attachment (PMA) and Physical Coding Sub-layer (PCS) blocks. PMA includes Serializer/ Deserializer (SERDES), PLL¹, Clock Recovery module, receiver detection circuits, beacon transmitter, electrical idle detector, and input/output buffers. PCS consists of framer, 8B/10B encoder/decoder, receiver elastic buffer, and PIPE PHY control/status circuitries. To provide the flexibility for port configuration, each lane has its own control and status signals for MAC to access individually. The main functions of physical layer circuits include the conversion between serial-link and parallel bus, provision of clock source for the Switch, resolving clock difference in receiver end, and detection of physical layer errors.

In order to meet the needs of different application, the drive amplitude, de-emphasis and equalization of each transmitting channels can be adjusted using EEPROM, SMBUS or I2C individually. De-emphasis of -3.5 db is implemented by the transmitters when full swing signaling is used, while an offset can be individually applied to each channel.

6.1.1 RECEIVER DETECTION

The physical layer circuits implement receiver detection, which detects the presence of an attached 50 ohm to ground termination as per PCI Express Specification. The detect circuits determine if the voltage levels of the receiver have crossed the internal threshold after a configurable time determined by the Receiver Detection Threshold field in the PHY Parameter 2 Register (offset 858h, bit[6:4]) as listed in Table 6-1, which can be configured by EEPROM, SMBUS or I2C settings.

Receiver Detection Threshold	Threshold
000	1.0 us
001	2.0 us
010	4.0 us (Recommended)
011	5.0 us
100	7.0 us
101	Reserved
110	Reserved
111	Reserved

Table 6-1 Receiver Detection Threshold Settings

¹ Multiple lanes could share the PLL.

6.1.2 RECEIVER SIGNAL DETECTION

Receiver signal idling is detected with levels above a programmable threshold specified by Receiver Signal Detect field in the PHY Parameter 2 Register (offset 858h, bit[21:20]) as listed in Table 6-2, and can be configured on a per-port basis via EEPROM, SMBUS or I2C settings.

Table 6-2 Receiver Signal Detect Threshold

Receiver Signal Detect	Min (mV ppd)	Max (mV ppd)
00	50	150
01 (Recommended)	65	175
10	75	200
11	120	240

6.1.3 RECEIVER EQUALIZATION

The receiver implements programmable equalizer via the Receiver Equalization field in the PHY Parameter 2 Register (offset 858h, bit[25:22] and bit[29:26]) as listed in Table 6-3, which can be configured on a per-port basis via EEPROM, SMBUS or I2C settings.

Table 6-3 Receiver Equalization Settings

Receiver Equalization	Equalization
0000 (Recommended)	Off
0010	Low
0110	Medium
1110	High

6.1.4 TRANSMITTER SWING

The PCI Express transmitters support implementations of both full voltage swing and half (low) voltage swing. In full swing signaling mode, the transmitters implement de-emphasis, while in half swing mode, the transmitters do not. The Transmitter Swing field in the PHY Parameter 2 Register (offset 858h, bit[30]) is used for the selection of full swing signaling or half swing signaling, which can be configured on a per-port basis via EEPROM, SMBUS or I2C settings.

Transmitter Swing	Mode	De-emphasis
0	Full Voltage Swing	Implemented
1	Half Voltage Swing	Not implemented

6.1.5 DRIVE AMPLITUDE AND DE-EMPHASIS SETTINGS

Depending on the operation condition (voltage swing and de-emphasis condition), one of the Drive Amplitude Base Level fields in the PHY Parameter 0 Register (offset 8B0h) and one of the Drive De-Emphasis Base Level fields in the PHY Parameter 1 Register (offset 854h) are active for configuration of the amplitude and de-emphasis.

In addition, optional offset values can be added to the drive amplitude and drive de-emphasis on a per-port basis via EEPROM settings. The final drive amplitude and drive de-emphasis are the summation of the base level value and the offset value. The offset value for drive amplitude is 25 mV pd, and 6.25 mV pd for drive de-emphasis.

PI7C9X2G1616PR Document Number DS40340 Rev 7-2 Page 30 of 198 www.diodes.com

The driver output waveform is the synthesis of amplitude and de-emphasis as shown in Figure 6-1. The driver amplitude without de-emphasis is specified as a peak differential voltage level (mVpd), and the driver de-emphasis modifies the driver amplitude.

Figure 6-1 Driver Output Waveform

6.1.6 DRIVE AMPLITUDE

Only one of the Drive Amplitude Level field in the PHY Parameter 0 Register (offset 8B0h, bit[20:16], bit[25:21] and bit[30:26]) listed in Table 6-5 is active depending on the de-emphasis and swing condition. The settings and the corresponding values of the amplitude level are listed in Table 6-6, which can be configured by EEPROM, SMBUS or I2C settings.

Table 6-5 Drive Amplitude Base Level Registers

Active Register	De-Emphasis Condition	Swing Condition
Drive Amplitude Level (3P5 Nom)	-3.5 db	Full
Drive Amplitude Level (6P0 Nom)	-6.0 db	Full
Drive Amplitude Level (Half)	N/A	Half

Table 6-6 Drive Amplitude Base Level Settings

Setting	Amplitude (mV pd)	Setting	Amplitude (mV pd)	Setting	Amplitude (mV pd)
00000	0	00111	175	01110	350
00001	25	01000	200	01111	375
00010	50	01001	225	10000	400
00011	75	01010	250	10001	425
00100	100	01011	275	10010	450
00101	125	01100	300	10011	475
00110	150	01101	325	Others	Reserved

Note:

1. Nominal levels. Actual levels will vary with temperature, voltage and board effects.

2. The maximum nominal amplitude of the output driver is 475 mV pd. Combined values of driver amplitude and de-emphasis greater than 475 mV pd should be avoided.

3. At higher amplitudes, actual swings will be less than the theoretical value due to process variations and environment factors, such as voltage overhead compression, package losses, board losses, and other effects.

6.1.7 DRIVE DE-EMPHASIS

The Drive De-Emphasis Level field in the PHY Parameter 1 Register (offset 854h, bit[20:16], bit[25:21] and bit[30:26]) listed in Table 6-7 controls the de-emphasis base level. The settings and the corresponding values of the de-emphasis level are listed in Table 6-8, which can be configured by EEPROM, SMBUS or I2C settings.

Table 6-7 Drive De-Emphasis Base Level Register

Register	De-Emphasis Condition
C_EMP_POST_GEN1_3P5_NOM	-3.5 db
C_EMP_POST_GEN2_3P5_NOM	-3.5 db
C_EMP_POST_GEN2_6P0_NOM	-6.0 db

Setting	De-Emphasis	Setting	De-Emphasis	Setting	De-Emphasis
	(mV pd)		(mV pd)		(mV pd)
00000	0.0	01011	68.75	10110	137.5
00001	6.25	01100	75.0	10111	143.75
00010	12.5	01101	81.25	11000	150.0
00011	18.75	01110	87.5	11001	156.25
00100	25.0	01111	93.75	11010	162.5
00101	31.25	10000	100.0	11011	168.75
00110	37.5	10001	106.25	11100	175.0
00111	43.75	10010	112.5	11101	181.25
01000	50.0	10011	118.75	11110	187.5
01001	56.25	10100	125.0	11111	194.75
01010	62.5	10101	131.25	-	-

Table 6-8 Drive De-Emphasis Base Level Settings

Note:

1. Nominal levels. Actual levels will vary with temperature, voltage and board effects.

2. The maximum nominal amplitude of the output driver is 475 mV pd. Combined values of driver amplitude and de-emphasis greater than 475 mV pd should be avoided.

3. At higher amplitudes, actual swings will be less than the theoretical value due to process variations and environment factors, such as voltage overhead compression, package losses, board losses, and other effects.

6.1.8 TRANSMITTER ELECTRICAL IDLE LATENCY

After the last character of the PCI Express transmission, the output current is reduced, and a differential voltage of less than 20 mV with common mode of VTX-CM-DC is established within 20 UI. This delay time is programmable via Transmitter PHY Latency field in the PHY Parameter 2 Register (offset 858h, bit[3:0]), which can be configured by EEPROM, SMBUS or I2C settings.

6.2 DATA LINK LAYER (DLL)

The Data Link Layer (DLL) provides a reliable data transmission between two PCI Express points. An ACK/NACK protocol is employed to guarantee the integrity of the packets delivered. Each Transaction Layer Packet (TLP) is protected by a 32-bit LCRC for error detection. The DLL receiver performs LCRC calculation to determine if the incoming packet is corrupted in the serial link. If an LCRC error is found, the DLL transmitter would issue a NACK data link layer packet (DLLP) to the opposite end to request a re-transmission, otherwise an ACK DLLP would be sent out to acknowledge on reception of a good TLP.

In the transmitter, a retry buffer is implemented to store the transmitted TLPs whose corresponding ACK/NACK DLLP have not been received yet. When an ACK is received, the TLPs with sequence number equals to and smaller than that carried in the ACK would be flushed out from the buffer. If a NACK is received or no ACK/NACK is returned from the link partner after the replay timer expires, then a replay mechanism built in DLL transmitter is

Page 32 of 198 www.diodes.com

triggered to re-transmit the corresponding packet that receives NACK or time-out and any other TLP transmitted after that packet.

Meanwhile, the DLL is also responsible for the initialization, updating, and monitoring of the flow-control credit. All of the flow control information is carried by DLLP to the other end of the link. Unlike TLP, DLLP is guarded by 16-bit CRC to detect if data corruption occurs.

In addition, the Media Access Control (MAC) block, which is consisted of LTSSM, multiple lanes de-skew, scrambler/de-scrambler, clock correction from inserting skip order-set, and PIPE-related control/status circuits, is implemented to interface physical layer with data link layer.

6.3 TRANSACTION LAYER RECEIVE BLOCK (TLP DECAPSULATION)

The receiving end of the transaction layer performs header information retrieval and TC/VC mapping (see section 5.5), and it validates the correctness of the transaction type and format. If the TLP is found to contain an illegal header or the indicated packet length mismatches with the actual packet length, then a Malformed TLP is reported as an error associated with the receiving port. To ensure end-to-end data integrity, a 32-bit ECRC is checked against the TLP at the receiver if the digest bit is set in header.

6.4 ROUTING

The transaction layer implements three types of routing protocols: ID-based, address-based, and implicit routing. For configuration reads, configuration writes, transaction completion, and user-defined messages, the packets are routed by their destination ID constituted of bus number, device number, and function number. Address routing is employed to forward I/O or memory transactions to the destination port, which is located within the address range indicated by the address field carried in the packet header. The packet header indicates the packet types including memory read, memory write, IO read, IO write, Message Signaling Interrupt (MSI) and user-defined message. Implicit routing is mainly used to forward system message transactions such as virtual interrupt line, power management, and so on. The message type embedded in the packet header determines the routing mechanism.

If the incoming packet cannot be forwarded to any other port due to a miss to hit the defined address range or targeted ID, this is considered as Unsupported Request (UR) packet, which is similar to a master abort event in PCI protocol.

6.5 TC/VC MAPPING

The 3-bit TC field defined in the header identifies the traffic class of the incoming packets. To enable the differential service, a TC/VC mapping table at destination port that is pre-programmed by system software or EEPROM pre-load is utilized to cast the TC labeled packets into the desired virtual channel. Note that TC0 traffic is mapped into VC0 channel by default. After the TC/VC mapping, the receive block dispatches the incoming request, completion, or data into the appropriate VC0 and VC1 queues.

6.6 QUEUE

In PCI Express, it defines six different packet types to represent request, completion, and data. They are respectively Posted Request Header (PH), Posted Request Data payload (PD), Non-Posted Request Header (NPH), Non-Posted Data Payload (NPD), Completion Header (CPLH) and Completion Data payload (CPLD). Each packet with different type would be put into a separate queue in order to facilitate the following ordering processor. Since NPD usually contains one DW, it can be merged with the corresponding NPH into a common queue named NPHD.

PI7C9X2G1616PR Document Number DS40340 Rev 7-2 Page 33 of 198 www.diodes.com

Except NPHD, each virtual channel (VC0 or VC1) has its own corresponding packet header and data queue. When only VC0 is needed in some applications, VC1 can be disabled and its resources assigned to VC0 by asserting VC1 EN (Virtual Channel 1 Enable) to low.

6.6.1 PH

PH queue provides TLP header spaces for posted memory writes and various message request headers. Each header space occupies sixteen bytes to accommodate 3 DW or 4 DW headers. There are two PH queues for VC0 and VC1 respectively.

6.6.2 PD

PD queue is used for storing posted request data. If the received TLP is of the posted request type and is determined to have payload coming with the header, the payload data would be put into PD queue. There are two PD queues for VC0 and VC1 respectively.

6.6.3 NPHD

NPHD queue provides TLP header spaces for non-posted request packets, which include memory read, IO read, IO write, configuration read, and configuration write. Each header space takes twenty bytes to accommodate a 3-DW header, s 4-DW header, s 3-WD header with 1-DW data, and a 4-DW header with 1-DW data. There is only one NPHD queue for VC0, since non-posted request cannot be mapped into VC1.

6.6.4 CPLH

CPLH queue provides TLP header space for completion packets. Each header space takes twelve bytes to accommodate a 3-DW header. Please note that there are no 4-DW completion headers. There are two CPLH queues for VC0 and VC1 respectively.

6.6.5 CPLD

CPLD queue is used for storing completion data. If the received TLP is of the completion type and is determined to have payload coming with the header, the payload data would be put into CPLD queue. There are two CPLD queues for VC0 and VC1 respectively.

6.7 TRANSACTION ORDERING

Within a VPPB, a set of ordering rules is defined to regulate the transactions on the PCI Express Switch including Memory, IO, Configuration and Messages, in order to avoid deadlocks and to support the Producer-Consumer model. The ordering rules defined in table 6-9 apply within a single Traffic Class (TC). There is no ordering requirement among transactions within different TC labels. Since the transactions with the same TC label are not allowed to map into different virtual channels, it implies no ordering relationship between the traffic in VC0 and VC1.

Page 34 of 198 www.diodes.com

Row Pass Column	Posted	Read	Non-posted Write	Read	Non-posted Write
	Request	Request	Request	Completion	Completion
Posted Request	Yes/No ¹	Yes ⁵	Yes ⁵	Yes ⁵	Yes ⁵
Read Request	No ²	Yes	Yes	Yes	Yes
Non-posted Write Request	No ²	Yes	Yes	Yes	Yes
Read Completion	Yes/No ³	Yes	Yes	Yes	Yes
Non-Posted Write	Yes ⁴	Yes	Yes	Yes	Yes
Completion					

1. When the Relaxed Ordering Attribute bit is cleared, the Posted Request transactions including memory write and message request must complete on the egress bus of VPPB in the order in which they are received on the ingress bus of VPPB. If the Relaxed Ordering Attribute bit is set, the Posted Request is permitted to pass over other Posted Requests occurring before it.

2. A Read Request transmitting in the same direction as a previously queued Posted Request transaction must push the posted write data ahead of it. The Posted Request transaction must complete on the egress bus before the Read Request can be attempted on the egress bus. The Read transaction can go to the same location as the Posted data. Therefore, if the Read transaction were to pass the Posted transaction, it would return stale data.

3. When the Relaxed Ordering Attribute bit is cleared, a Read completion must "pull" ahead of previously queued posted data transmitting in the same direction. In this case, the read data transmits in the same direction as the posted data, and the requestor of the read transaction is on the same side of the VPPB as the completer of the posted transaction. The posted transaction must deliver to the completer before the read data is returned to the requestor. If the Relaxed Ordering Attribute bit is set, then a read completion is permitted to pass a previously queued Memory Write or Message Request.

4. Non-Posted Write Completions are permitted to pass a previous Memory Write or Message Request transaction. Such transactions are actually transmitting in the opposite directions and hence have no ordering relationship.

5. Posted Request transactions must be given opportunities to pass Non-posted Read and Write Requests as well as Completions. Otherwise, deadlocks may occur when some older bridges, which do not support delayed transactions are mixed with PCIe Switch in the same system. A fairness algorithm is used to arbitrate between the Posted Write queue and the Non-posted transaction queue

6.8 PORT ARBITRATION

Among multiple ingress ports, the port arbitration built in the egress port determines which incoming packets to be forwarded to the output port. The arbitration algorithm contains hardware fixed Round Robin, 128-phase Weighted Round-Robin and programmable 128-phase time-based WRR. The port arbitration is held within the same VC channel. It means that each port has two port arbitration circuitries for VC0 and VC1 respectively. At the upstream ports, in addition to the inter-port packets, the intra-port packet such as configurations completion would also join the arbitration loop to get the service from Virtual Channel 0.

6.9 VC ARBITRATION

After port arbitration, VC arbitration is executed among different VC channels within the same source. Three arbitration algorithms are provided to choose the appropriate VC: Strict Priority, Round Robin or Weighted Round Robin.

6.10 FLOW CONTROL

PCI Express employs Credit-Based Flow Control mechanism to make buffer utilization more efficient. The transaction layer transmitter ensures that it does not transmit a TLP to an opposite receiver unless the receiver has enough buffer space to accept the TLP. The transaction layer receiver has the responsibility to advertise the free buffer space to an opposite transmitter to avoid packet stale. In this Switch, each port has its own separate queues for different traffic types and the credits are sent to data link layer on the fly. The data link layer compares the current available credits with the monitored ones and reports the updated credit to the counterpart. If no new credit is acquired, the credit reported is scheduled for every 30 us to prevent the link from entering retrain. On the other hand, the receiver at each egress port gets the usable credits from the opposite end in a link. The output port broadcasts them to all the other ingress ports to get packet transmission.

6.11 TRANSATION LAYER TRANSMIT BLOCK (TLP ENCAPSULATION)

The transmit portion of transaction layer performs the following functions. They construct the all types of forwarded TLP generated from VC arbiter, respond with the completion packets when the local resource (i.e. configuration register) is accessed, and regenerate the message that terminates at receiver to RC if acting as an upstream port.

6.12 Access Control Service

Traditionally, the packet routing between the peer-to-peer downstream ports is determined by either the address or ID field embedded in the packet header. ACS provides a mechanism for customer to selectively control access between PCI Express Endpoints attached to the downstream ports of packet switch. If ACS is enabled in the ingress port, the peer-to-peer packet forwarding will follow the rule sets of ACS rather than the destination ID or address. ACS is implemented as a set of capabilities and control registers in the associated hardware component. It brings the following benefits such as preventing the silent data corruption presented in Requests from being incorrectly routed to a peer Endpoint, validating every Request transaction between two downstream components and enabling direct routing of peer-to-peer Memory Requests whose addresses have been Translated when ATS system is being used.

6.13 Non-Transparent Bridging (NT Mode Only)

Non-Transparent Bridging function translates Memory Address of the processor, and allows the process to appear as an end-point. This function allows two separate Hosts to be connected together in a multi-host system, such as a multi-processor server or a control module with a built-in processor. Transactions in Base Address Space between two independent Address Spaces are translated and forwarded to each other.

When NT mode is enabled, one of the ports of the packet switch can be programmed to enter NT mode. While the port is in NT mode, the packet switch allows the isolation of address spaces, and the packet switch acts as an endpoint to the Host. The packet switch in NT mode terminates Type 0 Configuration Register packet. All incoming and outgoing memory-type transaction addresses are translated and forwarded from one domain to another using Base Address Registers (BARs). And the routing ID of the transaction packet is also translated between two host domains.

Registers that are used to notify the system of interrupts are called Interrupts Request (IRQ) registers. Messaging between processor domains achieved through the use of Scratchpad Registers, which both processors from separate process domains can access.

Only one port of the packet switch can be configured to operate in NT mode. NT mode is enabled and disabled by toggling the NT_ENABLE_L strapping pin.

Page 36 of 198 www.diodes.com

6.13.1 Device Type Identification

The packet switch uses the Class Code Register (Offset 08h) in PCI Configuration Space Registers to identify its own Bridge Class type, and uses the PCI Express Capability register's Device/Port Type field (Offset 68h) to indicate the device/port type.

In Transparent Mode, the Class Code register returns the value 060400h to identify the packet switch as a PCI-to-PCI Bridge. The Device/Port Type field of the PCI Express Capability register (Offset 68h, bits [23:30]) returns 5h at upstream port and 6h at downstream port.

In Non-Transparent Mode, the Class Code register returns the value 068000h to identify the packet switch as an Other Bridge. The Device/Port Type field of the PCI Express Capability register returns 0h to indicate that it is a PCI Express end point device.

6.13.2 Intelligent Adaptor

The packet switch supports intelligent adaptor model in NT mode for multi-host systems. The model is implemented in PCI Express specification as in the established PCI specification. The NT bridge implements two Type 0 CSR Headers: Link Interface and Virtual Interface. NT Port's Link Interface is connected to the System Host, and the Virtual Interface is connected to the internal virtual PCI bus.

In a multi-host system, the Local Host controls all Transparent Port Type 1 and NT Port Virtual Interface Type 0 functions, and the System Host controls only the NT Port Link Interface Type 0 function. The Address Translation between Link Interface and Virtual Interface routes Packets across the Host Domains.

Figure 6-2 Intelligent Adaptor Architecture

6.13.3 Interrupts Request (IRQ) Registers

The Interrupts Request (IRQ) register sets are used to provide interrupt mechanism across the Non-Transparent port of the packet switch. The registers provide 16-bit interrupts signals in Virtual Interface and Link Interfaces through the following registers.

PI7C9X2G1616PR Document Number DS40340 Rev 7-2 Page 37 of 198 www.diodes.com

- Virtual Interface IRQ Set register (Offset C4Ch)
- Virtual Interface IRQ Clear register (Offset C50h)
- Virtual Interface IRQ Mask Set register (Offset C54h)
- Virtual Interface IRQ Mask Clear register (Offset C58h)
- Link Interface IRQ Set register (Offset C5Ch)
- Link Interface IRQ Clear register (Offset C60h)
- Link Interface IRQ Mask Set register (Offset C64h)
- Link Interface IRQ Mask Clear register (Offset C68h)

User software sets one or more bits of the Virtual or Link Interface IRQ Set register to signal that an interrupt is asserted on the Virtual or Link Interface of the Non-Transparent port. When bits of the IRQ Set register are set, the corresponding Mask Set register bits are cleared at the same time. User software sets one or more bits of the Virtual or Link Interface IRQ Clear register to signal that an interrupt is de-asserted on the Virtual or Link Interface of the Non-Transparent port. When bits of the IRQ Clear register are set, the corresponding Mask Clear register bits are cleared at the same time are set, the corresponding Mask Clear register bits are cleared at the same time.

6.13.4 Scratchpad Registers

Hosts from both side of the Non-Transparent port of the packet switch are able to exchange messages through the implementation of the Scratchpad registers. These registers are readable and writable from both sides, and they provide a mechanism for inter-host communication of Control and Status information, or can be used as generic RW registers. Eight 32-bit register blocks (offset C6Ch to C8Bh) are allocated for Scratchpad registers.

6.13.5 NT Base Address Registers

The Base Address registers (BARs) are implemented to perform address translation in Memory-Map access. One set of BARs is used for Virtual Interface and one set of BARs for Link Interface. The BARs sets up the window size and type and defines the translation address.

BAR0 and BAR1 enable and disable and set up the Memory-Map access to NT-Port Configuration register space. BAR2, BAR3, BAR4, and BAR5 enable and disable and set up the access to other side of the NT-Port.

The BARs is enabled and disabled as indicated in the Memory Space Indicator bits. 32-bit and 64-bit memory window space is supported as indicated in the Memory Map Type bits. The Memory Base Address for memory-mapping is configured in the Base Address bits.

6.13.6 Routing ID Translation

The header of transaction layer packet contains Requester ID and/or Completer ID. The Requester/Completer ID is made up by bus number, device number and function number, and is also called the Routing ID. The routing ID represents an unique resource allocated to the device in a host domain. Since each host in different domain assigns routing ID independently, Routing ID translation is necessary for packets that transverse between link and virtual interface. The Virtual Port Registers (Offset D94h-DF3h) are implemented to support the translation of Routing ID between host domains using lookup tables.

Page 38 of 198 www.diodes.com

6.14 Integrated DMA Engine

The packet switch has built-in Direct Memory Access (DMA) engine to transfer data between two memory locations. Two DMA engines are implemented for each of the upstream port (DMA_UP) and Non-Transparent port (DMA_NT). Each DMA engine supports two channels: Channel 0 and Channel 1.

Data transfer in the main CPU Memory Address domain is managed by DMA_UP engine while DMA_NT assists DMA_UP to manage data transfer across main and slave CPU Memory Address domains. Then DMA engines support both 32-bit and 64-bit Memory Address domains.

The DMA engine uses a 20-byte descriptor in 64-bit address domain to hold 64-bit source address and 64-bit destination address, 24-bit transfer size and 8-bit control/status bits. The DMA engine uses a 12-byte descriptor in 32-bit address domain to hold 32-bit source address and 32-bit destination address, 24-bit transfer size and 8-bit control/status bits.

The DMA engine supports prefetching function. Each channel of the DMA_UP and DMA_NT engines is capable of prefetching up to eight descriptors in 64-bit addressing mode and up to twelve descriptors in 32-bit addressing mode. Total of 128 descriptors are supported and can be shared in flexible configurations. Both the hardware and software have simultaneous access to the built-in Descriptor Ownership register simultaneously to prevent hardware descriptor status write-back.

Figure 6-3 Block Diagram of Integrated DMA Engines in Packet Switch

The features of the packet switch's DMA engines are listed below:

- Two DMA engines are implemented for upstream port (DMA_UP) and non-transparent port (DMA_NT)
- Each DMA engine supports two channels: Channel 0 and Channel 1

PI7C9X2G1616PR Document Number DS40340 Rev 7-2 Page 39 of 198 www.diodes.com

- DMA UP manages the data transfer in main CPU address domain
- DMA NT assists DMA UP to manage data transfer across main and slave CPU address domains
- Supports 64-bit addressing domain
- 20-byte descriptor in 64-bit address domain
 - Holds 64-bit source address and 64-bit destination address
 - Holds 24-bit transfer size and 8-bit control/status bits
- 12-byte descriptor in 32-bit address domain
 - Holds 32-bit source address and 32-bit destination address
 - Holds 24-bit transfer size and 8-bit control/status bits
- Each channel of DMA_UP and DMA_NT engines is capable of prefetching
 - Up to 8 descriptors in 64-bit addressing mode
 - Up to 12 descriptors in 32-bit addressing mode
- Supports total of 128 descriptors shared by two channels in flexible configurations

Built-in Descriptors Ownership register is accessed by hardware and software simultaneously to prevent hardware descriptor status write-back.

6.14.1 Data Structure

The DMA descriptors reside in system memory, and they are structured in a ring configuration (see Figure below). The DMA engine fetches the descriptor pointer which points to the next available descriptor. The pointer in DMA engine is continuously advanced. When the last descriptor is reached, the pointer automatically jumps back to the first descriptor in the ring structure.

Figure 6-4 DMA Descriptor Ring Structure

DMA_UP engine's descriptor holds two data pointers, which point to the addresses of source and destination memory blocks. The data are transferred from source to destination memory location as indicated by the addresses indicated by data pointers in the descriptors. In contract, DMA_NT engine holds only one data pointer, which points to the source or destination location memory block, depending on the DMA traffic direction.

The tables below define the descriptor's data structure in 32-bit and 64-bit systems.

PI7C9X2G1616PR Document Number DS40340 Rev 7-2 Page 40 of 198 www.diodes.com

Figure 6-5 64-bit Descriptor Data Structure

Figure 6-6 32-bit Descriptor Data Structure

Table 6-10 64-bit Descript	tor Data Structure
----------------------------	--------------------

	Bit	Name	Description
	7	EOT	End of Transfer
	6	INT	Issue Interrupt when DMA
			done
	5	Reserved	Reserved bit
	4	SAV	Source Address Valid
	3	DAV	Destination Address Valid
	2:0	Reserved	Reserved bits
Note: S	Source add	ress bit 1-0 must zer	0

Table 6-11 32-bit Descriptor Data Structure

Bit	Name	Description
7	EOT	End of Transfer
6	INT	Issue Interrupt when DMA done
5	Reserved	Reserved bit
4	SAV	Source Address Valid
3	DAV	Destination Address Valid
2.0	Reserved	Reserved bits

Note: Source address bit 1-0 must zero

6.14.2 Traffic Models

The primary purpose of the DMA engine is to alleviate the workload of CPU to transfer of data from one memory location to another. The DMA engine of the Packet Switch supports the following three data transfer models.

Device-to-Processor Traffic Model

If DMA engines are not implemented, the Device-to-Processor Traffic requires a host CPU to issue read/write commands, transfer data, and process status information reported by the downstream devices. When DMA engines are implemented, they execute the process of data transfer and offload the CPU's tasks. In this traffic model, only the DMA_UP engine is enabled. The source address points to the downstream device's memory location and the destination address points to the main memory location. The figure below illustrates the Device-to-Processor Traffic model and the associated descriptor's data structure.

Figure 6-7 Status Information Collection Traffic Model

Peer-to-Peer Traffic Model

In Peer-to-Peer Traffic model, data transfer takes place between the downstream ports. Only the DMA_UP engine is enabled in this traffic model. The DMA_UP engine initiates and executes data transfer between two devices connected to the downstream ports without CPU's intervention. The source address in the description points to one device's memory location and the destination address points to another device's. The data are read from the source device and written to the destination device directly. The figure below illustrates the Peer-to-Peer Traffic model and the associated descriptor's data structure.

Page 42 of 198 www.diodes.com

Figure 6-8 Peer-to-Peer Transfer Traffic Model

Inter-processor / Downstream Port to NT Port Traffic Model

In a multi-process application, data is routed from a downstream port to a NT port. The data traffic across processor domains typically consumes a large amount of CPU resources if DMA engines are not implemented. The CPU is responsible for issuing and executing read and write commands to transfer data. The DMA engine in the packet switch is implemented to offload the workload of CPU and move data from one processor domain to another on the behalf of CPU. In inter-processor traffic model, both of the DMA_UP and DMA_NT DMA engines are enabled at the same time to maintain their own descriptor data structures in different memory spaces.

In this traffic model, only one of the source or destination addresses in DMA_UP descriptor is valid, depending on the direction of the traffic. If DMA_UP engine is in the process of receiving data, only the destination address is valid. If DMA_UP engine is in the process of transmitting data, only the source address is valid. The DMA_NT engine's descriptor is used only for the purpose of validating the source pointer, which points to the location of data buffer. The DMA_NT descriptor also defines the SAV and DAV bits to determine the direction of the data traffic. The figure below illustrates the Inter-processor Traffic model and the associated descriptor's data structure.

Page 43 of 198 www.diodes.com

Figure 6-9 Inter-processor / Downstream Port to NT Port Traffic Model

6.14.3 Data Transfer Sequence

DMA engine moves data from one location to another without CPU's intervention. The CPU sets up DMA descriptor and initializes the DMA, and then is freed to perform other processes until it is interrupted to check the transfer status and to refresh the data content.

A typical DMA_UP engine operation sequence and its interaction with CPU and packet switch are described below.

- 1. CPU initializes the descriptor data structure in main memory.
- 2. CPU writes all "1" to the on-
- chip descriptor ownership register to notify DMA_UP engine the availability of descriptors.
- 3. CPU starts DMA_UP engine.
- 4. DMA pre-fetches 1 to 32 descriptors.
- 5. DMA starts processing the descriptors.
- 6. DMA issues read command to get data from the source location.
- 7. Completion data (CPLD) arrives at packet switch.
- 8. Packet switch converts CPLD into Post-Write data packet.
- 9. DMA issues write command to transmit data to the destination location.
- 10. More than one iteration from step 6 to step 9 may be required to complete transfer of one descriptor depending on the PCIe max read size, PCIe max payload size and whether the 4K boundary was crossed.
- 11. After finishing transfer of descriptor, the DMA clears the corresponding descriptor bit in the ownership register and interrupts CPU if INT bit is "1".
- 12. DMA_UP engine proceeds to the next descriptor and repeats the step 5 to 11.

Page 44 of 198 www.diodes.com

- 13. CPU receives and processes interrupts, and then writes "1" to the corresponding bit of the processed descriptor in the ownership register if needed.
- 14. DMA_UP engine continuously polls the status of Channel X descriptor ownership register and pre-fetches the available descriptors depending on the setting of Channel X prefetch upper limit register.
- 15. If the EOT bit is set in the last processed descriptor, the data transfer is done. The transfer count will be updated by hardware. The count indicates the number of bytes moved in the last descriptor of a data transfer.

Note - Destination descriptor does not to set EOT. Only DMA sets EOT and updates byte count.

Both of DMA_UP and DMA_NT engines are involved to process inter-processor data transfer. The operation sequence of data moving from local CPU domain to main CPU domain and their interactions with local/main CPUs and packet switch are described below. The descriptor number and transfer size of descriptor are not necessary the same for DMA_UP and DMA_NT.

- 1. Main CPU and local CPU initialize the descriptors in main memory and local memory respectively.
- 2. Both CPUs write all "1" to their onchip descriptor ownership registers to notify DMA_UP and DMA_NT engines the availability of descriptor s
- 3. Both CPUs start their own DMA engines.
- 4. DMA_UP and DMA_NT fetch their own 1 to 32 descriptors in advance.
- 5. DMA_NT and DMA_UP begin to process their own descriptors.
- 6. DMA_NT issues read command to get data from the source location pointed by SA address in DMA_NT descriptor.
- 7. Completion data (CPLD) arrives at the NT port of packet switch.
- 8. Packet switch converts CPLD into Post-Write data packet in packet switch.
- 9. DMA issues write command to send data to the destination location pointed by DA address in DMA UP descriptor.
- 10. More than one iteration from step 6 to step 9 may be required to complete transfer of one descriptor depending on the PCIe max read size, PCIe max payload size and whether the 4K boundary was crossed.
- After finishing the transfer process of descriptor, the DMA_NT or/and DMA_UP clears the corresponding descriptor bit in the ownership register and interrupts local CPU or/and main CPU if INT bit is "1".
- 12. DMA NT or/and DMA UP proceed to their own next descriptor and repeat step 5 to 11.
- 13. Main or local CPU receives and processes interrupts, and

then writes "1" to the corresponding bit of processed descriptor in the ownership register if needed. 14. DMA_UP or DMA_NT engine continuously

- polls the status of Channel X descriptor ownership register and prefetches the available descriptors depending on the setting of Channel X prefetch upper limit register.15. If the EOT bit is set in the last processed descriptor of DMA_NT,
- the data transfer is done. The transfer count will be updated by hardware to the descriptor of DMA_UP. The count indicates the remaining bytes moved in the last descriptor of a data transfer. EOT bit will also be set by hardware to notify the software of main CPU the completion of current transfer

The operation sequence repeats through the ring of descriptors if not paused or aborted by CPU. The software is allowed to stop the DMA engine's operation. The software may stop the DMA engines to re-synchronize the event handling of software and hardware under certain conditions. The DMA transfer may be aborted for other reasons, such as when transfer of large amount of data is no longer required.

6.14.4 DMA Pause

The DMA engine can be paused by setting the "Pause" bit in the Channel X Control/Status Register. After the DMA engine is paused, the DMA engine completes the operation with the current active descriptors. After the completion of the current active descriptors, no descriptors will be processed and prefetched. The "Pause Done" bit

PI7C9X2G1616PR Document Number DS40340 Rev 7-2 Page 45 of 198 www.diodes.com

in the Channel X Control/Status register will be set, and this will trigger an interrupt to the CPU, indicating that the pause action is completed. At this point, the system software may check the descriptor's ownership status register to determine the progress of the DMA transfer. The software may clear both of the "Pause Done" and "Pause Control" bits of Chanel X Control/Status register to resume DMA operation from the paused status.

6.14.5 DMA Abort

The DMA engine can be aborted by writing "1" to the "Abort" bit in the Channel X Control/Status register. After the DMA operation is aborted, the DMA engine drops the current active descriptor, flushes out all outstanding read commands, and discards all received completion data. After DMA engine drops the active descriptor, no more descriptors are processed and prefetched. The descriptor ownership registers are reset, and the ownership of all descriptors is assigned to the software. Then, the "Abort Done" bit in the Channel X Control/Status register is set to indicate the completion of abort action. The software may examine the descriptor ownership and transfer count status registers to determine the progress of the DMA aborted transfer and the number of the bytes that were transferred. The software may clear both of the "Abort Done" and "Abort Control" bits of Chanel X Control/Status register to exit the DMA engine from Abort sate. And then the software may attempt to start a new transfer from the current descriptor pointer.

6.14.6 DMA Stop

The DMA engine can be stopped by re-setting the "Start" bit in the Channel X Control/Status register. After the DMA operation is stopped, the current pointer is set to the descriptor ring base pointer. And the DMA engine flushes out all outstanding read commands and discards all completion data that were received. The DMA engine stops processing and prefetching any descriptors. The descriptor ownership registers are reset, and the ownership of all descriptors is assigned to the software. After the DMA engine is stopped, software is free to reconfigure the channel mode, descriptor base pointer, and the number of descriptors in order to initialize new data transfers.

6.14.7 Descriptor Prefetch

The DMA engine implements the Descriptor Prefetch function to maximize the channel bandwidth usage. The Descriptor Prefetch function ensures that DMA engine never runs out of descriptors and lower the chance of having to wait for descriptors to arrive from memory in the process of data transfer. Each channel of both DMA engines can store up to 8 descriptors in 64-bit addressing system or 12 descriptors in 32-bit addressing system. The initial descriptor prefetch fills up the descriptor FIFO of each channel to reduce descriptor reading overhead. The prefetch upper limit should never exceed the descriptor ring size, or some of descriptors in descriptor ring will be fetched twice. After the first prefetch is completed, the DMA engine keeps polling the availability of descriptors, which are indicated in Channel X descriptor ownership register.

If new descriptors are found, the DMA engine will prefetch descriptors based on the setting of Channel X prefetch upper limit register. If the end of descriptor ring is reached, the DMA engine stops the read request for descriptors at the end of ring, and issues another read request, which starts at the descriptor ring base pointer.

Page 46 of 198 www.diodes.com

7 EEPROM INTERFACE AND SYSTEM MANAGEMENT/I2C BUS

The EEPROM interface consists of four pins: EECK (EEPROM clock), EEDI (EEPROM serial data input), EEDO (EEPROM serial data output) and EECS (EEPROM chip select). The Switch supports 2-, or 3-byte address SPI EEPROM parts and automatically determines the appropriate addressing mode. The EEPROM is used to initialize a number of registers before enumeration. This is accomplished after PERST_L is de-asserted, at which time the data from the EEPROM is loaded. The EEPROM interface is organized into a 16-bit base, and the Switch supplies an 8-bit EEPROM word address.

7.1 EEPROM INTERFACE

7.1.1 AUTO MODE EEPROM ACCESS

The Switch may access the EEPROM in a WORD format by utilizing the auto mode through a hardware sequencer. The EEPROM start-control, address, and read/write commands can be accessed through the configuration register. Before each access, the software should check the Autoload Status bit before issuing the next start.

7.1.2 EEPROM MODE AT RESET

During a reset, the Switch will automatically load the information/data from the EEPROM if the automatic load condition is met. The first offset in the EEPROM contains a signature. If the signature is recognized, the autoload initiates right after the reset.

During the autoload, the Bridge will read sequential words from the EEPROM and write to the appropriate registers. Before the Bridge registers can be accessed through the host, the autoload condition should be verified by reading bit [4] offset 87Ch (EEPROM Autoload Status). The host access is allowed only after the status of this bit is set to '1' which indicates that the autoload initialization sequence is complete.

7.1.3 EEPROM SPACE ADDRESS MAP

EEPROM Address	Value	Description
00h	1516h	EEPROM signature
02h	EEPROM_BYTE_SIZE	EEPROM size byte count
04h	CFG_OFFSET_ADDR	1 st Configuration Register Address
		Bit[9:0]: configuration register dword address
		Bit[15:10]: port number
06h	CFG_LOW_DATA	1 st Configuration Register Data (low word)
08h	CFG_HIGH_DATA	1 st Configuration Register Data (high word)
0Ah	CFG_OFFSET_ADDR	2 nd Configuration Register Address
0Ch	CFG_LOW_DATA	2 nd Configuration Register Data (low word)
0Eh	CFG_HIGH_DATA	2 nd Configuration Register Data (high word)
FFFFh	CFG_HIGH_DATA	Last Configuration Register Data (high word)

7.2 SMBUS INTERFACE

The Packet Switch provides the System Management Bus (SMBus), a two-wire interface through which a simple device can communicate with the rest of the system. The SMBus interface on the Packet Switch is a bi-directional slave interface. It can receive data from the SMBus master or send data to the master. The interface allows full access to the configuration registers. A SMBus master, such as the processor or other SMBus devices, can read or write to every RW configuration register (read/write register). In addition, the RO and HwInt registers (read-only and hardware initialized registers) that can be auto-loaded by the EEPROM interface can also be read and written by the SMBus interface. This feature allows increases in the system expandability and flexibility in system implementation.

Figure 7-1 SMBus Architecture Implementation

The SMBus interface on the Packet Switch consists of one SMBus clock pin (SCL_I2C), a SMBus data pin (SDA_I2C), and 3 SMBus address pins (I2C_ADDR[2:0]). The SMBus clock pin provides or receives the clock signal. The SMBus data pin facilitates the data transmission and reception. Both of the clock and data pins are bi-directional. The SMBus address pins determine the address to which the Packet Switch responds to. The SMBus address pins generate addresses according to the following table:

Table 7-1 SMBus Address Pin Configuration

BIT	SMBus Address
0	I2C_ADDR[0]
1	I2C_ADDR[1]
2	I2C_ADDR[2]
3	1
4	1
5	1
6	0

Software can change the SMBus Slave address, by programming the SMBus/I2C Control Register SMBus/I2C Device Address field.

The PI7C9X2G1616PR also supports Packet Error Checking and Packet Error Code (PEC) generation, as explained in the SMBus v2.0.

PI7C9X2G1616PR Document Number DS40340 Rev 7-2 Page 48 of 198 www.diodes.com

PI7C9X2G1616PR supports three commands:

- Block Write (command BEh) is used to write CFG registers
- Block Write (command BAh), followed by Block Read (command BDh), are used to read CFG registers
- Block Read Block Write Process Call (commands BAh, CDh) can also be used to read CFG registers

7.2.1 SMBUS BLOCK WRITE

The Block Write command is used to write to the PI7C9X2G1616PR registers. General SMBus Block Writes are illustrated in Figure 7-2 and Figure 7-3. Table 7-2 explains the elements used in Figure 7-2 and Figure 7-3.

Figure 7-2 SMBus Block Write Command Format, to Write to a PI7C9X2G1616PR Register without PEC

S	Slave Addr	Wr	А	Cmd Code = BEh	А	Byte Count = 8	А	Cmd Byte1	А	Cmd Byte 2	А	Cmd Byte 3	А
	Cmd Byte 4		Α	Data Byte 1	А	Data Byte 2	А	Data Byte 3	Α	Data Byte 4	Α	Р	

: Master to Slave : Slave to Master

Figure 7-3 SMBus Block Write Command Format, to Write to a PI7C9X2G1616PR Register with PEC

S Slave Addr Wr A Cmd Code = BEh A Byte Count = 8 A Cmd Byte1 A Cmd Byte 2	A	A	Cmd Byte 3	А
--	---	---	------------	---

Cmd Byte 4 A Data Byte 1 A Data Byte 2 A Data Byte 3 A Data Byte 4 A PEC A F
--

: Master to Slave : Slave to Master

Block Write transactions that are received with incorrect Cmd Code are NACKed, starting from the wrong byte setting, and including subsequent bytes in the packet. For example, if the Byte Count value is not 8, the PI7C9X2G1616PR NACKs the byte corresponding to the Byte Count value, as well as any Data bytes following within the same packet.

The byte after Data Byte 4, if present, is taken as the PEC byte, and if present, the PEC is checked. If a packet fails Packet Error Checking, the PI7C9X2G1616PR drops the packet (ignores the Write), and returns NACK for the PEC byte, to the SMBus Master. Packet Error Checking can be disabled, by setting the SMBus/I²C Control Register PEC Check Disable bit. The Byte Count value, by definition, does not include the PEC byte.

Field (Byte) On Bus	Bit(s)	Value/ Description
S	1	START condition
Р	1	STOP condition
Α	1	Acknowledge (this bit position may be 0 for an ACK or 1 for a NACK)
Command Code	7:0	BEh for Block Write
Byte Count	7:0	08h = 8 bytes to follow (4 Command and 4 Data bytes). The PEC byte is not counted.
	7:3	Reserved
	2:0	Command
Command Byte 1		011b = Write register
		100b = Read register
	7:4	Reserved
	3:0	Port Select[4:1]
Command Byte 2		2 nd Command byte, bits [3:0], and 3 rd Command byte, bit 7, combine to form a 5-bit Port

PI7C9X2G1616PR Document Number DS40340 Rev 7-2 Page 49 of 198 www.diodes.com

		Select.
	6	Port Select[0] 2nd Command byte, bits [3:0], and 3rd Command byte, bit 7, combine to form a 5-bit Port Select. Port Select[4:0] is used to select Port to access. 00h - Port 0 01h - Port 1 or NT Port Link Interface (if NT mode is enabled) 02h ~ 0Fh - Port 2 ~ Port 15 10h for NT Port Virtual Interface 11h - 1Fh are reserved Reserved
Command Byte 3	5:2	Byte Enable Bit Description 2 Byte Enable for Data Byte 4 (PI7C9X2G1616PR register bits [7:0]) 3 Byte Enable for Data Byte 3 (PI7C9X2G1616PR register bits [15:8]) 4 Byte Enable for Data Byte 2 (PI7C9X2G1616PR register bits [23:16]) 5 Byte Enable for Data Byte 1 (PI7C9X2G1616PR register bits [31:24]) 0 = Corresponding PI7C9X2G1616PR register byte will not be modified 1 = Corresponding PI7C9X2G1616PR register byte will be modified
	1:0	PI7C9X2G1616PR Register Address [11:10]
Command Byte 4	7:0	PI7C9X2G1616PR Register Address [9:2] Note: Address bits[1:0] are fixed to 0.
Data Byte 1	7:0	Data write to register bits [31:24]
Data Byte 2	7:0	Data write to register bits [23:16]
Data Byte 3	7:0	Data write to register bits [15:8]
Data Byte 4	7:0	Data write to register bits [7:0]
PEC	7:0	Packet Error Code

Table 7-3 is a sample to write SSID/SSVID register (offset F8h) in Port 1. The register value is 1234_5678h, with all bytes enabled, and without PEC. The default SMBus Address is 1101000b.

Byte Number	Byte Type	Value	Description
1	Address	70h	Bits [7:1] for the PI7C9X2G1616PR default Slave address of 38h, with bit
			0 Cleared to indicate a Write.
2	Command Code	BEh	Command Code for register Write, using a Block Write
3	Byte Count	08h	Byte Count. Four Command Bytes and Four Data Bytes
4	Command Byte 1	03h	For Write command
5	Command Byte 2	00h	Bits [3:0] - Port Select [4:1] (for Port 1)
6	Command Byte 3	BCh	Bit 7 is Port Select[0]
			Bit 6 is reserved
			Bits [5:2] are the for Byte Enables; all are active
			Bits [1:0] are register Address bits [11:10]
7	Command Byte 4	3Eh	PI7C9X2G1616PR Register Address bits [9:2] (for offset F8h)
8	Data Byte 1	12h	Data Byte for register bits [31:24]
9	Data Byte 2	34h	Data Byte for register bits [23:16]
10	Data Byte 3	56h	Data Byte for register bits [15:8]
11	Data Byte 4	78h	Data Byte for register bits[7:0]

Table 7-3 Sample SMBus Block Write Byte Sequence

7.2.2 SMBUS BLOCK READ

A Block Read command is used to read PI7C9X2G1616PR CFG registers. Similar to CFG register Reads using I²C, a SMBus Write sequence must first be performed to select the register to read, followed by a SMBus Read of the corresponding register. There are two ways a PI7C9X2G1616PR register can be read:

- Use a Block Write, followed by a Block Read. The Block Write sets up the parameters including Port Number, register address and Byte Enables, and the Block Read performs the actual Read operation.
- Use a Block Read Block Write Process Call. This command is defined by the SMBus v2.0, and performs a Block Write and Block Read, using a single command. The Block Write portion of the message sets up the

PI7C9X2G1616PR Document Number DS40340 Rev 7-2 Page 50 of 198 www.diodes.com

register to be read, and then a repeated START followed by the Block Read portion of the message returns the register data specified by the Block Write

The PI7C9X2G1616PR always NACKs any incorrect command sequences, starting with the wrong Byte. Upon receiving the Block Read command, the PI7C9X2G1616PR returns a PEC to the Master, if after the 4th byte of register data, the Master still requests one more Byte. As a Slave, the PI7C9X2G1616PR recognizes the end of the Master's Read cycle, by observing the Master's NACK response for the last Data Byte transmitted by the PI7C9X2G1616PR.

Incorrect command sequences are always NACK, starting with the byte that is incorrect. (Refer to Table 7-4.) On the Block Read command, a PEC is returned to the Master, if after the 4th byte of CSR data, the return Master still requests for one additional byte. As a Slave, the PI7C9X2G1616PR will know the end of the Master Read cycle, by observing the NACK for the last byte read from the Master.

Figure 7-4 SMBus Block Write to Set up Read, and Resulting Read that Returns CFG Register Value

A Block Write to set up Read

S	Slave Addr	Wr	А	Cmd code = BDł	ı	А	S	Slave Adres	s f	Rd	А	Byte Count = 4	A	Data Byte 1	А
	Data Byte 2	A	[Data Byte 3	А		Data	a Byte 4	A	Р	7				

A Block Read which returns CFG Register Value

: Master to Slave : Slave to Master

Table 7-4 Bytes for SMBus Block Read

Field (Byte) On Bus	Bit(s)	Value/ Description
S	1	START condition
Р	1	STOP condition
Α	1	Acknowledge (this bit position may be 0 for an ACK or 1 for a NACK)
Command Code	7:0	BAh, to set up Read, using Block Writes
Byte Count	7:0	04h, 4 Command bytes
	7:3	Reserved
	2:0	Command
Command Byte 1		011b = Write register
		100b = Read register
	7:4	Reserved
	3:0	Port Select[4:1]
Command Byte 2		2 nd Command byte, bits [3:0], and 3 rd Command byte, bit 7, combine to form a 5-bit Port
		Select.
	7	Port Select[0]
		2nd Command byte, bits [3:0], and 3rd Command byte, bit 7, combine to form a 5-bit Port
		Select.
		Port Select[4:0] is used to select Port to access.
		00h - Port 0
		01h – Port 1 or NT Port Link Interface (if NT mode is enabled)
		02h ~ 0Fh – Port 2 ~ Port 15
		10h for NT Port Virtual Interface
	(11h – 1Fh are reserved
	6 5:2	Reserved
Command Byte 3	5:2	Byte Enable
Command Byte 5		Bit Description
		BitDescription2Byte Enable for Data Byte 4 (PI7C9X2G1616PR register bits [7:0])
		2 Byte Enable for Data Byte 4 $(f1/C9A2O1010FK fegister Olds [/.0])$

PI7C9X2G1616PR Document Number DS40340 Rev 7-2 Page 51 of 198 www.diodes.com

		 Byte Enable for Data Byte 3 (PI7C9X2G1616PR register bits [15:8]) Byte Enable for Data Byte 2 (PI7C9X2G1616PR register bits [23:16]) Byte Enable for Data Byte 1 (PI7C9X2G1616PR register bits [31:24]) Corresponding PI7C9X2G1616PR register byte will not be modified
		1 = Corresponding PI7C9X2G1616PR register byte will be modified
	1:0	PI7C9X2G1616PR Register Address [11:10]
Command Byte 4	7:0	PI7C9X2G1616PR Register Address [9:2]
		Note: Address bits[1:0] are fixed to 0.
Command Code	7:0	BDh for Block Read
Data Byte 1	7:0	Return value for CFG register bits [31:24]
Data Byte 2	7:0	Return value for CFG register bits [23:16]
Data Byte 3	7:0	Return value for CFG register bits [15:8]
Data Byte 4	7:0	Return value for CFG register bits [7:0]

Table 7-5, Table 7-6, Table 7-7 and Table 7-8 are a sample to Read SSID/SSVID register (offset F8h) in Port 1. The register value is 0000_0000h, with all bytes enabled, and without PEC. The default SMBus Address is 1101000b.

Table 7-5 SMBus Block Write Portion

Byte Number	Byte Type	Value	Description
1	Address	70h	Bits [7:1] for the PI7C9X2G1616PR default Slave address of 38h, with bit
			0 Cleared to indicate a Write.
2	Command Code	BAh	Command Code for register Write, using a Block Write
3	Byte Count	04h	Byte Count. Four Command Bytes
4	Command Byte 1	04h	For Read command
5	Command Byte 2	00h	Bits [3:0] - Port Select [4:1] (for Port 1)
6	Command Byte 3	BCh	Bit 7 is Port Select[0]
			Bit 6 is reserved
			Bits [5:2] are the for Byte Enables; all are active
			Bits [1:0] are register Address bits [11:10]
7	Command Byte 4	3Eh	PI7C9X2G1616PR Register Address bits [9:2] (for offset F8h)

Table 7-6 SMBus Block Read Portion

Byte Number	Byte Type	Value	Description
1	Address	70h	Bits [7:1] value for the PI7C9X2G1616PR Slave address of 38h, with bit 0
			Cleared to indicate to indicate a Write.
2	Block Read Command Code	BDh	Command code for Block Read of PI7C9X2G1616PR registers.

Table 7-7 SMBus Read Command following Repeat START from Master

Byte Num	ber Byte Type	Value	Description						
1	Address	71h	Bits [7:1] value for the PI7C9X2G1616PR Slave address of 38h, with bit 0 Set						
			to indicate a Read.						

Table 7-8 SMBus Return Bytes

Byte Number	Byte Type	Value	Description
1	Byte Count	04h	Four Bytes in register
2	Data Byte 1	00h	Register data [31:24]
3	Data Byte 2	00h	Register data [23:16]
4	Data Byte 3	00h	Register data [15:8]
5	Data Byte 4	00h	Register data [7:0]

7.2.3 CSR READ, USING SMBUS BLOCK READ – BLOCK WRITE PROCESS CALL

A general SMBus Block Read - Block Write Process Call sequence is illustrated in Figure 7-5. Alternatively, a general SMBus Block Read - Block Write Process Call with PEC sequence is illustrated in Figure 7-6.

Using this command, the register to be read can be set up and read back with one SMBus cycle (a transaction with a START and ending in STOP). There is no STOP condition before the repeated START condition. The command format for the Block Write part of this command has the same sequence as in Table 7-5, except that the Command Code changes to CDh, as illustrated below. Other Bytes remain the same as used in the sequence for SMBus Block Write followed by Block Read. Table 7-9 lists the Command format for Block Read.

Figure 7-5 CSR Read Operation Using SMBus Block Read – Block Write Process Call

S	Slave Ad	dr	Wr	А	Cmd code :	= CDh	А	Byte Count = 4	А		Cmd Byte1	А	Cmo	d Byte 2	А	Cmd Byte 3	А
Cmd Byte 4 A S Slave address Rd A Byte Co			Byte Count = 4	A		Data Byte 1		Α									
Data Byte 2 A Data Byte 3 A Data Byte 4					Data Byte 4	A	Ρ	7									
	: Master to Slave																

: Slave to Master

Figure 7-6 CSR Read Operation Using SMBus Block Read – Block Write Process Call with PEC

S	Slave Ade	dr ۱	Wr	А	Cmd code	= CDh	A	Byte Count = 4	А	Cmd Byte1		A	Cmd Byte 2	Α	Cmd Byte 3	Α
Cm	id Byte 4	А	s	Sla	ave address	Rd	А	Byte Count = 4	A	Data Byte	e 1		A			
D	ata Byte 2		А		Data Byte 3		A	Data Byte 4	А	PEC	А	Р	7			
	Master to	Slav	ve			-				•			-			

: Slave to Master

Table 7-9 Command Format for SMBus Block Read

Field (Byte) On Bus	Bit(s)	Value/Description						
Command Code	7:0	CDh for Block Read (Process Call Read)						

7.3 I²C SLAVE INTERFACE

Inter-Integrated Circuit (I^2C) is a bus used to connect Integrated Circuits (ICs). Multiple ICs can be connected to an I^2C Bus, and I^2C devices that have I^2C mastering capability can initiate a Data transfer. I^2C is used for Data transfers between ICs at relatively low rates (100 Kbps), and is used in a variety of applications. For further details regarding I^2C Buses, refer to the I^2C Bus v2.1.

The PI7C9X2G1616PR is an I²C Slave. Slave operations allow the PI7C9X2G1616PR Configuration registers to be read from or written to by an I²C Master, external from the device. I²C is a sideband mechanism that allows the device Configuration registers to be programmed, read from, or written to, independent of the PCI Express upstream Link.

Figure 7-7 Standard Devices to I²C Bus Connection Block Diagram

The I²C interface on the Packet Switch consists of a I²C clock pin (SCL_I2C), a I²C data pin (SDA_I2C), and 3 I²C address pins (I2C_ADDR[2:0]). The I²C clock pin provides or receives the clock signal. The I²C data pin facilitates the data transmission and reception. Both of the clock and data pins are bi-directional. The I²C address pins determine the address to which the Packet Switch responds to. The I²C address pins generate addresses according to the following table:

Table 7-10 I²C Address Pin Configuration

BIT	I2C Address
0	I2C_ADDR[0]
1	I2C_ADDR[1]
2	I2C_ADDR[2]
3	1
4	1
5	1
6	0

Software can change the I²C Slave address, by programming the SMBus/I²C Control Register SMBus/I²C Device Address field.

7.3.1 I²C REGISTER WRITE ACCESS

The PI7C9X2G1616PR Configuration registers can be read from and written to, based upon I^2C register Read and Write operations, respectively. An I^2C Write packet consists of Address Phase bytes and Command Phase bytes, followed by one to four additional I^2C Data bytes. Table 7-11 defines mapping of the I^2C Data bytes to the Configuration register Data bytes.

The I²C packet starts with the S (START condition) bit. Data bytes are separated by the A (Acknowledge Control Packet (ACK)) or N (Negative Acknowledge (NAK)) bit. The packet ends with the P (STOP condition) bit. If the Master generates an invalid command \cdot the targeted PI7C9X2G1616PR register is not modified. The PI7C9X2G1616PR considers the 1st Data byte of the 4-byte Data phase, following the four Command bytes in the Command phase, as register Byte 3 (bits [31:24]). The next three Data bytes access register Bytes 2 through 0, respectively. Four Data bytes are required, regardless of the Byte Enable Settings in the Command phase. The Master can then generate either a STOP condition (to finish the transfer) or a repeated START condition (to start a new transfer). If the I²C Master sends more than the four Data bytes (violating PI7C9X2G1616PR protocol), further details regarding J2C protocol, the PI7C9X2G1616PR returns a NAK for the extra Data byte(s).

Table 7-12 describes each I²C Command byte for Write access. In the packet described in Figure 7-8, Command Bytes 0 through 3 for Writes follow the format specified in Table 7-12.

Table 7-11 I²C Register Write Access

I2C Data Byte Order	PCI Express Configuration Register Byte
0	Written to register Byte 3
1	Written to register Byte 2
2	Written to register Byte 1
3	Written to register Byte 0

Table 7-12 I²C Command Format for Write Access

Byte	Bit(s)	Description						
$1^{st}(0)$	7:3	Reserved						
	2:0	Command						
		011b = Write register						
$2^{nd}(1)$	7:4	Reserved						
	3:0	Port Select[4:1]						
		2 nd Command byte, bits [3:0], and 3 rd Command byte, bit 7, combine to form a 5-bit Port Select.						
3 rd (2)	7	Port Select[0]						
		2nd Command byte, bits [3:0], and 3rd Command byte, bit 7, combine to form a 5-bit Port Select.						
		Port Select[4:0] is used to select Port to access.						
		00h – Port 0						
		01h – Port 1 or NT Port Link Interface (if NT mode is enabled)						
		$02h \sim 0Fh - Port 2 \sim Port 15$						
		10h for NT Port Virtual Interface						
		11h – 1Fh are reserved						
	6	Reserved						
	5:2	Byte Enable						
		Bit Description						
		2 Byte Enable for Data Byte 4 (PI7C9X2G1616PR register bits [7:0])						
		3 Byte Enable for Data Byte 3 (PI7C9X2G1616PR register bits [15:8])						
		4 Byte Enable for Data Byte 2 (PI7C9X2G1616PR register bits [23:16])						
		5 Byte Enable for Data Byte 1 (PI7C9X2G1616PR register bits [31:24])						
		0 = Corresponding PI7C9X2G1616PR register byte will not be modified						
		1 = Corresponding PI7C9X2G1616PR register byte will not be modified						
	1:0	PI7C9X2G1616PR Register Address [11:10]						
4 th (3)	7:0	0 1 1						
4 (3)	7.0	PI7C9X2G1616PR Register Address [9:2] Note: Address bits[1:0] are fixed to 0.						
		Note. Address bits[1.0] are fixed to 0.						

Page 55 of 198 www.diodes.com

Figure 7-8 I²C Write Packet

I²C Write Packet Address Phase Byte

Address Cycle						
START	7654321	0	ACK/NAK			
S	Slave Address [7:1]	Read/Write Bit	А			
		0 = Write				

I2C Write Packet Command Phase Byte

	Command Cycle						
76543210	ACK/NAK	76543210	ACK/NAK	76543210	ACK/NAK	76543210	ACK/NAK
Command	Α	Command	Α	Command	А	Command	Α
Byte 0		Byte 1		Byte 2		Byte 3	

I²C Write Packet Data Phase Byte

Write Cycle								
76543210	ACK/NAK	76543210	ACK/NAK	76543210	ACK/NAK	76543210	ACK/NAK	STOP
Register Byte 3	А	Register Byte 2	А	Register Byte 1	А	Register Byte 0	А	Р

The following tables illustrate a sample I2C packet for writing the PI7C9X2G1616PR SSID/SSVID register (offset F8h) for Port 0, with data 1234_5678h.

Note: The PI7C9X2G1616PR has a default l^2C Slave address [6:0] value of 38h, with the I2C_ADDR[2:0] input having a value of 000. The byte sequence on the l^2C Bus, as listed in the following tables, occurs after the START and before the STOP bits, by which the l^2C Master frames the transfer.

Figure 7-9 I²C Register Write Access Example

I²C Register Write Access Example – Address Cycle

Phase	Value	Description
Address	70h	Bits [7:1] for PI7C9X2G1616PR I ² C Slave Address (38h) with last bit (bit 0) for Write = 0

I²C Register Write Access Example – Command Cycle

Byte	Value	Description
0	03h	[7:3] Reserved
		[2:0] Command, 011b = Write register
1	00h for Port 0	[7:4] Reserved
		[3:0] Port Select[4:1]
2	3Ch for Port 0	[7] Port Select[0]
		[6] Reserved
		[5:2] Byte Enable, all active.
		[1:0] PI7C9X2G1616PR Register Address, Bits [11:10]
3	3Eh	[7:0] PI7C9X2G1616PR Register Address, Bits [9:2]

I²C Register Write Access Example – Data Cycle

Byte	Value	Description
0	12h	Data to Write for Byte 3
1	34h	Data to Write for Byte 2
2	56h	Data to Write for Byte 1
3	78h	Data to Write for Byte 0

Figure 7-10 I²C Write Command Packet Example

I²C Write Packet Address Phase Bytes

1 st Cycle						
START	7654321	0	ACK/NAK			
S	Slave Address 0111_000b	Read/Write Bit	А			
		0 = Write				

I²C Write Packet Command Phase Bytes

	Command Cycle							
76543210	ACK/NAK	76543210	ACK/NAK	76543210	ACK/NAK	76543210	ACK/NAK	
Command	А	Command	Α	Command	А	Command	А	
Byte 0		Byte 1		Byte 2		Byte 3		
0000 0011b		0000 0000b		0011 1100b		0011 1110b		

I²C Write Packet Data Phase Bytes

				v	Vrite Cycle				
	76543210	ACK/NAK	76543210	ACK/NAK	76543210	ACK/NAK	76543210	ACK/NAK	STOP
F	Register Byte 3	А	Register Byte 2	Α	Register Byte 1	Α	Register Byte 0	Α	Р

7.3.2 I²C REGISTER READ ACCESS

When the I²C Master attempts to read a PI7C9X2G1616PR register, two packets are transmitted. The 1st packet consists of Address and Command Phase bytes to the Slave. The 2nd packet consists of Address and Data Phase bytes.

According to the I^2C Bus, v2.1, a Read cycle is triggered when the Read/Write bit (bit 0) of the 1^{st} cycle is Set. The Command phase reads the requested register content into the internal buffer. When the I^2C Read access occurs, the internal buffer value is transferred on to the I^2C Bus, starting from Byte 3 (bits [31: 24]), followed by the subsequent bytes, with Byte 0 (bits [7:0]) being transferred last. If the I^2C Master requests more than four bytes, the PI7C9X2G1616PR re-transmits the same byte sequence, starting from Byte 3 of the internal buffer.

The 1st and 2nd I²C Read packets perform the following functions:

- 1st packet Selects the register to read
- 2nd packet Reads the register (sample 2nd packet provided is for a 7-bit PI7C9X2G1616PR I²C Slave address)

Although two packets are shown for the I^2C Read, the I^2C Master can merge the two packets together into a single packet, by not generating the STOP at the end of the first packet (Master does not relinquish the bus) and generating REPEAT START.

Table 7-13 describes each I²C Command byte for Read access. In the packet described in Figure 7-11, Command Bytes 0 through 3 for Reads follow the format specified in Table 7-13.

Byte	Bit(s)	Description
$1^{st}(0)$	7:3	Reserved
	2:0	Command 100b = Read register
$2^{nd}(1)$	7:4	Reserved
	3:0	Port Select, Bits [4:1] 2 nd Command byte, bit 7, combine to form a 5-bit Port Select.
3 rd (2)	7	Port Select[0] 2nd Command byte, bits [3:0], and 3rd Command byte, bit 7, combine to form a 5-bit Port Select. Port Select[4:0] is used to select Port to access.

Table 7-13 I²C Command Format for Read Access

Byte	Bit(s)	Description				
	00h – Port 0					
		01h – Port 1 or NT Port Link Interface (if NT mode is enabled)				
		$02h \sim 0Fh - Port 2 \sim Port 15$				
		10h for NT Port Virtual Interface				
		11h – 1Fh are reserved				
	6	Reserved				
	5:2	Byte Enable				
		Bit Description				
		2 Byte Enable for Data Byte 4 (PI7C9X2G1616PR register bits [7:0])				
		3 Byte Enable for Data Byte 3 (PI7C9X2G1616PR register bits [15:8])				
		4 Byte Enable for Data Byte 2 (PI7C9X2G1616PR register bits [23:16])				
		5 Byte Enable for Data Byte 1 (PI7C9X2G1616PR register bits [31:24])				
		0 = Corresponding PI7C9X2G1616PR register byte will not be modified				
		1 = Corresponding PI7C9X2G1616PR register byte will be modified				
	1:0	PI7C9X2G1616PR Register Address [11:10]				
$4^{th}(3)$	7:0	PI7C9X2G1616PR Register Address [9:2]				
		Note: Address bits[1:0] are fixed to 0.				

Figure 7-11 I²C Read Command Packet

I²C Read Command Packet Address Phase Byte (1st Packet)

1 st Cycle					
START	7654321	0	ACK/NAK		
S	Slave Address[7:1]	Read/Write Bit	А		
		0 = Write			

I²C Read Command Packet Command Phase Byte (1st Packet)

	Write Cycle						
76543210	ACK/NAK	76543210	ACK/NAK	76543210	ACK/NAK	76543210	ACK/NAK
Command	Α	Command	А	Command	Α	Command	Α
Byte 0		Byte 1		Byte 2		Byte 3	

I²C Read Data Packet Address Phase Byte (2nd Packet)

1 st Cycle					
START	7654321	0	ACK/NAK		
S	Slave Address[7:1]	Read/Write Bit	А		
		1 = Read			

I²C Read Data Packet Data Phase Byte (2nd Packet)

				Write Cycle				
76543210	ACK/NAK	76543210	ACK/NAK	76543210	ACK/NAK	76543210	ACK/NAK	STOP
Register	Α	Register	Α	Register	Α	Register	Α	Р
Byte 3		Byte 2		Byte 1		Byte 0		

The following tables illustrate a sample I2C packet for reading the PI7C9X2G1616PR SSID/SSVID register (offset F8h) for Port 0. The default value for SSID/SSVID register is 0000_0000h.

Note: The P17C9X2G1616PR has a default I^2C Slave address [6:0] value of 38h, with the I2C_ADDR[2:0] inputs having a value of 000. The byte sequence on the I^2C Bus, as listed in the following tables, occurs after the START and before the STOP bits, by which the I^2C Master frames the transfer.

Figure 7-12 I²C Register Read Access Example

I²C Register Read Access Example – Address Cycle (1st Packet)

Phase	Value	Description
Address	70h	Bits [7:1] for PI7C9X2G1616PR I ² C Slave Address (38h) with last bit (bit 0) for Write = 0

I²C Register Read Access Example – Command Cycle (1st Packet)

Byte	Value	Description
0	04h	[7:3] Reserved [2:0] Command, 100b = Read register
1	00h for Port 0	[7:4] Reserved [3:0] Port Select[4:1]
2	3Ch for Port 0	 [7] Port Select[0] [6] Reserved [5:2] Byte Enable, All active. [1:0] PI7C9X2G1616PR Register Address, Bits [11:10]
3	3Eh	[7:0] PI7C9X2G1616PR Register Address, Bits [9:2]

I²C Register Read Access Example – 2nd Packet

Phase	Value	Description
Address	71h	Bits [7:1] for PI7C9X2G1616PR I2C Slave Address (38h) with last bit (bit 0) for Read = 1
Read	00h	Byte 3 of Register Read
	00h	Byte 2 of Register Read
	00h	Byte 1 of Register Read
	00h	Byte 0 of Register Read

Figure 7-13 I²C Read Command Packet

I²C Read Command Packet Address Phase Bytes (1st Packet)

1 st Cycle					
START	7654321	0	ACK/NAK		
S	Slave Address 0111_000b	Read/Write Bit	А		
		0 = Write			

I²C Read Command Packet Command Phase Bytes (1st Packet)

			Command Cycle			
76543210	ACK/NAK	76543210	ACK/NAK	76543210	ACK/NAK	76543210
Command	А	Command	А	Command	А	Command
Byte 0		Byte 1		Byte 2		Byte 3
0000_0100b		0000_0000b		0011_1100b		0011_1110b

I²C Read Data Packet Address Phase Bytes (2nd Packet)

	1 st Cycle						
START	7654321	0	ACK/NAK				
S	Slave Address [7:1] 0111_000b	Read/Write Bit	А				
		1 = Read					

I²C Read Data Packet Data Phase Bytes (2nd Packet)

	Command Cycle						
76543210	ACK/NAK	76543210	ACK/NAK	76543210	ACK/NAK	76543210	Stop
Register Byte3	А	Register Byte2	А	Register Byte1	А	Register Byte0	Р
0000_0000b		0000_0000b		0000_0000b		0000_00000b	

8 REGISTER DESCRIPTION

8.1 REGISTER TYPES

This chapter details the Packet Switch registers, including

- Bit names
- Description of register functions
- Type, refer to Table 8-1
- Whether the default value can be modified by EEPROM and/or I2C/SMBUS
- Default value

Table 8-1 Register Types

REGISTER TYPE	DEFINITION
HwInt	Hardware Initialization
RO	Read Only
RW	Read / Write
RW1C	Read / Write 1 to Clear
RsvdP	RO and must return 0 when read.

8.2 TRANSPARENT MODE CONFIGURATION REGISTERS

When the port of the Switch is set to operate at the transparent mode, it is represented by a logical PCI-to-PCI Bridge that implements type 1 configuration space header. The following table details the allocation of the register fields of the PCI 2.3 compatible type 1 configuration space header.

31 – 24	23 - 16	15 - 8	7 –0	BYTE OFFSET
Devi	ce ID	Vend	or ID	00h
Primary	y Status	Com	mand	04h
	Class Code		Revision ID	08h
Reserved	Header Type	Primary Latency Timer	Cache Line Size	0Ch
Bas	e Address 0 for Upstream Port	/ Reserved for Downstream I	Ports	10h
Bas	e Address 1 for Upstream Port) / Reserved for Downstream P	orts	14h
Secondary Latency Timer	Subordinate Bus Number	Secondary Bus Number	Primary Bus Number	18h
Seconda	ry Status	I/O Limit Address	I/O Base Address	1Ch
Memory Li	mit Address	Memory Ba	ase Address	20h
Prefetchable Mem	ory Limit Address	Prefetchable Men	nory Base Address	24h
	Prefetchable Memory Ba	ase Address Upper 32-bit		28h
	Prefetchable Memory Li	mit Address Upper 32-bit		2Ch
I/O Limit Addre	ess Upper 16-bit	I/O Base Addre	ess Upper 16-bit	30h
	Reserved		Capability Pointer to 40h	34h
	Rese	erved		38h
	Control	Interrupt Pin	Interrupt Line	3Ch
Power Managen	nent Capabilities	Next Item Pointer=48h	Capability ID=01h	40h
PM Data	PPB Support Extensions	Power Mana	gement Data	44h
Message	e Control	Next Item Pointer=68h	Capability ID=05h	48h
	Message	Address		4Ch
	Message Up	per Address		50h
Rese	erved	Messag	ge Data	54h
	Rese	erved		58h - 64h
PCI Express Cap	abilities Register	Next Item Pointer=A4h	Capability ID=10h	68h
	Device C	apabilities		6Ch
Device	Status	Device	Control	70h
	Link Ca	pabilities		74h
Link	Status	Link C	Control	78h
	Slot Cap	pabilities		7Ch

PI7C9X2G1616PR Document Number DS40340 Rev 7-2 Page 60 of 198 www.diodes.com

PI7C9X2G1616PR

31 –24	23 - 16	15-8	7 –0	BYTE OFFSET			
Slot S	Status	Slot C	ontrol	80h			
	Rese	erved		84h – 88h			
	Device Ca	pabilities 2		8Ch			
Device	Status 2	Device (Control 2	90h			
	Link Cap	abilities 2		94h			
Link S	tatus 2	Link Control 2		98h			
	Slot Cap	abilities 2		9Ch			
Slot St	tatus 2	Slot Co	A0h				
Rese	rved	Next Item Pointer=00h	SSID/SSVID	A4h			
			Capability ID=0Dh				
SS	ID	SSVID		A8h			
	Reserved						
	BAR 0-1 Configuration						
	Rese	erved		E8h - FCh			

Other than the PCI 2.3 compatible configuration space header, the Switch also implements PCI express extended configuration space header, which includes advanced error reporting, virtual channel, and power budgeting capability registers. The following table details the allocation of the register fields of PCI express extended capability space header. The first extended capability always begins at offset 100h with a PCI Express Enhanced Capability header and the rest of capabilities are located at an offset greater than 0FFh relative to the beginning of PCI compatible configuration space.

31 –24	23 -	- 16	15 - 8	7 –0	BYTE OFFSET
Next Capability Offse	100h				
		Serial Numbe	r Lower DW		104h
	108h				
		Rese	rved		10Ch-134h
Next Capability Offse	t=148h	Cap. Version	PCI Express Extended	d Capability ID=0004h	138h
	Rese	erved		Data Select Register	13Ch
		Data R	egister		140h
	Rese	erved	0	Power Budget Capability Register	144h
Next Capability Of 270h (Up) 520h (Down)	fset=	Cap. Version	PCI Express Extended	l Capability ID=0002h	148h
		Port VC Capab	ility Register 1		14Ch
VC Arbitration Table Offset=4h			Port VC Capability Register 2		150h
Port V	Port VC Status Port VC Control				154h
Port Arbitration Table Offset=5h	VC Resource Capability Register (0)				158h
	V	C Resource Con	ntrol Register (0)		15Ch
VC Resource St	VC Resource Status Register (0) Reserved				
Port Arbitration Table Offset=6h		VC	Resource Capability Register	(1)	164h
	V	C Resource Con	ntrol Register (1)		168h
VC Resource St				erved	16Ch
		Rese	rved		170h - 184h
		VC Arbitrat			188h
		VC Arbitrat			18Ch
		VC Arbitrat	ion Table 2		190h
		VC Arbitrat	ion Table 3		194h
	Ро	rt VC0 Arbitrati	on Table 0 (Low)		198h
	Por	t VC0 Arbitratio	on Table 0 (Upper)		19Ch
			ion Table 1 (Low)		1A0h
	Por	t VC0 Arbitratio	on Table 1 (Upper)		1A4h
	Ро	rt VC1 Arbitrati	on Table 0 (Low)		1A8h
	Por	t VC1 Arbitratio	on Table 0 (Upper)		1ACh
	Ро	rt VC1 Arbitrati	on Table 1 (Low)		1B0h
	Por	t VC1 Arbitratio	on Table 1 (Upper)		1B4h
		Rese			1B8h-1C4h
		ECC Error C	heck Disable		1C8h

PI7C9X2G1616PR Document Number DS40340 Rev 7-2 Page 61 of 198 www.diodes.com

PI7C9X2G1616PR

31 –24	23 - 16	15 - 8	7 –0	BYTE OFFSET						
		eserved		1CCh - 1D8h						
		Port Selection Hot Plug Configuration		1DCh 1E0h						
		eserved		1E0h 1E4h – 1F0h						
		e Lane Status		1F4h						
		eserved		1F8h – 204h						
De-emph	De-emphasis Control Rate Control									
Res	Reserved Compliance Mode									
		eserved		210h – 21Ch						
		ayer Command and Status ayer Command and Status		220h 224h						
		eserved		228h – 22Ch						
		Quiet / Test Pattern Rate		230h						
		Quiet / Test Pattern Rate		234h						
		eserved		238h - 26Ch						
Next Capability Offs		PCI Express Extended	d Capability ID=001Eh	270h						
	version	ostates Capability		274h						
		ostates Control 1		274h 278h						
		ostates Control 2		276h						
	R	eserved		280h - 340h						
		ontrol and Status		344h						
		Plug Select		348h						
		tream Port Hot Reset		34Ch						
Next Capability Offs		PCI Express Extended	l Capability ID=000Dh	350h - 51Ch 520h						
Next Capability Olis	version	T CI Express Extended		52011						
ACS	Control	ACS C	apability	524h						
	Reserved	·	Egress Control Vector	528h 52Ch - 628h						
	Reserved									
	GPIO 0-15 Direction Control GPIO 16-31Direction Control									
		Direction Control		630h 634h						
	GPIO Input De-bounce									
		15 Input Data		638h 63Ch						
		-31 Input Data		640h						
		15 Output Data		644h						
		31 Output Data		648h						
	GPIO 0-31	Interrupt Polarity Interrupt Status		64Ch 650h						
		I Interrupt Mask		654h						
		eserved		658h-840h						
		IP_CSR0		844h						
	XP	IP_CSR1		848h						
Decode VGA		Reserved		84Ch						
ם עדות	Switch O arameter 1	peration Mode	CSR2	850h 854h						
		Parameter 2		858h						
		Parameter 3		85Ch						
	PHY	Parameter 4		860h						
		IP_CSR3		864h						
		IP_CSR4		868h						
		IP_CSR5 ransfer Mode		86Ch 870h						
		ation Mode		874h						
		ecific PM Event		878h						
	EEPR	OM Control		87Ch						
		Address and Data		880h						
		gout Control		884h						
		igout Data		888h						
		SSM CSR CC CSR 1		88Ch 890h						
		eserved		894h - 8A0h						
		aving Disable		8A4h						
		ion Layer CSR		8A8h						

PI7C9X2G1616PR Document Number DS40340 Rev 7-2 Page 62 of 198 www.diodes.com

PI7C9X2G1616PR

31 –24	23	- 16	15 - 8	7 –0	BYTE OFFSET		
ACK L	atency Timer		Replay Time	e-out Counter	8ACh		
PHY	Parameter 0		Port	Mise 0	8B0h		
XPIP_CSR7	XPIP	CSR6	Port	Misc 1	8B4h		
R	eserved		Port	Misc 2	8B8h		
		LED Dis	play CSR		8BCh		
		Rese	erved		8C0h - 8FCh		
Next Capability Of	fset=000h	Cap. Version	PCI Express Extended	d Capability ID=0012h	900h		
Multi-	Case Control		Multi-Cas	e Capability	904h		
		Multi-Case B	ase Address 0		908h		
		Multi-Case B	ase Address 1		90Ch		
		Multi-Cas	e Receive		910h		
		Rese	erved		914h		
		Multi-Case	e Block All		918h		
		Rese	erved		91Ch		
		Multi-Case Blo	ck Untranslated		920h		
		Rese	erved		924h – FACh		
		EEPROM	Scratchpad		FB0h		
Next Capability (138h (Up) 148h (Down		Cap. Version	PCI Express Extended	d Capability ID=0001h	FB4h		
``````````````````````````````````````	Ú	ncorrectable Err	or Status Register		FB8h		
	U	ncorrectable Er	ror Mask Register		FBCh		
			or Severity Register		FC0h		
	(	Correctable Erro	r Status Register		FC4h		
		Correctable Erro	or Mask Register		FC8h		
	Advanced Error Capabilities and Control Register						
	Header Log Register 0						
		Header Log	g Register 1		FD4h		
			FD8h				
		Header Log	g Register 3		FDCh		
		Rese	erved		FE0h – FFCh		

## 8.2.1 VENDOR ID REGISTER - OFFSET 00h

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
15:0	Vendor ID	RO	Identifies Pericom as the vendor of this device.	Yes	12D8h

## 8.2.2 DEVICE ID REGISTER - OFFSET 00h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
31:16	Device ID	RO	Identifies this device as the PI7C9X2G1616PR.	Yes	8619h

## 8.2.3 COMMAND REGISTER - OFFSET 04h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
0	I/O Space Enable	RW	0b: Ignores I/O transactions on the primary interface 1b: Enables responses to I/O transactions on the primary interface	No/Yes	0
1	Memory Space Enable	RW	0b: Ignores memory transactions on the primary interface 1b: Enables responses to memory transactions on the primary interface	No/Yes	0
2	Bus Master Enable	RW	0b: Does not initiate memory or I/O transactions on the upstream port and handles as an Unsupported Request (UR) to memory and I/O transactions on the downstream port. For Non-Posted Requests, a completion with UR completion status must be	No/Yes	0

PI7C9X2G1616PR Document Number DS40340 Rev 7-2 Page 63 of 198 www.diodes.com





			returned 1b: Enables the Switch Port to forward memory and I/O Read/Write transactions in the upstream direction		
3	Special Cycle Enable	RsvdP	Not Support.	No	0
4	Memory Write And Invalidate Enable	RsvdP	Not support.	No	0
5	VGA Palette Snoop Enable	RsvdP	Not Support.	No	0
6	Parity Error Response Enable	RW	<ul><li>0b: Switch may ignore any parity errors that it detects and continue normal operation</li><li>1b: Switch must take its normal action when a parity error is detected</li></ul>	No/Yes	0
7	Wait Cycle Control	RsvdP	Not Support.	No	0
8	SERR# enable	RW	<ul><li>0b: Disables the reporting of Non-fatal and Fatal errors detected by the Switch to the Root Complex</li><li>1b: Enables the Non-fatal and Fatal error reporting to Root Complex</li></ul>	No/Yes	0
9	Fast Back-to-Back Enable	RsvdP	Not Support.	No	0
10	Interrupt Disable	RW	Controls the ability of a PCI Express device to generate INTx Interrupt Messages. In the Switch, this bit does not affect the forwarding of INTx messages from the downstream ports.	No/Yes	0
15:11	Reserved	RsvdP	Not Support.	No	0000 0b

# 8.2.4 PRIMARY STATUS REGISTER - OFFSET 04h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
18:16	Reserved	RsvdP	Not Support.	No	000b
19	Interrupt Status	RO	Indicates that an INTx Interrupt Message is pending internally to the device. In the Switch, the forwarding of INTx messages from the downstream device of the Switch port is not reflected in this bit. Must be hardwired to 0.	No	0
20	Capabilities List	RO	Set to 1b to enable support for the capability list (offset 34h is the pointer to the data structure).	No	1
21	66MHz Capable	RO	Does not apply to PCI Express. Must be hardwired to 0.	No	0
22	Reserved	RsvdP	Not Support.	No	0
23	Fast Back-to-Back Capable	RsvdP	Not Support.	No	0
24	Master Data Parity Error	RW1C	Set to 1b (by a requester) whenever a Parity error is detected or forwarded on the primary side of the port in a Switch. If the Parity Error Response Enable bit is cleared, this bit is never set.	No/Yes	0
26:25	DEVSEL# timing	RsvdP	Not Support.	No	00b
27	Signaled Target Abort	RsvdP	Not Support.	No	0
28	Received Target Abort	RsvdP	Not Support.	No	0
29	Received Master Abort	RsvdP	Not Support.	No	0
30	Signaled System Error	RW1C	Set to 1b when the Switch sends an ERR_FATAL or ERR_NONFATAL Message, and the SERR Enable bit in the Command register is 1.	No/Yes	0
31	Detected Parity Error	RW1C	Set to 1b whenever the primary side of the port in a Switch receives a Poisoned TLP.	No/Yes	0

# 8.2.5 REVISION ID REGISTER - OFFSET 08h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
7:0	Revision	RO	Indicates revision number of device.	Yes	00h

Page 64 of 198 www.diodes.com





# 8.2.6 CLASS REGISTER - OFFSET 08h

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
15:8	Programming Interface	RO	Read as 00h to indicate no programming interfaces have been defined for PCI-to-PCI Bridges.	No	00h
23:16	Sub-Class Code	RO	Read as 04h to indicate device is a PCI-to-PCI Bridge.	No	04h
31:24	Base Class Code	RO	Read as 06h to indicate device is a Bridge device.	No	06h

# 8.2.7 CACHE LINE REGISTER - OFFSET 0Ch

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
7:0	Cache Line Size	RW	The cache line size register is set by the system firmware and the operating system cache line size. This field is implemented by PCI Express devices as a RW field for legacy compatibility, but it has no impact on any PCI Express device functionality.	No/Yes	00h

## 8.2.8 PRIMARY LATENCY TIMER REGISTER - OFFSET 0Ch

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
15:8	Primary Latency Timer	RsvdP	Not Support.	No	00h

## 8.2.9 HEADER TYPE REGISTER - OFFSET 0Ch

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
22:16	Header Type	RO	Read as 01h to indicate that the register layout conforms to the standard PCI-to-PCI Bridge layout.	No	01h
23	Multi-Function Device	RO	0b: Single function device 1b: Multiple functions device	No	1 for Up 0 for Down

# 8.2.10 BASE ADDRESS 0 REGISTER – OFFSET 10h (Upstream Port Only)

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
0	Memory Space Indicator	RO	0b: indicate Memory Base address 1b: indicate I/O Base address	No	0
2:1	64-bit Addressing	RO	00b: 32-bit addressing 10b: 64-bit addressing Others: Reserved	No	00b
3	Prefetchable	RO	0b: Non-prefetchable 1b: Prefetchable	No	0
16:4	Reserved	RsvdP	Not Support.	No	0-0h
31:17	Base Address 0	RW	Use this Memory base address to map the packet switch registers.	No/Yes	0-0h

# 8.2.11 BASE ADDRESS 1 REGISTER – OFFSET 14h (Upstream Port Only)

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
31:0	Base Address 1	RO/RW	RO when the Base Address 0 register is not 64-bit addressing (offset 10h[2:1] is not 10b).	No/Yes	0000_0000h

Page 65 of 198 www.diodes.com





	RW when the Base Address 0 register is 64-bit addressing. Base Address 1 is used to provide the upper 32 Address bits when offset 10h[2:1] is set to 10b.			
--	-----------------------------------------------------------------------------------------------------------------------------------------------------------	--	--	--

# 8.2.12 PRIMARY BUS NUMBER REGISTER - OFFSET 18h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
7:0	Primary Bus Number	RW	Indicates the number of the PCI bus to which the primary interface is connected. The value is set in software during configuration.	No/Yes	00h

# 8.2.13 SECONDARY BUS NUMBER REGISTER - OFFSET 18h

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
15:8	Secondary Bus Number	RW	Indicates the number of the PCI bus to which the secondary interface is connected. The value is set in software during configuration.	No/Yes	00h

# 8.2.14 SUBORDINATE BUS NUMBER REGISTER – OFFSET 18h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
23:16	Subordinate Bus Number	RW	Indicates the number of the PCI bus with the highest number that is subordinate to the Bridge. The value is set in software during configuration.	No/Yes	00h

## 8.2.15 SECONDARY LATENCY TIMER REGISTER – OFFSET 18h

BI	Г	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
31:	24	Secondary Latency Timer	RsvdP	Not Support.	No	00h

## 8.2.16 I/O BASE ADDRESS REGISTER – OFFSET 1Ch

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
3:0	32-bit Indicator	RO	Read as 1h to indicate 32-bit I/O addressing.	No	1h
7:4	I/O Base Address [15:12]	RW	Defines the bottom address of the I/O address range for the Bridge to determine when to forward I/O transactions from one interface to the other. The upper 4 bits correspond to address bits [15:12] and are writable. The lower 12 bits corresponding to address bits [11:0] are assumed to be 0. The upper 16 bits corresponding to address bits [31:16] are defined in the I/O base address upper 16 bits address register.	No/Yes	Oh

# 8.2.17 I/O LIMIT ADDRESS REGISTER – OFFSET 1Ch

BI	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
11:	3 32-bit Indicator	RO	Read as 1h to indicate 32-bit I/O addressing.	No	1h

PI7C9X2G1616PR Document Number DS40340 Rev 7-2 Page 66 of 198 www.diodes.com





PI7C9X2G1616PR

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
15:12	I/O Limit Address [15:12]	RW	Defines the top address of the I/O address range for the Bridge to determine when to forward I/O transactions from one interface to the other. The upper 4 bits correspond to address bits [15:12] and are writable. The lower 12 bits corresponding to address bits [11:0] are assumed to be FFFh. The upper 16 bits corresponding to address bits [31:16] are defined in the I/O limit address upper 16 bits address register.	No/Yes	0h

# 8.2.18 SECONDARY STATUS REGISTER – OFFSET 1Ch

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
20:16	Reserved	RsvdP	Not Support.	No	0_0000b
21	66MHz Capable	RsvdP	Not Support.	No	0
22	Reserved	RsvdP	Not Support.	No	0
23	Fast Back-to-Back Capable	RsvdP	Not Support.	No	0
24	Master Data Parity Error	RW1C	Set to 1b (by a requester) whenever a Parity error is detected or forwarded on the secondary side of the port in a Switch. If the Parity Error Response Enable bit is cleared, this bit is never set.	No/Yes	0
26:25	DEVSEL_L timing	RsvdP	Not Support.	No	00b
27	Signaled Target Abort	RsvdP	Not Support.	No	0
28	Received Target Abort	RsvdP	Not Support.	No	0
29	Received Master Abort	RsvdP	Not Support.	No	0
30	Received System Error	RW1C	Set to 1b when the Switch sends an ERR_FATAL or ERR_NONFATAL Message, and the SERR Enable bit in the Bridge Control register is 1.	No/Yes	0
31	Detected Parity Error	RW1C	Set to 1b whenever the secondary side of the port in a Switch receives a Poisoned TLP.	No/Yes	0

# 8.2.19 MEMORY BASE ADDRESS REGISTER - OFFSET 20h

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
3:0	Reserved	RsvdP	Not Support.	No	0h
15:4	Memory Base Address [31:20]	RW	Defines the bottom address of an address range for the Bridge to determine when to forward memory transactions from one interface to the other. The upper 12 bits correspond to address bits [31:20] and are able to be written to. The lower 20 bits corresponding to address bits [19:0] are assumed to be 0.	No/Yes	000h

# 8.2.20 MEMORY LIMIT ADDRESS REGISTER - OFFSET 20h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
19:16	Reserved	RsvdP	Not Support.	No	0h
31:20	Memory Limit Address [31:20]	RW	Defines the top address of an address range for the Bridge to determine when to forward memory transactions from one interface to the other. The upper 12 bits correspond to address bits [31:20] and are writable. The lower 20 bits corresponding to address bits [19:0] are assumed to be FFFFh.	No/Yes	000h

Page 67 of 198 www.diodes.com





# 8.2.21 PREFETCHABLE MEMORY BASE ADDRESS REGISTER - OFFSET 24h

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
3:0	64-bit addressing	RO	Read as 1h to indicate 64-bit addressing.	No	1h
15:4	Prefetchable Memory Base Address [31:20]	RW	Defines the bottom address of an address range for the Bridge to determine when to forward memory read and write transactions from one interface to the other. The upper 12 bits correspond to address bits [31:20] and are writable. The lower 20 bits are assumed to be 0. The memory base register upper 32 bits contain the upper half of the base address.	No/Yes	000h

# 8.2.22 PREFETCHABLE MEMORY LIMIT ADDRESS REGISTER - OFFSET 24h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
19:16	64-bit addressing	RO	Read as 1h to indicate 64-bit addressing.	No	1h
31:20	Memory Limit Address [31:20]	RW	Defines the top address of an address range for the Bridge to determine when to forward memory transactions from one interface to the other. The upper 12 bits correspond to address bits [31:20] and are writable. The lower 20 bits corresponding to address bits [19:0] are assumed to be FFFFh.	No/Yes	000h

# 8.2.23 PREFETCHABLE MEMORY BASE ADDRESS UPPER 32-BITS REGISTER – OFFSET 28h

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
31:0	Prefetchable Memory Base Address, Upper 32-bits [63:32]	RW	Defines the upper 32-bits of a 64-bit bottom address of an address range for the Bridge to determine when to forward memory read and write transactions from one interface to the other.	No/Yes	0000_0000h

# 8.2.24 PREFETCHABLE MEMORY LIMIT ADDRESS UPPER 32-BITS REGISTER – OFFSET 2Ch

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
31:0	Prefetchable Memory Limit Address, Upper 32-bits [63:32]	RW	Defines the upper 32-bits of a 64-bit top address of an address range for the Bridge to determine when to forward memory read and write transactions from one interface to the other.	No/Yes	0000_0000h

# 8.2.25 I/O BASE ADDRESS UPPER 16-BITS REGISTER - OFFSET 30h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
15:0	I/O Base Address, Upper 16-bits [31:16]	RW	Defines the upper 16-bits of a 32-bit bottom address of an address range for the Bridge to determine when to forward I/O transactions from one interface to the other.	No/Yes	0000h





# 8.2.26 I/O LIMIT ADDRESS UPPER 16-BITS REGISTER - OFFSET 30h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
31:16	I/O Limit Address, Upper 16-bits [31:16]	RW	Defines the upper 16-bits of a 32-bit top address of an address range for the Bridge to determine when to forward I/O transactions from one interface to the other.	No/Yes	0000h

## 8.2.27 CAPABILITY POINTER REGISTER - OFFSET 34h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
7:0	Capability Pointer	RO	Indicates next capability pointer.	Yes	40h

## 8.2.28 INTERRUPT LINE REGISTER - OFFSET 3Ch

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
7:0	Interrupt Line	RW	Indicates the Interrupt Line.	No/Yes	00h

# 8.2.29 INTERRUPT PIN REGISTER - OFFSET 3Ch

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
15:8	Interrupt Pin	RO	The Switch implements INTA virtual wire interrupt signals to represent hot-plug events at downstream ports. 0b: disable INTA 1b: enable INTA	Yes	00h for Up 01h for Down

# 8.2.30 BRIDGE CONTROL REGISTER - OFFSET 3Ch

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
16	Parity Error Response	RW	<ul><li>0b: Ignore Poisoned TLPs on the secondary interface</li><li>1b: Enable the Poisoned TLPs reporting and detection on the secondary interface</li></ul>	No/Yes	0
17	S_SERR# Enable	RW	<ul> <li>0b: Disables the forwarding of EER_COR, ERR_NONFATAL and ERR_FATAL from secondary to primary interface</li> <li>1b: Enables the forwarding of EER_COR, ERR_NONFATAL and ERR_FATAL from secondary to primary interface</li> </ul>	No/Yes	0
18	ISA Enable	RW	<ul> <li>0b: Forwards downstream all I/O addresses in the address range defined by the I/O Base, I/O Base, and Limit registers</li> <li>1b: Forwards upstream all I/O addresses in the address range defined by the I/O Base and Limit registers that are in the first 64KB of PCI I/O address space (top 768 bytes of each 1KB block)</li> </ul>	No/Yes	0
19	VGA Enable	RW	<ul> <li>0b: Ignores access to the VGA memory or IO address range</li> <li>1b: Forwards transactions targeted at the VGA memory or IO address range</li> <li>VGA memory range starts from 000A 0000h to 000B FFFFh</li> <li>VGA IO addresses are in the first 64KB of IO address space.</li> <li>AD [9:0] is in the ranges 3B0 to 3BBh and 3C0h to 3DFh.</li> </ul>	No/Yes	0
20	VGA 16-bit Decode	RW	0b: Executes 10-bit address decoding on VGA I/O accesses 1b: Executes 16-bit address decoding on VGA I/O accesses	No/Yes	0
21	Master Abort Mode	RsvdP	Not Support.	No	0

PI7C9X2G1616PR Document Number DS40340 Rev 7-2 Page 69 of 198 www.diodes.com





PI7C9X2G1616PR

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
22	Secondary Bus Reset	RW	<ul> <li>Ob: Does not trigger a hot reset on the corresponding PCI Express Port</li> <li>Ib: Triggers a hot reset on the corresponding PCI Express Port</li> <li>At the downstream port, it asserts PORT_RST# to the attached downstream device.</li> <li>At the upstream port, it asserts the PORT_RST# at all the downstream ports.</li> </ul>	No/Yes	0
23	Fast Back-to-Back Enable	RsvdP	Not Support.	No	0
24	Primary Master Timeout	RsvdP	Not Support.	No	0
25	Secondary Master Timeout	RsvdP	Not Support.	No	0
26	Master Timeout Status	RsvdP	Not Support.	No	0
27	Discard Timer SERR# Enable	RsvdP	Not Support.	No	0
31:28	Reserved	RsvdP	Not Support.	No	0h

# 8.2.31 POWER MANAGEMENT CAPABILITIES REGISTER - OFFSET 40h

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
7:0	Enhanced Capabilities ID	RO	Read as 01h to indicate that these are power management enhanced capability registers.	No	01h
15:8	Next Item Pointer	RO	Indicates next capability pointer.	Yes	48h
18:16	Power Management Revision	RO	Read as 011b to indicate the device is compliant to Revision 1.2 of <i>PCI Power Management Interface Specifications</i> .	No	011b
19	PME# Clock	RO	Does not apply to PCI Express. Must be hardwired to 0.	No	0
20	Reserved	RsvdP	Not Support.	No	0
21	Device specific Initialization	RO	Read as 0b to indicate Switch does not have device specific initialization requirements.	Yes	0
24:22	AUX Current	RO	Reset to 000b.	Yes	000b
25	D1 Power State Support	RO	Read as 0b to indicate Switch does not support the D1 power management state.	Yes	0
26	D2 Power State Support	RO	Read as 0b to indicate Switch does not support the D2 power management state.	Yes	0
31:27	PME# Support	RO	Read as 19h to indicate Switch supports the forwarding of PME# message in D0, D3 and D4 states.	Yes	19h

# 8.2.32 POWER MANAGEMENT DATA REGISTER – OFFSET 44h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
			Indicates the current power state of the Switch. Writing a value of D0 when the previous state was D3 cause a hot reset without asserting DWNRST_L.		
1:0	Power State	RW	00b: D0 state	No/Yes	00b
			01b: D1 state		
			10b: D2 state		
			11b: D3 hot state		
2	Reserved	RsvdP	Not Support.	No	0
			When set, this bit indicates that device transitioning from D3hot to		
3	No_Soft_Reset	RO	D0 does not perform an internal reset. When clear, an internal reset	Yes	1
			is performed when power state transits from D3hot to D0.		
7:4	Reserved	RsvdP	Not Support.	No	0h
8	PME# Enable	RW	When asserted, the Switch will generate the PME# message.	No/Yes	0

PI7C9X2G1616PR Document Number DS40340 Rev 7-2

Page 70 of 198 www.diodes.com





PI7C9X2G1616PR

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
		RW	Select data registers.		
12:9	Data Select	/		No/Yes	0h
		RO	RW if offset 870h[1]=1 and RO if offset 870h[1]=0.		
14:13	Data Scale	RO	Reset to 00b.	No	00b
15	PME Status	RW1C	Read as 0b as the PME# message is not implemented.	No	0

# 8.2.33 PPB SUPPORT EXTENSIONS REGISTER - OFFSET 44h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
21:16	Reserved	RsvdP	Not Support.	No	00h
22	B2_B3 Support for D3 _{HOT}	RsvdP	Not Support.	No	0
23	Bus Power / Clock Control Enable	RsvdP	Not Support.	No	0

## 8.2.34 DATA REGISTER- OFFSET 44h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
31:24	Data Register	RO	Data Register.	Yes	00h

# 8.2.35 MSI CAPABILITIES REGISTER – OFFSET 48h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
7:0	Enhanced Capabilities ID	RO	Read as 05h to indicate that this is message signal interrupt capability register.	No	05h
15:8	Next Item Pointer	RO	Indicates next capability pointer.	Yes	68h
16	MSI Enable	RW	0b: The function is prohibited from using MSI to request service 1b: The function is permitted to use MSI to request service and is prohibited from using its INTx # pin	No/Yes	0
19:17	Multiple Message Capable	RO	Read as 000b.	No	000b
22:20	Multiple Message Enable	RW	Reset to 000b.	No/Yes	000b
23	64-bit address capable	RO	<ul><li>0b: The function is not capable of generating a 64-bit message address</li><li>1b: The function is capable of generating a 64-bit message address</li></ul>	No	1b
31:24	Reserved	RO	Not Support.	No	00h

# 8.2.36 MESSAGE ADDRESS REGISTER – OFFSET 4Ch

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
1:0	Reserved	RsvdP	Not Support.	No	00b
31:2	Message Address	RW	If the message enable bit is set, the contents of this register specify the DWORD aligned address for MSI memory write transaction.	No/Yes	0-0h





# 8.2.37 MESSAGE UPPER ADDRESS REGISTER - OFFSET 50h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
31:0	Message Upper Address	RW	This register is only effective if the device supports a 64-bit message address is set.	No/Yes	0000_0000h

# 8.2.38 MESSAGE DATA REGISTER - OFFSET 54h

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
15:0	Message Data	RW	Message data.	No/Yes	0000h

# 8.2.39 PCI EXPRESS CAPABILITIES REGISTER - OFFSET 68h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
7:0	Enhanced Capabilities ID	RO	Read as 10h to indicate that these are PCI express enhanced capability registers.	No	10h
15:8	Next Item Pointer	RO	Indicates next capability pointer.	Yes	A4h
19:16	Capability Version	RO	Read as 2h to indicate the device is compliant to Revision .2.0 of <i>PCI Express Base Specifications</i> .	No	2h
23:20	Device/Port Type	RO	Indicates the type of PCI Express logical device. 0101b: upstream port 0110b: downstream port	No	5h for Up 6h for Down
24	Slot Implemented	RO	Valid for downstream ports only. When set, indicates that the PCIe Link associated with this Port is connected to a slot. This field is valid for downstream ports of the Switch.	Yes	0 for Up 1 for Down
29:25	Interrupt Message Number	RO	No MSI messages are generated in the transparent mode.	No	00_000b
31:30	Reserved	RsvdP	Not Support.	No	00b

# 8.2.40 DEVICE CAPABILITIES REGISTER - OFFSET 6Ch

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
2:0	Max_Payload_Size Supported	RO	Indicates the maximum payload size that the device can support for TLPs. 000b: 128 payload size 001b: 256 payload size 010b: 512 payload size	Yes	001b
4:3	Phantom Functions Supported	RO	Indicates the support for use of unclaimed function numbers as Phantom functions. Read as 00b, since the Switch does not act as a requester.	No	00b
5	Extended Tag Field Supported	RO	Indicates the maximum supported size of Tag field as a Requester. Read as 0, since the Switch does not act as a requester.	No	0
8:6	Endpoint L0s Acceptable Latency	RO	Acceptable total latency that an Endpoint can withstand due to the transition from L0s state to the L0 state. For Switch, the ASPM software would not check this value.	No	000b
11:9	Endpoint L1 Acceptable Latency	RO	Acceptable total latency that an Endpoint can withstand due to the transition from L1 state to the L0 state. For Switch, the ASPM software would not check this value.	No	000b
14:12	Reserved	RsvdP	Not Support.	No	000b
15	Role_Based Error Reporting	RO	When set, indicates that the device implements the functionality originally defined in the Error Reporting ECN.	Yes	1

Page 72 of 198 www.diodes.com




				1/03/2010	
BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
17:16	Reserved	RsvdP	Not Support.	No	00b
25:18	Captured Slot Power Limit Value	RO	It applies to Upstream Port only. In combination with the Slot Power Limit Scale value, specifies the upper limit on power supplied by slot. This value is set by the Set_Slot_Power_Limit message or hardwired to 0.	No	00h
27:26	Captured Slot Power Limit Scale	RO	It applies to Upstream Port only. Specifies the scale used for the Slot Power Limit Value. This value is set by the Set_Slot_Power_Limit message or hardwired to 0.	No	00b
31:28	Reserved	RsvdP	Not Support.	No	0h

# 8.2.41 DEVICE CONTROL REGISTER - OFFSET 70h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
0	Correctable Error Reporting Enable	RW	0b: Disable Correctable Error Reporting 1b: Enable Correctable Error Reporting	No/Yes	0
1	Non-Fatal Error Reporting Enable	RW	0b: Disable Non-Fatal Error Reporting 1b: Enable Non-Fatal Error Reporting	No/Yes	0
2	Fatal Error Reporting Enable	RW	0b: Disable Fatal Error Reporting 1b: Enable Fatal Error Reporting	No/Yes	0
3	Unsupported Request Reporting Enable	RW	0b: Disable Unsupported Request Reporting 1b: Enable Unsupported Request Reporting	No/Yes	0
4	Enable Relaxed Ordering	RO	When set, it permits the device to set the Relaxed Ordering bit in the attribute field of transaction. Since the Switch can not either act as a requester or alter the content of packet it forwards, this bit always returns '0' when read.	No	0
7:5	Max_Payload_Size	RW	This field sets maximum TLP payload size for the device. Permissible values that can be programmed are indicated by the Max_Payload_Size Supported in the Device Capabilities register. Any value exceeding the Max_Payload_Size Supported written to this register results into clamping to the Max_Payload_Size Supported value.	No/Yes	000Ь
8	Extended Tag Field Enable	RW	Does not apply to PCI Express Switch. Returns '0' when read.	No	0
9	Phantom Function Enable	RW	Does not apply to PCI Express Switch. Returns '0' when read.	No	0
10	Auxiliary (AUX) Power PM Enable	RO	When set, indicates that a device is enabled to draw AUX power independent of PME AUX power.	No	0
11	Enable No Snoop	RO	When set, it permits to set the No Snoop bit in the attribute field of transaction. Since the Switch can not either act as a requester or alter the content of packet it forwards, this bit always returns '0' when read.	No	0
14:12	Max_Read_ Request_Size	RO	This field sets the maximum Read Request size for the device as a Requester. Since the Switch does not generate read request by itself, these bits are hardwired to 0.	No	000b
15	Reserved	RsvdP	Not Support.	No	0

## 8.2.42 DEVICE STATUS REGISTER - OFFSET 70h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
16	Correctable Error Detected	RW1C	Asserted when correctable error is detected. Errors are logged in this register regardless of whether error reporting is enabled or not in the Device Control register.	No/Yes	0

PI7C9X2G1616PR Document Number DS40340 Rev 7-2 Page 73 of 198 www.diodes.com

December 2020 © Diodes Incorporated





PI7C9X2G1616P	R
---------------	---

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
17	Non-Fatal Error Detected	RW1C	Asserted when non-fatal error is detected. Errors are logged in this register regardless of whether error reporting is enabled or not in the Device Control register.	No/Yes	0
18	Fatal Error Detected	RW1C	Asserted when fatal error is detected. Errors are logged in this register regardless of whether error reporting is enabled or not in the Device Control register.	No/Yes	0
19	Unsupported Request Detected	RW1C	Asserted when unsupported request is detected. Errors are logged in this register regardless of whether error reporting is enabled or not in the Device Control register.	No/Yes	0
20	AUX Power Detected	RO	Asserted when the AUX power is detected by the Switch	No	0
21	Transactions Pending	RO	Each port of Switch does not issue Non-posted Requests on its own behalf, so this bit is hardwired to 0.	No	0
31:22	Reserved	RsvdP	Not Support.	No	0-0h

## 8.2.43 LINK CAPABILITIES REGISTER - OFFSET 74h

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
3:0	Maximum Link Speed	RO	Indicates the maximum speed of the Express link. 0001b: 2.5 Gb/s 0010b: 5.0 Gb/s Others: Reserved	No	2h
9:4	Maximum Link Width	HWInt RO	Indicates the maximum width of the given PCIe Link. 00_0001b: x1 link 00_0010b: x2 link 00_0100b: x4 link 00_1000b: x8 link Others: Reserved	No	08h, 04h, 02h or 01h
11:10	Active State Power Management (ASPM) Support	RO	Indicates the level of ASPM supported on the given PCIe Link. Each port of Switch supports L0s and L1 entry.	Yes	01b
14:12	L0s Exit Latency	RO	Indicates the L0s exit latency for the given PCIe Link. The length of time this port requires to complete transition from L0s to L0 is in the range of 256ns to less than 512ns.	Yes	011b
17:15	L1 Exit Latency	RO	Indicates the L1 exit latency for the given PCIe Link. The length of time this port requires to complete transition from L1 to L0 is less than 1 us.	Yes	000b
18	Clock Power Management	RO	For upstream port, a value of 1b indicates that component tolerates the removal of any reference clock via CLKREQ#. For downstream ports, this bit must be hardwired to 0.	Yes	1 for Up 0 for Down
19	Surprise Down Capability Enable	RO	Valid for downstream ports only.	Yes	0
20	Data Link Layer Active Reporting Capable	RO	For downstream ports, this bit must be set to 1b if the component supports the optional capability of reporting the DL_Active state of the Data Link Control and Management State Machine. For a hot- plug capable downstream port, this bit must be set to 1b. For upstream port, this bit must be hardwired to 0.	No	0
21	Link BW Notify Cap.	RO	Valid for downstream ports only.	Yes	0 for Up 1 for Down
23:22	Reserved	RsvdP	Not Support.	No	0
31:24	Port Number	RO	Indicates the PCIe Port Number for the given PCIe Link.	Yes	00h for Up 01 h for Port 1 02h for Port 2 03h for Port 3





## 8.2.44 LINK CONTROL REGISTER - OFFSET 78h

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
1:0	Active State Power Management (ASPM) Control	RW	00b: ASPM is Disabled 01b: L0s Entry Enabled 10b: L1 Entry Enabled 11b: L0s and L1 Entry Enabled Note that the receiver must be capable of entering L0s even when the field is disabled	No/Yes	00Ь
2	Reserved	RsvdP	Not Support.	No	0
3	Read Completion Boundary (RCB)	RsvdP	Not Support.	No	0
4	Link Disable	RW	At upstream port, it is not allowed to disable the link, so this bit is hardwired to '0'. For downstream ports, it disables the link when this bit is set.	No/Yes	0
5	Retrain Link	RW	At upstream port, it is not allowed to retrain the link, so this bit is hardwired to 0. For downstream ports, it initiates Link Retraining when this bit is set. This bit always returns '0' when read.	No/Yes	0
6	Common Clock Configuration	RW	<ul> <li>Ob: The components at both ends of a link are operating with synchronous reference clock</li> <li>1b: The components at both ends of a link are operating with a distributed common reference clock</li> </ul>	No/Yes	0
7	Extended Synch	RW	When set, it transmits 4096 FTS ordered sets in the L0s state for entering L0 state and transmits 1024 TS1 ordered sets in the L1 state for entering L0 state.	No/Yes	0
8	Enable Clock Power Management	RW	Valid for upstream port only- 0b: clock power management is disabled and must hold CLKREQ# low 1b: device is permitted to use CLKREQ# to power manage Link clock	No/Yes	0
9	HW Autonomous Width Disable	RW	Reset to 0b.	No/Yes	0
10	Link Bandwidth Management Interrupt Enable	RW	Valid for downstream ports only.	No/Yes	0
11	Link Autonomous Bandwidth Interrupt Enable	RW	Valid for downstream ports only.	No/Yes	0
15:12	Reserved	RsvdP	Not Support.	No	0h

### 8.2.45 LINK STATUS REGISTER - OFFSET 78h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
19:16	Link Speed	RO	Indicate the negotiated speed of the Express link. 0001b: 2.5 Gb/s 0010b: 5.0 Gb/s	No	1 h
25:20	Negotiated Link Width	RO	Indicates the negotiated width of the given PCIe link. 00_0001b: x1 link 00_0010b: x2 link 00_0100b: x4 link 00_1000b: x8 link	No	00_0001b
26	Training Error	RO	When set, indicates a Link training error occurred. This bit is cleared by hardware upon successful training of the link to the L0 link state.	No	0
27	Link Training	RO	When set, indicates the link training is in progress. Hardware clears this bit once link training is complete.	No	0

Page 75 of 198 www.diodes.com





PI7C9X2G1616P	R
---------------	---

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
28	Slot Clock Configuration	RO	<ul><li>0b: the Switch uses an independent clock irrespective of the presence of a reference on the connector</li><li>1b: the Switch uses the same reference clock that the platform provides on the connector</li></ul>	Yes	1 for Up 0 for Down
29	Data Link Layer Link Active	RO	Indicates the status of the Data Link Control and Management State Machine. 1b: indicate the DL_Active state 0b: otherwise	No	0
30	Link Bandwidth Management Status	RW1C	Valid for downstream port only.	No/Yes	0
31	Link Autonomous Bandwidth Status	RW1C	Valid for downstream port only.	No/Yes	0

# 8.2.46 SLOT CAPABILITIES REGISTER – OFFSET 7Ch (Downstream Port Only)

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
0	Attention Button Present	RO	When set, it indicates that an Attention Button is implemented on the chassis for this slot.	Yes	1
1	Power Controller Present	RO	When set, it indicates that a Power Controller is implemented for this slot.	Yes	1
2	MRL Sensor Present	RO	When set, this bit indicates that an MRL Sensor is implemented on the chassis for this slot.	Yes	1
3	Attention Indicator Present	RO	When set, it indicates that an Attention Indicator is implemented on the chassis for this slot	Yes	1
4	Power Indicator Present	RO	When set, it indicates that a Power Indicator is implemented on the chassis for this slot.	Yes	1
5	Hot-Plug Surprise	RO	When set, it indicates that a device present in this slot might be removed from the system without any prior notification.	Yes	0
6	Hot-Plug Capable	HWInt RO	When set, it indicates that this slot is capable of supporting Hot- Plug operation. Without external I/O expander connected, the default value will be clear to 0.	Yes	0
14:7	Slot Power Limit Value	RO	In combination with the Slot Power Limit Scale value, specifies the upper limit on power supplied by slot. Writes to this register also cause the Port to send the Set_Slot_Power_Limit message.	Yes	19h
16:15	Slot Power Limit Scale	RO	Specifies the scale used for the Slot Power Limit Value. Writes to this register also cause the Port to send the Set_Slot_Power_Limit message.	Yes	00b
17	EM_INTRELOCK Present	RO	When set, it indicates that an Electromechanical Interlock Present is implemented on the chassis for this slot.	Yes	0
18	No Command Completed Support	RO	When set, it indicates that this slot does not generate software notification when an issued command is completed by the Hot- Plug Controller.	Yes	0
31:19	Physical Slot Number	RO	It indicates the physical slot number attached to this Port.	Yes	01 h for Port 1 04h for Port 4 05h for Port 5

# 8.2.47 SLOT CONTROL REGISTER - OFFSET 80h (Downstream Port Only)

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
0	Attention Button Pressed Enable	RW	When set, it enables the generation of Hot-Plug interrupt or wakeup event on an attention button pressed event.	No/Yes	0
1	Power Fault Detected Enable	RW	When set, it enables the generation of Hot-Plug interrupt or wakeup event on a power fault event.	No/Yes	0
2	MRL SENOR ENABLE	RW	When set, it enables the generation of Hot-Plug interrupt or wakeup event on a MRL sensor event.	No/Yes	0
3	Presence Detect Changed Enable	RW	When set, it enables the generation of Hot-Plug interrupt or wakeup event on a presence detect changed event.	No/Yes	0

PI7C9X2G1616PR Document Number DS40340 Rev 7-2

Page 76 of 198 www.diodes.com

December 2020 © Diodes Incorporated





PI7C9X2G1616PR

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
4	Command Completed Interrupt Enable	RW	When set, it enables the generation of Hot-Plug interrupt when the Hot-Plug Controller completes a command. It is valid when offset 7Ch[18]=0b.	No/Yes	0
5	Hot-Plug Interrupt Enable	RW	When set, it enables generation of Hot-Plug interrupt on enabled Hot-Plug events.	No/Yes	0
7:6	Attention Indicator Control	RW	Controls the display of Attention Indicator. 00b: Reserved 01b: On 10b: Blink 11b: Off Writes to this register also cause the Port to send the ATTENTION_INDICATOR_* Messages.	No/Yes	116
9:8	Power Indicator Control	RW	Controls the display of Power Indicator. 00b: Reserved 01b: On 10b: Blink 11b: Off Writes to this register also cause the Port to send the POWER_INDICATOR_* Messages.	No/Yes	11b when bit[2]=1 01b when bit[2]=0
10	Power Controller Control	RW	0b: reset the power state of the slot (Power On) 1b: set the power state of the slot (Power Off)	No/Yes	1 when bit[2]=1 0 when bit[2]=0
11	EM_INTRELOCK Control	RW	When set, it enables the generation of Hot-Plug interrupt or wakeup event on an electromechanical interlock present event.	No/Yes	0
12	Data Link Layer State Changed Enable	RW	When set, it enables the generation of Hot-Plug interrupt or wakeup event on a data link layer state changed event.	No/Yes	0
15:13	Reserved	RsvdP	Not Support.	No	000b

# 8.2.48 SLOT STATUS REGISTER – OFFSET 80h (Downstream Port Only)

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
16	Attention Button Pressed	RW1C	When set, it indicates the Attention Button is pressed.	No/Yes	0
17	Power Fault Detected	RW1C	When set, it indicates a Power Fault is detected.	No/Yes	0
18	MRL Sensor Changed	RW1C	When set, it indicates a MRL Sensor Changed is detected.	No/Yes	0
19	Presence Detect Changed	RW1C	When set, it indicates a Presence Detect Changed is detected.	No/Yes	0
20	Command Completed	RW1C	When set, it indicates the Hot-Plug Controller completes an issued command.	No/Yes	0
21	MRL Sensor State	RO	Reflects the status of MRL Sensor. 0b: MRL Closed 1b: MRL Opened	No	0
22	Presence Detect State	RO	Indicates the presence of a card in the slot. Ob: Slot Empty 1b: Card Present in slot This register is implemented on all downstream ports that implement slots. For downstream ports not connected to slots (where the Slot Implemented bit of the PCI Express Capabilities register is 0b), this bit returns 1b.	No	0
23	EM_INTRELOCK Status	RO	Indicates the Electromechanical Interlock's current status. 0b: Electromechanical Interlock is disengaged 1b: Electromechanical Interlock is engaged	No	0
24	Data Link Layer State Changed	RW1C	This bit is set when the value reported in the Data Link Layer Link Active field of the Link Status register is changed.	No/Yes	0

PI7C9X2G1616PR Document Number DS40340 Rev 7-2 Page 77 of 198 www.diodes.com



PI7C9X2G1616PR

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
31:25	Reserved	RsvdP	Not Support.	No	0-0h

### 8.2.49 DEVICE CAPABILITIES REGISTER 2 - OFFSET 8Ch

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
4:0	Reserved	RsvdP	Not Support.	No	0_000b
5	ARI Forwarding Supported	RO	0b: ARI forwarding is not supported 1b: ARI forwarding is supported Valid for downstream ports only.	No/Yes	0 for Up 1 for Down
31:6	Reserved	RsvdP	Not Support.	No	0-0h

## 8.2.50 DEVICE CONTROL REGISTER 2 – OFFSET 90h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
4:0	Reserved	RsvdP	Not Support.	No	0_000b
5	ARI Forwarding Enable	RW	0b: Disable 1b: Enable Valid for downstream ports only.	No/Yes	0
31:6	Reserved	RsvdP	Not Support.	No	0-0h

#### 8.2.51 DEVICE STATUS REGISTER 2 – OFFSET 90h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
31:	6 Device Status 2	RO	Not Support.	No	0000h

#### 8.2.52 LINK CAPABILITIES REGISTER 2 – OFFSET 94h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
31:0	Link Capability 2	RO	Not Support.	No	0000_0000h

#### 8.2.53 LINK CONTROL REGISTER 2 – OFFSET 98h

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
3:0	Target Link Speed	RW	0001b: target link speed set to 2.5 Gb/s 0010b: target link speed set to 5.0 Gb/s Others: Reserved	No/Yes	2h
4	Enter Compliance	RW	1b: enter compliance mode	No/Yes	0
5	HW_AutoSpeed_Dis	RW	Reset to 0b.	No/Yes	0
6	Select_Deemp	RW	Valid for downstream ports only. 0b: Select -6.0db de-emphasis 1b: Select -3.5db de-emphasis	Yes	0 for Up 1 for Down
9:7	Tran_Margin	RW	Reset to 000b.	No/Yes	000b
10	Enter Modify Compliance	RW	Valid for upstream port only.	No/Yes	0
11	Compliance SOS	RW	Valid for upstream port only.	No/Yes	0
12	Compliance_Deemp	RW	Valid for upstream port only.	No/Yes	0

PI7C9X2G1616PR Document Number DS40340 Rev 7-2

Page 78 of 198 www.diodes.com





BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
15:13	Reserved	RsvdP	Not Support.	No	000b

#### 8.2.54 LINK STATUS REGISTER 2 – OFFSET 98h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
16	Current De-emphasis level	RO	0b:current de-emphasis level is -3.5db 1b: current de-emphasis level is -6.0db	No	0 for Up 1 for Down
31:17	Reserved	RO	Not Support.	No	0-0h

## 8.2.55 SLOT CAPABILITIES REGISTER 2 - OFFSET 9Ch

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
31:0	Slot Capability 2	RO	Not Support.	No	0000_0000h

### 8.2.56 SLOT CONTROL REGISTER 2 – OFFSET A0h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
15:0	Slot Control 2	RO	Not Support.	No	0000h

### 8.2.57 SLOT STATUS REGISTER 2 – OFFSET A0h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
31:	6 Slot Status 2	RO	Not Support.	No	0000h

### 8.2.58 SSID/SSVID CAPATILITIES REGISTER - OFFSET A4h

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
7:0	SSID/SSVID Capabilities ID	RO	Read as 0Dh to indicate that these are SSID/SSVID capability registers.	No	0Dh
15:8	Next Item Pointer	RO	Read as 00h. No other ECP registers.	Yes	00h
31:16	Reserved	RsvdP	Not Support.	No	0000h

#### 8.2.59 SUBSYSTEM VENDOR ID REGISTER - OFFSET A8h

BI	Т	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
15	:0	SSVID	RO	Indicates the sub-system vendor id.	Yes	12D8h

## 8.2.60 SUBSYSTEM ID REGISTER - OFFSET A8h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
31:16	SSID	RO	Indicates the sub-system device id.	Yes	8619h

PI7C9X2G1616PR Document Number DS40340 Rev 7-2 Page 79 of 198 www.diodes.com

December 2020 © Diodes Incorporated





# 8.2.61 BAR 0-1 CONFIGURATION REGISTER – OFFSET E4h (Upstream Port Only)

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
1:0	BAR0 Type	RW	Decides whether BAR0 is 32 or 64 bit addressing. 00b: Disable BAR0/1 01b: Reserved 10b: 32-bit addressing 11b: 64-bit addressing	Yes	10b
2	BAR0 Prefetchable	RW	0b: Non Prefetchable 1b: Prefetchable	Yes	0
31:3	Reserved	RsvdP	Not Support.	No	0-0h

# 8.2.62 DEVICE SERIAL NUMBER ENHANCED CAPABILITY HEADER REGISTER – OFFSET 100h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
15:0	Extended Capabilities ID	RO	Read as 0003h to indicate that these are PCI express extended capability registers for device serial number extend capability register.	No	0003h
19:16	Capability Version	RO	Must be 1h for this version.	No	1h
31:20	Next Capability Offset	RO	Indicates next capability pointer.	Yes	FB4h

## 8.2.63 DEVICE SERIAL NUMBER LOWER DW REGISTER - OFFSET 104h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
31:0	Device serial number 1 st DW	RO	First dword for device serial number.	Yes	0000_0000h

### 8.2.64 DEVICE SERIAL NUMBER HIGHER DW REGISTER – OFFSET 108h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
31:0	Device serial number $2^{nd}$ DW	RO	Second dword for device serial number.	Yes	0000_0000h

#### 8.2.65 PCI EXPRESS POWER BUDGETING ENHANCED CAPABILITY HEADER REGISTER – OFFSET 138h (Upstream Port Only)

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
15:0	Extended Capabilities ID	RO	Read as 0004h to indicate that these are PCI express extended capability registers for power budgeting.	No	0004h
19:16	Capability Version	RO	Must be 1h for this version.	No	01h
31:20	Next Capability Offset	RO	Indicates next capability pointer.	Yes	148h





# 8.2.66 DATA SELECT REGISTER - OFFSET 13Ch (Upstream Port Only)

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
7:0	Data Selection	RW	It indexes the power budgeting data reported through the data register. When 00h, it selects D0 Max power budget When 01h, it selects D0 Sustained power budget Other values would return zero power budgets, which means not supported.	No/Yes	00h
31:8	Reserved	RsvdP	Not Support.	No	0-0h

# 8.2.67 POWER BUDGETING DATA REGISTER – OFFSET 140h (Upstream Port Only)

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
7:0	Base Power	RO	It specifies the base power value in watts. This value represents the required power budget in the given operation condition.	Yes	04h if 13Ch=0 03h if 13Ch=1
9:8	Data Scale	RO	It specifies the scale to apply to the base power value.	Yes	00b
12:10	PM Sub State	RO	It specifies the power management sub state of the given operation condition. It is initialized to the default sub state.	No	000Ь
14:13	PM State	RO	It specifies the power management state of the given operation condition. It defaults to the D0 power state.	Yes	00b
17:15	Туре	RO	It generates to the Do power state. It specifies the type of the given operation condition which is controlled by offset 13Ch[7:0]. It defaults to the Maximum power state.	Yes	111b if 13Ch=0 011b if 13Ch=1
20:18	Power Rail	RO	It specifies the power rail of the given operation condition.	No	010b
31:21	Reserved	RsvdP	Not Support.	No	0-0h

# 8.2.68 POWER BUDGET CAPABILITY REGISTER – OFFSET 144h (Upstream Port Only)

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
0	System Allocated	RO	When set, it indicates that the power budget for the device is included within the system power budget.	Yes	1
31:1	Reserved	RsvdP	Not Support.	No	0-0h

### 8.2.69 PCI EXPRESS VIRTUAL CHANNEL ENHANCED CAPABILITY HEADER REGISTER – OFFSET 148h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
15:0	Extended Capabilities ID	RO	Read as 0002h to indicate that these are PCI express extended capability registers for virtual channel.	No	02h
19:16	Capability Version	RO	Read as 1h.	No	01h
31:20	Next Capability Offset	RO	Indicates next capability pointer.	Yes	270h for Up 520h for Down





# 8.2.70 PORT VC CAPABILITY REGISTER 1 – OFFSET 14Ch

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
2:0	Extended VC Count	RO	Indicates the number of extended Virtual Channels in addition to the default VC supported by the Switch.	Yes	000b
3	Reserved	RsvdP	Not Support.	No	0
6:4	Low Priority Extended VC Count	RO	Indicates the number of extended Virtual Channels in addition to the default VC belonging to the low-priority VC (LPVC) group.		000b
7	Reserved	RO	Not Support.	No	0
9:8	Reference Clock	RO	Indicates the reference clock for Virtual Channels that support time- based WRR Port Arbitration. Defined encoding is 00b for 100 ns reference clock.	No	00b
11:10	Port Arbitration Table Entry Size	RO	Read as 10b to indicate the size of Port Arbitration table entry in the device is 4 bits.	No	10b
31:12	Reserved	RsvdP	Not Support.	No	0000_0h

# 8.2.71 PORT VC CAPABILITY REGISTER 2 - OFFSET 150h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
7:0	VC Arbitration Capability	RO	It indicates the types of VC Arbitration supported by the device for the LPVC group. This field is valid when LPVC is greater than 0. The Switch supports Hardware fixed arbitration scheme, e.g., Round Robin and Weight Round Robin arbitration with 32 phases in LPVC.	No	00h
23:8	Reserved	RsvdP	Not Support.	No	0000h
31:24	VC Arbitration Table Offset	RO	It indicates the location of the VC Arbitration Table as an offset from the base address of the Virtual Channel Capability register in the unit of DQWD (16 bytes).	No	00h if VC1=0 04h if VC1=1

## 8.2.72 PORT VC CONTROL REGISTER - OFFSET 154h

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
0	Load VC Arbitration Table	WO	When set, the programmed VC Arbitration Table is applied to the hardware. This bit always returns '0' when read.	Yes	0
3:1	VC Arbitration Select	RW	This field is used to configure the VC Arbitration by selecting one of the supported VC Arbitration schemes. The valid values for the schemes supported by Switch are 0b and 1b. Other value than these written into this register will be treated as default.		000b
15:4	Reserved	RsvdP	Not Support.	No	000h

## 8.2.73 PORT VC STATUS REGISTER - OFFSET 154h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
16	VC Arbitration Table Status	RO	When set, it indicates that any entry of the VC Arbitration Table is written by software. This bit is cleared when hardware finishes loading values stored in the VC Arbitration Table after the bit of "Load VC Arbitration Table" is set.	No	0
31:17	Reserved	RsvdP	Not Support.	No	0-0h





# 8.2.74 VC RESOURCE CAPABILITY REGISTER (0) - OFFSET 158h

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
7:0	Port Arbitration Capability	RO	It indicates the types of Port Arbitration supported by the VC resource. The Switch supports Hardware fixed arbitration scheme, e.g., Round Robin, Weight Round Robin (WRR) arbitration with 128 phases (3~4 enabled ports) and Time-based WRR with 128 phases (3~4 enabled ports). Note that the Time-based WRR is only valid in VC1.	No	03h
13:8	Reserved	RsvdP	Not Support.	No	00_0000h
14	Advanced Packet Switching	RO	When set, it indicates the VC resource only supports transaction optimized for Advanced Packet Switching (AS).	No	0
15	Reject Snoop Transactions	RsvdP	Not Support.	No	0
22:16	Maximum Time Slots	RO	It indicates the maximum numbers of time slots (minus one) are allocated for Isochronous traffic.	No	3Fh
23	Reserved	RsvdP	Not Support.	No	0
31:24	Port Arbitration Table Offset	RO	It indicates the location of the Port Arbitration Table (n) as an offset from the base address of the Virtual Channel Capability register in the unit of DQWD (16 bytes).	No	05h

## 8.2.75 VC RESOURCE CONTROL REGISTER (0) – OFFSET 15Ch

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
7:0	TC/VC Map	RW	This field indicates the TCs that are mapped to the VC resource. Bit locations within this field correspond to TC values. When the bits in this field are set, it means that the corresponding TCs are mapped to the VC resource. Bit 0 of this filed is read-only and must be set to "1" for the VC0.	Yes	FFh
15:8	Reserved	RsvdP	Not Support.	No	00h
16	Load Port Arbitration Table	RW	When set, the programmed Port Arbitration Table is applied to the hardware. This bit always returns '0' when read.	No/Yes	0
19:17	Port Arbitration Select	RW	This field is used to configure the Port Arbitration by selecting one of the supported Port Arbitration schemes. The permissible values for the schemes supported by Switch are 000b and 011b at VC0, other value than these written into this register will be treated as default.	No/Yes	000Ь
23:20	Reserved	RsvdP	Not Support.	No	0h
26:24	VC ID	RO	This field assigns a VC ID to the VC resource.	No	000b
30:27	Reserved	RsvdP	Not Support.	No	0h
31	VC Enable	RW	0b: it disables this Virtual Channel 1b: it enables this Virtual Channel	No	1

## 8.2.76 VC RESOURCE STATUS REGISTER (0) - OFFSET 160h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
15:0	Reserved	RsvdP	Not Support.	No	0000h
16	Port Arbitration Table Status	RO	When set, it indicates that any entry of the Port Arbitration Table is written by software. This bit is cleared when hardware finishes loading values stored in the Port Arbitration Table after the bit of "Load Port Arbitration Table" is set.	No	0
17	VC Negotiation Pending	RO	When set, it indicates that the VC resource is still in the process of negotiation. This bit is cleared after the VC negotiation is complete.	No	0
31:18	Reserved	RsvdP	Not Support.	No	0-0h





# 8.2.77 VC RESOURCE CAPABILITY REGISTER (1) – OFFSET 164h

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
7:0	Port Arbitration Capability	RO	It indicates the types of Port Arbitration supported by the VC resource. The Switch supports Hardware fixed arbitration scheme, e.g., Round Robin, Weight Round Robin (WRR) arbitration with 128 phases (3~4 enabled ports) and Time-based WRR with 128 phases (3~4 enabled ports). Note that the Time-based WRR is only valid in VC1.	No	00h if VC1=0 13h if VC1=1
13:8	Reserved	RsvdP	Not Support.	No	0-0h
14	Advanced Packet Switching	RO	When set, it indicates the VC resource only supports transaction optimized for Advanced Packet Switching (AS).	No	0
15	Reject Snoop Transactions	RO	This bit is not applied to PCIe Switch.	No	0
22:16	Maximum Time Slots	RO	It indicates the maximum numbers of time slots (minus one) are allocated for Isochronous traffic.	Yes	00h if VC1=0 3Fh if VC1=1
23	Reserved	RsvdP	Not Support.	No	0
31:24	Port Arbitration Table Offset	RO	It indicates the location of the Port Arbitration Table (n) as an offset from the base address of the Virtual Channel Capability register in the unit of DQWD (16 bytes).	No	00h if VC1=0 06h if VC1=1

## 8.2.78 VC RESOURCE CONTROL REGISTER (1) - OFFSET 168h

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
7:0	TC/VC Map	RW	This field indicates the TCs that are mapped to the VC resource. Bit locations within this field correspond to TC values. When the bits in this field are set, it means that the corresponding TCs are mapped to the VC resource. Bit 0 of this filed is read-only and must be set to "0" for the VC1.	Yes	00h
15:8	Reserved	RsvdP	Not Support.	No	00h
16	Load Port Arbitration Table	RW	When set, the programmed Port Arbitration Table is applied to the hardware. This bit always returns 0b when read.	No/Yes	0
19:17	Port Arbitration Select	RW	This field is used to configure the Port Arbitration by selecting one of the supported Port Arbitration schemes. The permissible values for the schemes supported by Switch are 000b, 011b and 100b at VC1, other value than these written into this register will be treated as default.	No/Yes	000Ъ
23:20	Reserved	RsvdP	Not Support.	No	0h
26:24	VC ID	RW	This field assigns a VC ID to the VC resource.	No/Yes	000b if VC1=0 001b if VC1=1
30:27	Reserved	RsvdP	Not Support.	No	0h
31	VC Enable	RW	0b: it disables this Virtual Channel 1b: it enables this Virtual Channel	No/Yes	0

# 8.2.79 VC RESOURCE STATUS REGISTER (1) – OFFSET 16Ch

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
15:0	Reserved	RsvdP	Not Support.	No	0000h
16	Port Arbitration Table Status	RO	When set, it indicates that any entry of the Port Arbitration Table is written by software. This bit is cleared when hardware finishes loading values stored in the Port Arbitration Table after the bit of "Load Port Arbitration Table" is set.	No	0
17	VC Negotiation Pending	RO	When set, it indicates that the VC resource is still in the process of negotiation. This bit is cleared after the VC negotiation is complete.	No	0
31:18	Reserved	RsvdP	Not Support.	No	0-0h





### 8.2.80 VC ARBITRATION TABLE REGISTER – OFFSET 188h

The VC arbitration table is a read-write register array that contains a table for VC arbitration. Each table entry allocates four bits, of which three bits are used to represent VC ID and one bit is reserved. A total of 32 entries are used to construct the VC arbitration table. The layout for this register array is shown below.

31 - 28	27 - 24	23 - 20	19 - 16	15 - 12	11 - 8	7 - 4	3 - 0	Byte Location	EEPROM/ I2C-SMBUS	DEFAULT
Phase [7]	Phase [6]	Phase [5]	Phase [4]	Phase [3]	Phase [2]	Phase [1]	Phase [0]	00h	No/Yes	0000_0000h
Phase [15]	Phase [14]	Phase [13]	Phase [12]	Phase [11]	Phase [10]	Phase [9]	Phase [8]	04h	No/Yes	0000_0000h
Phase [23]	Phase [22]	Phase [21]	Phase [20]	Phase [19]	Phase [18]	Phase [17]	Phase [16]	08h	No/Yes	0000_0000h
Phase [31]	Phase [30]	Phase [29]	Phase [28]	Phase [27]	Phase [26]	Phase [25]	Phase [24]	0Ch	No/Yes	0000_0000h

#### Table 8-2 Register Array Layout for VC Arbitration

## 8.2.81 PORT ARBITRATION TABLE REGISTER (0) and (1) - OFFSET 198h and 1A8h

The Port arbitration table is a read-write register array that contains a table for Port arbitration. Each table entry allocates two bits to represent Port Number. The table entry size is dependent on the number of enabled ports (refer to bit 10 and 11 of Port VC capability register 1). The arbitration table contains 32 entries if three or four ports are to be enabled. The following table shows the register array layout for the size of entry equal to two.

#### Table 8-3 Table Entry Size in 4 Bits

31 - 24	23 - 16	15 - 8	7 - 0	Byte Location	EEPROM/ I2C-SMBUS	DEFAULT
Phase [7:6]	Phase [5:4]	Phase [3:2]	Phase [1:0]	00h	No/Yes	0000_0000h
Phase [15:14]	Phase [13:12]	Phase [11:10]	Phase [9:8]	04h	No/Yes	0000_0000h
Phase [23:22]	Phase [21:20]	Phase [19:18]	Phase [17:16]	08h	No/Yes	0000_0000h
Phase [31:30]	Phase [29:28]	Phase [27:26]	Phase [25:24]	0Ch	No/Yes	0000_0000h

### 8.2.82 ECC ERROR CHECK DISABLE REGISTER - OFFSET 1C8h (Global)

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
3:0	Reserved	RW	Test used only.	No/Yes	000
4	Enable INTA_L for Hot Plug or Link State Event	RW	0b: Send an INTx Message for Hot Plug or Link State Event 1b: Assert INTA_L for Hot Plug or Link State Event	No/Yes	0
5	Reserved	RW	Test used only.	No/Yes	0
6	Enable INTA_L for GPIO-Generated Interrupts	RW	0b: Send an INTx Message for GPIO Interrupt Requests 1b: Assert INTA_L for GPIO Interrupt Requests	No/Yes	0
7	Enable INTA_L for NT Virtual Doorbell- Generated Interrupts	RW	0b: Send an INTx Message for NT Virtual Doorbell Interrupt Requests 1b: Assert INTA_L for NT Virtual Doorbell Interrupt Requests	No/Yes	0
31:8	Reserved	RsvdP	Not Support.	No	0-0h





# 8.2.83 NT-UP PORT SELECTION REGISTER - OFFSET 1DCh (Global)

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
7:0	Reserved	RsvdP	Not Support.	No	00h
11:8	UP_PORT_SEL	HWInt RW	Used to select Upstream Port when Bit[15]=1.	No/Yes	0h
14:12	Reserved	RsvdP	Not Support.	No	000
15	Software_CFG_Mode	RW	When set to 1, UP and NT Ports are decided by Bit[11:8] and Bit[27:24].	No/Yes	0
23:16	Reserved	RsvdP	Not Support.	No	00h
27:24	NT_PORT_SEL	HwInt RW	Used to select NT Port when Bit[15]=1.	No/Yes	0h
31:28	Reserved	RsvdP	Not Support.	No	0h

# 8.2.84 HOT PLUG CONFIGURATION REGISTER – OFFSET 1E0h

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
1:0	Reserved	RsvdP	Not Support.	No	00b
2	HPC_PME_TURN_ OFF_En	RW	Valid for downstream ports only. 0b: disable to send out PME_TURN_OFF message. 1b: enable to send out PME_TURN_OFF message.	Yes	0
4:3	HPC_Timer	RW	Valid for downstream ports only. Used to set hot plug port timer. 00b: Reserved 01b: 128 ms 10b: 256 ms 11b: 512 ms	Yes	01b
5	Reserved	RsvdP	Not Support.	No	0
6	HPC_PG_ ActiveLow_En	RW	Valid for downstream ports only. 0b: PWR_GOODx pins are Ative high. 1b: PWR_GOODx pins are Active low.	Yes	0
11:7	Reserved	RsvdP	Not Support.	No	0-0h
12	NT_Serial_HotPlug _En	RW	Valid for NT port only. 0b: disable serial hot plug capability on NT port. 1b: enable serial hot plug capability on NT port.	No	0
14:7	Reserved	RsvdP	Not Support.	No	0-0h
15	IOE_Cmd_In_ Progress	RO	Indicates that the Write command to an IOE (I/O Expander) GPIOx Output Data register is still in progress.	No	0
16	HPC_Serial_HotPlug _Disable	RW	Valid for upstream port only. Ob: enable serial hot plug capability for all downstream ports. 1b: disable serial hot plug capability for all downstream ports.	Yes	0
17	IOE_40Bit_En	RW	Valid for upstream port only. 0b: enable 16-pin IOE for all downstream ports. 1b: enable 40-pin IOE for all downstream ports.	Yes	0
18	HPC_GPIO_Dir	RW	0b: set GPIO direction to input pin 1b: set GPIO direction to output pin	Yes	0
19	HPC_GPIO_Value	RW	I/O Expander GPIO Value.	Yes	0
20	HPC_I/O_Reload	RW	1b: the value of Hotplug Controller Output pin is reloaded. This bit is self clearing.	Yes	0
26:21	HPC_Output_Reload Value	RW	When Bit [20] is set, values from this field are reloaded.	Yes	000b
31:27	Reserved	RsvdP	Not Support.	No	0000_0b





# 8.2.85 SOFTWARE LANE STATUS REGISTER - OFFSET 1F4h (Global)

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
31:0	Software Lane Status	RO	Indicates current lane status. 0b: link down 1b: link up Bit[3:0]: for Lane 3 to Lane 0 Bit[15:8]: for Lane 15 to Lane 8 Bit[19:16]: for Lane 7 to Lane 4 Others: Reserved	No	0000_0000h

# 8.2.86 DE-EMPHASIS AND RATE CONTROL REGISTER – OFFSET 208h (Upstream Port Only)

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
15:0	Rate Ctrl	RW	Test used only. 0h: GEN1 speed 1h: GEN2 speed	No/Yes	0000h
31:16	De-emphasis Ctrl	RW	Test used only. 0h: -6 dB 1h: -3.5 dB	No/Yes	0000h

## 8.2.87 COMPLIANCE MODE CONTROL REGISTER – OFFSET 20Ch

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
15:0	Compliance Mode	RW	Test used only. 1h: enter Compliance mode	No/Yes	0000h
31:16	Reserved	RsvdP	Not Support.	No	0000h

# 8.2.88 EVEN PORT PHYSICAL LAYER COMMAND AND STATUS REGISTER – OFFSET 220h (Global)

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
0	PORT0_Loopback_ CMD	RW	Test used only.	No/Yes	0
1	PORT0_Scramble_ Disable_CMD	RW	Test used only.	No/Yes	0
2	PORT0_Compliance _Receive	RW	Test used only.	No/Yes	0
3	Reserved	RsvdP	Not Support.	No	0
4	PORT2_Loopback_ CMD	RW	Test used only.	No/Yes	0
5	PORT2_Scramble_ Disable_CMD	RW	Test used only.	No/Yes	0
6	PORT2_Compliance _Receive	RW	Test used only.	No/Yes	0
7	Reserved	RsvdP	Not Support.	No	0
8	PORT4_Loopback_ CMD	RW	Test used only.	No/Yes	0

Page 87 of 198 www.diodes.com





PI7C9X2G1616PR

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
9	PORT4_Scramble_ Disable_CMD	RW	Test used only.	No/Yes	0
10	PORT4_Compliance _Receive	RW	Test used only.	No/Yes	0
11	Reserved	RsvdP	Not Support.	No	0
12	PORT6_Loopback_ CMD	RW	Test used only.	No/Yes	0
13	PORT6_Scramble_ Disable_CMD	RW	Test used only.	No/Yes	0
14	PORT6_Compliance _Receive	RW	Test used only.	No/Yes	0
15	Reserved	RsvdP	Not Support.	No	0
16	PORT8_Loopback_ CMD	RW	Test used only.	No/Yes	0
17	PORT8_Scramble_ Disable_CMD	RW	Test used only.	No/Yes	0
18	PORT8_Compliance _Receive	RW	Test used only.	No/Yes	0
19	Reserved	RsvdP	Not Support.	No	0
20	PORT10_Loopback_ CMD	RW	Test used only.	No/Yes	0
21	PORT10_Scramble_ Disable_CMD	RW	Test used only.	No/Yes	0
22	PORT10_ Compliance_Receive	RW	Test used only.	No/Yes	0
23	Reserved	RsvdP	Not Support.	No	0
24	PORT12_Loopback_ CMD	RW	Test used only.	No/Yes	0
25	PORT12_Scramble_ Disable_CMD	RW	Test used only.	No/Yes	0
26	PORT12_ Compliance_Receive	RW	Test used only.	No/Yes	0
27	Reserved	RsvdP	Not Support.	No	0
28	PORT14_Loopback_ CMD	RW	Test used only.	No/Yes	0
29	PORT14_Scramble_ Disable_CMD	RW	Test used only.	No/Yes	0
30	PORT14_ Compliance_Receive	RW	Test used only.	No/Yes	0
31	Reserved	RsvdP	Not Support.	No	0

# 8.2.89 ODD PORT PHYSICAL LAYER COMMAND AND STATUS REGISTER – OFFSET 224h (Global)

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
0	PORT1_Loopback_ CMD	RW	Test used only.	No/Yes	0
1	PORT1_Scramble_ Disable_CMD	RW	Test used only.	No/Yes	0
2	PORT1_Compliance _Receive	RW	Test used only.	No/Yes	0
3	Reserved	RsvdP	Not Support.	No	0
4	PORT3_Loopback_ CMD	RW	Test used only.	No/Yes	0
5	PORT3_Scramble_ Disable_CMD	RW	Test used only.	No/Yes	0
6	PORT3_Compliance _Receive	RW	Test used only.	No/Yes	0
7	Reserved	RsvdP	Not Support.	No	0
8	PORT5_Loopback_ CMD	RW	Test used only.	No/Yes	0

PI7C9X2G1616PR Document Number DS40340 Rev 7-2 Page 88 of 198 www.diodes.com

December 2020 © Diodes Incorporated





PI7C9X2G1616PR

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
9	PORT5_Scramble_ Disable_CMD	RW	Test used only.	No/Yes	0
10	PORT5_Compliance _Receive	RW	Test used only.	No/Yes	0
11	Reserved	RsvdP	Not Support.	No	0
12	PORT7_Loopback_ CMD	RW	Test used only.	No/Yes	0
13	PORT7_Scramble_ Disable_CMD	RW	Test used only.	No/Yes	0
14	PORT7_Compliance _Receive	RW	Test used only.	No/Yes	0
15	Reserved	RsvdP	Not Support.	No	0
16	PORT9_Loopback_ CMD	RW	Test used only.	No/Yes	0
17	PORT9_Scramble_ Disable_CMD	RW	Test used only.	No/Yes	0
18	PORT9_Compliance _Receive	RW	Test used only.	No/Yes	0
19	Reserved	RsvdP	Not Support.	No	0
20	PORT11_Loopback_ CMD	RW	Test used only.	No/Yes	0
21	PORT11_Scramble_ Disable_CMD	RW	Test used only.	No/Yes	0
22	PORT11_ Compliance_Receive	RW	Test used only.	No/Yes	0
23	Reserved	RsvdP	Not Support.	No	0
24	PORT13_Loopback_ CMD	RW	Test used only.	No/Yes	0
25	PORT13_Scramble_ Disable_CMD	RW	Test used only.	No/Yes	0
26	PORT13_ Compliance_Receive	RW	Test used only.	No/Yes	0
27	Reserved	RsvdP	Not Support.	No	0
28	PORT15_Loopback_ CMD	RW	Test used only.	No/Yes	0
29	PORT15_Scramble_ Disable_CMD	RW	Test used only.	No/Yes	0
30	PORT15_ Compliance_Receive	RW	Test used only.	No/Yes	0
31	Reserved	RsvdP	Not Support.	No	0

# 8.2.90 EVEN PORT DISABLE/QUIET/TEST PATTERN RATE REGISTER – OFFSET 230h (Global)

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
7:0	Even Port Disable	RW	0b: enable LTSSM operation. 1b: force LTSSM in the Detect.Quiet state. Bit[7:0]: for Port 0, 2, 4, 6, 8, 10, 12, 14	No/Yes	00h
15:8	Even Port Quiet	RW	0b: LTSSM is allowed to exit the Detect.Quiet state 1b: LTSSM remains in the Detect.Quiet state Bit[7:0]: for Port 0, 2, 4, 6, 8, 10, 12, 14	No/Yes	00h
23:16	Even Port Test Pattern Rate	RW	Test used only.	No/Yes	00h
31:24	Reserved	RsvdP	Not Support.	No	00h





# 8.2.91 ODD PORT DISABLE/QUIET/TEST PATTERN RATE REGISTER – OFFSET 234h (Global)

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
7:0	Odd Port Disable	RW	0b: enable LTSSM operation 1b: force LTSSM in the Detect.Quiet state Bit[7:0]: for Port 1, 3, 5, 7, 9, 11, 13, 15.	No/Yes	00h
15:8	Odd Port Quiet	RW	0b: LTSSM is allowed to exit the Detect.Quiet state 1b: LTSSM remains in the Detect.Quiet state Bit[7:0]: for Port 1, 3, 5, 7, 9, 11, 13, 15	No/Yes	00h
23:16	Odd Port Test Pattern Rate	RW	Test used only.	No/Yes	00h
31:24	Reserved	RsvdP	Not Support.	No	00h

## 8.2.92 LI PM SUBSTATES ENHANCED CAPABILITY HEADER – OFFSET 270h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
15:0	PCI Express Extended Capability ID	RO	Read as 001Eh to indicate PCI Express Extended Capability ID for L1 PM Substates Extended Capability.	No	001Eh
19:16	Capability Version	RO	Must be 1h for this version.	No	1h
31:20	Next Capability Offset	RO	Indicates next capability pointer.	Yes	900h

# 8.2.93 L1 PM SUBSTATES CAPABILITY REGISTER - OFFSET 274h

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
0	Reserved	RsvdP	Not Support.	No	0
1	PCI-PM L1.1 Supported	RO	When set this bit indicates that PCI-PM L1.1 is supported and must be set by all ports implementing L1 PM Substates.	Yes	1
2	Reserved	RO	Not Support.	No	0
3	ASPM L1.1 Supported	RO	When set this bit indicates that ASPM L1.1 is supported.	Yes	0
4	L1 PM Substates Supported	RO	When set this bit indicates that this port supports L1 PM Substates.	Yes	1
31:5	Reserved	RsvdP	Not Support.	No	0-0h

# 8.2.94 L1 PM SUBSTATES CONTROL 1 REGISTER - OFFSET 278h

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
0	Reserved	RsvdP	Not Support.	No	0
1	PCI-PM L1.1 Enable	RW	When set this bit enables PCI-PM L1.1. Required for both upstream and downstream ports.	No/Yes	0
2	Reserved	RsvdP	Not Support.	No	0
3	ASPM L1.1 Enable	RW	When set this bit enables ASPM L1.1. Required for both upstream and downstream ports.	No/Yes	0
31:4	Reserved	RsvdP	Not Support.	No	0-0h





## 8.2.95 L1 PM SUBSTATES CONTROL 2 REGISTER - OFFSET 27Ch

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
31:0	Reserved	RsvdP	Not Support.	No	0000_0000h

# 8.2.96 SMBUS CONTROL AND STATUS REGISTER – OFFSET 344h (Upstream Port Only)

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
0	SMBus Enable	HWInt RW	0b: disable SMBUS, enable I2C 1b: enable SMBUS	No/Yes	0
7:1	SMBUS Address	HwInt RW	Set SMBUS Address. Bit [3:1] are decided by the status of strapped pins (GPIO[7:5]).	No/Yes	0111_000b
8	ARP_Disable	RW	Test used only.	No/Yes	1
9	PEC Check Disable	RW	0b: enable PEC check 1b: disable PEC check	No/Yes	1
10	AV Flag	RW	Test used only.	No/Yes	0
11	AR Flag	RW	Test used only.	No/Yes	0
13:12	UDID Addr Type	RW	Test used only.	No/Yes	00b
14	UDID PEC Support	RW	Test used only	No/Yes	1
15	Reserved	RsvdP	Not Support.	No	0
23:16	UDID Vendor ID	RW	Test used only.	No/Yes	B0h
26:24	UDID Revision ID	RW	Test used only.	No/Yes	001b
27	Fty Test 0	RW	Test used only.	No/Yes	0
28	SMBUS In Progress	RO	0b: SMBUS interface is idle. 1b: SMBUS interface is busy.	No	0
29	PEC Check Fail	RO	0b: PEC check successfully 1b: PEC check failed	No	0
30	Unsupported SMBUS Command	RO	0b: supported command. 1b: unsupported command.	No	0
31	Reserved	RO	Not Support.	No	1

## 8.2.97 DISABLE DOWNSTREAM PORT HOT RESET REGISTER – OFFSET 34Ch (Upstream Port Only)

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
0	DN_Hot_Reset_Dis	RW	Disable downstream port hot reset.	Yes	0
31:1	Reserved	RsvdP	Not Support.	No	0-0h

### 8.2.98 ACS ENHANCED CAPABILITY HEADER REGISTER – OFFSET 520h (Downstream Port Only)

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
15:0	PCI Express Extended Capability ID	RO	Read as 000Dh to indicate PCI Express Extended Capability ID for ACS Extended Capability.	No	0Dh
19:16	Capability Version	RO	Must be 1h for this version.	No	1h
31:20	Next Capability Offset	RO	Indicates next capability pointer.	Yes	270h





# 8.2.99 ACS CAPABILITY REGISTER - OFFSET 524h (Downstream Port Only)

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
0	ACS Source Validation	RO	Indicates the implements of ACS Source Validation.	No	1
1	ACS Translation Blocking	RO	Indicates the implements of ACS Translation Blocking.	No	1
2	ACS P2P Request Redirect	RO	Indicates the implements of ACS P2P Request Redirect.	No	1
3	ACS P2P Completion Redirect	RO	Indicates the implements of ACS P2P Completion Redirect	No	1
4	ACS Upstream Forwarding	RO	Indicates the implements of ACS Upstream Forwarding.	No	1
5	ACS P2P Egress control	RO	Indicates the implements of ACS P2P Egress control.	No	1
6	ACS Direct Translated P2P	RO	Indicates the implements of ACS Direct Translated P2P.	No	1
7	Reserved	RsvdP	Not Support.	No	0
15:8	Egress Control Vector Size	RO	Encodings 01h – FFh directly indicate the number of applicable bits in the Egress Control Vector.	No	10h
16	ACS Source Validation Enable	RW	0b: disable the source validation 1b: enable the source validation	No/Yes	0
17	ACS Translation Blocking Enable	RW	0b: disable ACS translation blocking 1b: enable ACS translation blocking	No/Yes	0
18	ACS P2P Request Redirect	RW	0b: disable ACS P2P request redirect 1b: enable ACS P2P request redirect	No/Yes	0
19	ACS P2P Completion Redirect Enable	RW	0b: disable ACS P2P completion redirect 1b: enable ACS P2P completion redirect	No/Yes	0
20	ACS Upstream Forwarding Enable	RW	0b: disable ACS upstream forwarding 1b: enables ACS upstream forwarding	No/Yes	0
21	ACS P2P Egress control Enable	RW	0b: disable ACS P2P egress control 1b: enable ACS P2P egress control	No/Yes	0
22	ACS Direct Translated P2P Enable	RW	0b: disable ACS direct translated P2P 1b: enable ACS Direct Translated P2P	No/Yes	0
31:23	Reserved	RsvdP	Not Support.	No	00h

# 8.2.100 EGRESS CONTROL VECTOR REGISTER – OFFSET 528h (Downstream Port Only)

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
15:0	Egress Control Vector	RW	When a given bit is set, peer-to-peer requests targeting the associated Port are blocked or redirected.	No/Yes	0000h
31:16	Reserved	RsvdP	Not Support.	No	0000h

# 8.2.101 GPIO 0-15 DIRECTION CONTROL REGISTER – OFFSET 62Ch (Upstream Port Only)

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
0	GPIO[0] Source/Destination	RW	As Input: 0b: Input Data Register (offset 63Ch[0] 1b: General Interrupt (INTx, MSI or PEX_INTA#) As Output: 0b: From GPIO[0] Output Data register (offset 644h[0]) 1b: Serial Hot Plug PERST# output for Hot Plug Port 0	No/Yes	0
1	GPIO[0] Direction Control	RW	0b: Input 1b: Output	No/Yes	0





PI7C9X2G1616PR

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
2	GPIO[1] Source/Destination	RW	As Input: 0b: Input Data Register (offset 63Ch[1] 1b: General Interrupt (INTx, MSI or PEX_INTA#) As Output: 0b: From GPIO[1] Output Data register (offset 644h[1]) 1b: Serial Hot Plug PERST# output for Hot Plug Port 1	No/Yes	0
3	GPIO[1] Direction Control	RW	0b: Input 1b: Output	No/Yes	0
4	GPIO[2] Source/Destination	RW	As Input: Ob: Input Data Register (offset 63Ch[2] Ib: General Interrupt (INTx, MSI or PEX_INTA#) As Output: Ob: From GPIO[2] Output Data register (offset 644h[2]) Ib: Serial Hot Plug PERST# output for Hot Plug Port 2	No/Yes	0
5	GPIO[2] Direction Control	RW	0b: Input 1b: Output	No/Yes	0
6	GPIO[3] Source/Destination	RW	As Input: Ob: Input Data Register (offset 63Ch[3] 1b: General Interrupt (INTx, MSI or PEX_INTA#) As Output: Ob: From GPIO[3] Output Data register (offset 644h[3]) 1b: Serial Hot Plug PERST# output for Hot Plug Port 3	No/Yes	0
7	GPIO[3] Direction Control	RW	0b: Input 1b: Output	No/Yes	0
8	GPIO[4] Source/Destination	RW	As Input: Ob: Input Data Register (offset 63Ch[4] 1b: General Interrupt (INTx, MSI or PEX_INTA#) As Output: Ob: From GPIO[4] Output Data register (offset 644h[4]) 1b: Serial Hot Plug PERST# output for Hot Plug Port 4	No/Yes	0
9	GPIO[4] Direction Control	RW	05 Input 1b: Output	No/Yes	0
10	GPIO[5] Source/Destination	RW	As Input: Ob: Input Data Register (offset 63Ch[5] Ib: General Interrupt (INTx, MSI or PEX_INTA#) As Output: Ob: From GPIO[5] Output Data register (offset 644h[5]) Ib: Serial Hot Plug PERST# output for Hot Plug Port 5	No/Yes	0
11	GPIO[5] Direction Control	RW	0b: Input 1b: Output	No/Yes	0
12	GPIO[6] Source/Destination	RW	As Input: Ob: Input Data Register (offset 63Ch[6] 1b: General Interrupt (INTx, MSI or PEX_INTA#) As Output: Ob: From GPIO[6] Output Data register (offset 644h[6]) 1b: Serial Hot Plug PERST# output for Hot Plug Port 6	No/Yes	0
13	GPIO[6] Direction Control	RW	0b: Input 1b: Output	No/Yes	0
14	GPIO[7] Source/Destination	RW	As Input: 0b: Input Data Register (offset 63Ch[7] 1b: General Interrupt (INTx, MSI or PEX_INTA#) As Output: 0b: From GPIO[7] Output Data register (offset 644h[7]) 1b: Serial Hot Plug PERST# output for Hot Plug Port 7	No/Yes	0
15	GPIO[7] Direction Control	RW	0b: Input 1b: Output	No/Yes	0
16	GPIO[8] Source/Destination	RW	As Input: Ob: Input Data Register (offset 63Ch[8] Ib: General Interrupt (INTx, MSI or PEX_INTA#) As Output: Ob: From GPIO[8] Output Data register (offset 644h[8]) Ib: Serial Hot Plug PERST# output for Hot Plug Port 8	No/Yes	0
17	GPIO[8] Direction Control	RW	0b: Input 1b: Output	No/Yes	0
		+	1		L





PI7C9X2G1616PR

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
18	GPIO[9] Source/Destination	RW	As Input: 0b: Input Data Register (offset 63Ch[9] 1b: General Interrupt (INTx, MSI or PEX_INTA#) As Output: 0b: From GPIO[9] Output Data register (offset 644h[9]) 1b: Serial Hot Plug PERST# output for Hot Plug Port 9	No/Yes	0
19	GPIO[9] Direction Control	RW	0b: Input 1b: Output	No/Yes	0
20	GPIO[10] Source/Destination	RW	As Input: 0b: Input Data Register (offset 63Ch[10] 1b: General Interrupt (INTx, MSI or PEX_INTA#) As Output: 0b: From GPIO[10] Output Data register (offset 644h[10]) 1b: Serial Hot Plug PERST# output for Hot Plug Port 10	No/Yes	0
21	GPIO[10] Direction Control	RW	0b: Input 1b: Output	No/Yes	0
22	GPIO[11] Source/Destination	RW	As Input: 0b: Input Data Register (offset 63Ch[11] 1b: General Interrupt (INTx, MSI or PEX_INTA#) As Output: 0b: From GPIO[11] Output Data register (offset 644h[11]) 1b: Serial Hot Plug PERST# output for Hot Plug Port 11	No/Yes	0
23	GPIO[11] Direction Control	RW	0b: Input 1b: Output	No/Yes	0
24	GPIO[12] Source/Destination	RW	As Input: 0b: Input Data Register (offset 63Ch[12] 1b: General Interrupt (INTx, MSI or PEX_INTA#) As Output: 0b: From GPIO[12] Output Data register (offset 644h[12]) 1b: Serial Hot Plug PERST# output for Hot Plug Port 12	No/Yes	0
25	GPIO[12] Direction Control	RW	0b: Input 1b: Output	No/Yes	0
26	GPIO[13] Source/Destination	RW	As Input: Ob: Input Data Register (offset 63Ch[13] 1b: General Interrupt (INTx, MSI or PEX_INTA#) As Output: Ob: From GPIO[13] Output Data register (offset 644h[13]) 1b: Serial Hot Plug PERST# output for Hot Plug Port 13	No/Yes	0
27	GPIO[13] Direction Control	RW	0b: Input 1b: Output	No/Yes	0
28	GPIO[14] Source/Destination	RW	As Input: Ob: Input Data Register (offset 63Ch[14] 1b: General Interrupt (INTx, MSI or PEX_INTA#) As Output: Ob: From GPIO[14] Output Data register (offset 644h[14]) 1b: Serial Hot Plug PERST# output for Hot Plug Port 14	No/Yes	0
29	GPIO[14] Direction Control	RW	0b: Input 1b: Output	No/Yes	0
30	GPIO[15] Source/Destination	RW	As Input: 0b: Input Data Register (offset 63Ch[15] 1b: General Interrupt (INTx, MSI or PEX_INTA#) As Output: 0b: From GPIO[15] Output Data register (offset 644h[15]) 1b: Serial Hot Plug PERST# output for Hot Plug Port 15	No/Yes	0
31	GPIO[15] Direction Control	RW	0b: Input 1b: Output	No/Yes	0





# 8.2.102 GPIO 16-31 DIRECTION CONTROL REGISTER – OFFSET 630h (Upstream Port Only)

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
0	GPIO[16] Source/Destination	RW	As Input: 0b: Input Data Register (offset 640h[0] 1b: General Interrupt (INTx, MSI or PEX_INTA#) As Output: 0b: From GPIO[16] Output Data register (offset 648h[0]) 1b: Reserved	No/Yes	0
1	GPIO[16] Direction Control	RW	0b: Input 1b: Output	No/Yes	0
2	GPIO[17] Source/Destination	RW	As Input: 0b: Input Data Register (offset 640h[1] 1b: General Interrupt (INTx, MSI or PEX_INTA#) As Output: 0b: From GPIO[17] Output Data register (offset 648h[1]) 1b: Reserved	No/Yes	0
3	GPIO[17] Direction Control	RW	0b: Input 1b: Output	No/Yes	0
4	GPIO[18] Source/Destination	RW	As Input: Ob: Input Data Register (offset 640h[2] 1b: General Interrupt (INTx, MSI or PEX_INTA#) As Output: Ob: From GPIO[18] Output Data register (offset 648h[2]) 1b: Reserved	No/Yes	0
5	GPIO[18] Direction Control	RW	0b: Input 1b: Output	No/Yes	0
6	GPIO[19] Source/Destination	RW	As Input: 0b: Input Data Register (offset 640h[3] 1b: General Interrupt (INTx, MSI or PEX_INTA#) As Output: 0b: From GPIO[19] Output Data register (offset 648h[3]) 1b: Reserved	No/Yes	0
7	GPIO[19] Direction Control	RW	0b: Input 1b: Output	No/Yes	0
8	GPIO[20] Source/Destination	RW	As Input: 0b: Input Data Register (offset 640h[4] 1b: General Interrupt (INTx, MSI or PEX_INTA#) As Output: 0b: From GPIO[20] Output Data register (offset 648h[4]) 1b: Reserved	No/Yes	0
9	GPIO[20] Direction Control	RW	0b: Input 1b: Output	No/Yes	0
10	GPIO[21] Source/Destination	RW	As Input: 0b: Input Data Register (offset 640h[5] 1b: General Interrupt (INTx, MSI or PEX_INTA#) As Output: 0b: From GPIO[21] Output Data register (offset 648h[5]) 1b: Reserved	No/Yes	0
11	GPIO[21] Direction Control	RW	0b: Input 1b: Output	No/Yes	0
12	GPIO[22] Source/Destination	RW	As Input: Ob: Input Data Register (offset 640h[6] 1b: General Interrupt (INTx, MSI or PEX_INTA#) As Output: Ob: From GPIO[22] Output Data register (offset 648h[6]) 1b: Reserved	No/Yes	0
13	GPIO[22] Direction Control	RW	0b: Input 1b: Output	No/Yes	0
14	GPIO[23] Source/Destination	RW	As Input: Ob: Input Data Register (offset 640h[7] 1b: General Interrupt (INTx, MSI or PEX_INTA#) As Output: Ob: From GPIO[23] Output Data register (offset 648h[7]) 1b: Reserved	No/Yes	0

PI7C9X2G1616PR Document Number DS40340 Rev 7-2 Page 95 of 198 www.diodes.com





PI7C9X2G1616PR

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
15	GPIO[23] Direction Control	RW	0: Input 1: Output	No/Yes	0
16	GPIO[24] Source/Destination	RW	As Input: 0b: Input Data Register (offset 640h[8] 1b: General Interrupt (INTx, MSI or PEX_INTA#) As Output: 0b: From GPIO[24] Output Data register (offset 648h[8]) 1b: Reserved	No/Yes	0
17	GPIO[24] Direction Control	RW	0b: Input 1b: Output	No/Yes	0
18	GPIO[25] Source/Destination	RW	As Input: 0b: Input Data Register (offset 640h[9] 1b: General Interrupt (INTx, MSI or PEX_INTA#) As Output: 0b: From GPIO[25] Output Data register (offset 648h[9]) 1b: Reserved	No/Yes	0
19	GPIO[25] Direction Control	RW	0b: Input 1b: Output	No/Yes	0
20	GPIO[26] Source/Destination	RW	As Input: 0b: Input Data Register (offset 640h[10] 1b: General Interrupt (INTx, MSI or PEX_INTA#) As Output: 0b: From GPIO[26] Output Data register (offset 648h[10]) 1b: Reserved	No/Yes	0
21	GPIO[26] Direction Control	RW	0b: Input 1b: Output	No/Yes	0
22	GPIO[27] Source/Destination	RW	As Input: 0b: Input Data Register (offset 640h[11] 1b: General Interrupt (INTx, MSI or PEX_INTA#) As Output: 0b: From GPIO[27] Output Data register (offset 648h[11]) 1b: Reserved	No/Yes	0
23	GPIO[27] Direction Control	RW	0b: Input 1b: Output	No/Yes	0
24	GPIO[28] Source/Destination	RW	As Input: 0b: Input Data Register (offset 640h[12] 1b: General Interrupt (INTx, MSI or PEX_INTA#) As Output: 0b: From GPIO[28] Output Data register (offset 648h[12]) 1b: Reserved	No/Yes	0
25	GPIO[28] Direction Control	RW	0b: Input 1b: Output	No/Yes	0
26	GPIO[29] Source/Destination	RW	As Input: 0b: Input Data Register (offset 640h[13] 1b: General Interrupt (INTx, MSI or PEX_INTA#) As Output: 0b: From GPIO[29] Output Data register (offset 648h[13]) 1b: Reserved	No/Yes	0
27	GPIO[29] Direction Control	RW	0b: Input 1b: Output	No/Yes	0
28	GPIO[30] Source/Destination	RW	As Input: 0b: Input Data Register (offset 640h[14] 1b: General Interrupt (INTx, MSI or PEX_INTA#) As Output: 0b: From GPIO[30] Output Data register (offset 648h[14]) 1b: Reserved	No/Yes	0
29	GPIO[30] Direction Control	RW	0b: Input 1b: Output	No/Yes	0
30	GPIO[31] Source/Destination	RW	As Input: Ob: Input Data Register (offset 640h[15] 1b: General Interrupt (INTx, MSI or PEX_INTA#) As Output: Ob: From GPIO[31] Output Data register (offset 648h[15]) 1b: Reserved	No/Yes	0
31	GPIO[31] Direction Control	RW	0b: Input 1b: Output	No/Yes	0





# 8.2.103 GPIO INPUT DE-BOUNCE REGISTER - OFFSET 638h (Upstream Port Only)

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
31:0	GPIOx Input De- Bounce Control	RW	Controls de-bounce when the corresponding GPIOx signal is configured as an input. Bit[31:0] correspond to GPIO[31:0] respectively. 0b: GPIOx input is not de-bounced 1b: GPIOx input is de-bounced	No/Yes	0000_0000h

# 8.2.104 GPIO 0-15 INPUT DATA REGISTER – OFFSET 63Ch (Global)

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
0	GPIO[0] Input Data	RO	GPIO[0] Input Data Return 0 if GPIO[0] is configured as an output (offset 62Ch[1]=1) Return the state of GPIO[0] pin if GPIO[0] is configured as an input (offset 62Ch[1]=0)	No/Yes	1
1	GPIO[1] Input Data	RO	GPIO[1] Input Data Return 0 if GPIO[1] is configured as an output (offset 62Ch[3]=1) Return the state of GPIO[1] pin if GPIO[1] is configured as an input (offset 62Ch[3]=0)	No/Yes	1
2	GPIO[2] Input Data	RO	GPIO[2] Input Data Return 0 if GPIO[2] is configured as an output (offset 62Ch[5]=1) Return the state of GPIO[2] pin if GPIO[2] is configured as an input (offset 62Ch[5]=0)	No/Yes	0
3	GPIO[3] Input Data	RO	GPIO[3] Input Data Return 0 if GPIO[3] is configured as an output (offset 62Ch[7]=1) Return the state of GPIO[3] pin if GPIO[3] is configured as an input (offset 62Ch[7]=0)	No/Yes	1
4	GPIO[4] Input Data	RO	GPIO[4] Input Data Return 0 if GPIO[4] is configured as an output (offset 62Ch[9]=1) Return the state of GPIO[4] pin if GPIO[4] is configured as an input (offset 62Ch[9]=0)	No/Yes	0
5	GPIO[5] Input Data	RO	GPIO[5] Input Data Return 0 if GPIO[5] is configured as an output (offset 62Ch[11]=1) Return the state of GPIO[5] pin if GPIO[5] is configured as an input (offset 62Ch[11]=0)	No/Yes	1
6	GPIO[6] Input Data	RO	GPIO[6] Input Data Return 0 if GPIO[6] is configured as an output (offset 62Ch[13]=1) Return the state of GPIO[6] pin if GPIO[6] is configured as an input (offset 62Ch[13]=0)	No/Yes	0
7	GPIO[7] Input Data	RO	GPIO[7] Input Data Return 0 if GPIO[7] is configured as an output (offset 62Ch[15]=1) Return the state of GPIO[7] pin if GPIO[7] is configured as an input (offset 62Ch[15]=0)	No/Yes	1
8	GPIO[8] Input Data	RO	GPIO[8] Input Data Return 0 if GPIO[8] is configured as an output (offset 62Ch[17]=1) Return the state of GPIO[8] pin if GPIO[8] is configured as an input (offset 62Ch[17]=0)	No/Yes	0
9	GPIO[9] Input Data	RO	GPIO[9] Input Data Return 0 if GPIO[9] is configured as an output (offset 62Ch[19]=1) Return the state of GPIO[9] pin if GPIO[9] is configured as an input (offset 62Ch[19]=0)	No/Yes	1
10	GPIO[10] Input Data	RO	GPIO[10] Input Data Return 0 if GPIO[10] is configured as an output (offset 62Ch[21]=1) Return the state of GPIO[10] pin if GPIO[10] is configured as an input (offset 62Ch[21]=0)	No/Yes	0
11	GPIO[11] Input Data	RO	GPIO[11] Input Data Return 0 if GPIO[11] is configured as an output (offset 62Ch[23]=1) Return the state of GPIO[11] pin if GPIO[11] is configured as an input (offset 62Ch[23]=0)	No/Yes	1

PI7C9X2G1616PR Document Number DS40340 Rev 7-2 Page 97 of 198 www.diodes.com





PI7C9X2G1616PR

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
12	GPIO[12] Input Data	RO	GPIO[12] Input Data Return 0 if GPIO[12] is configured as an output (offset 62Ch[25]=1) Return the state of GPIO[12] pin if GPIO[12] is configured as an input (offset 62Ch[25]=0)	No/Yes	0
13	GPIO[13] Input Data	RO	GPIO[13] Input Data Return 0 if GPIO[13] is configured as an output (offset 62Ch[27]=1) Return the state of GPIO[13] pin if GPIO[13] is configured as an input (offset 62Ch[27]=0)	No/Yes	1
14	GPIO[14] Input Data	RO	GPIO[14] Input Data Return 0 if GPIO[14] is configured as an output (offset 62Ch[29]=1) Return the state of GPIO[11] pin if GPIO[11] is configured as an input (offset 62Ch[29]=0)	No/Yes	0
15	GPIO[15] Input Data	RO	GPIO[15] Input Data Return 0 if GPIO[15] is configured as an output (offset 62Ch[31]=1) Return the state of GPIO[15] pin if GPIO[15] is configured as an input (offset 62Ch[31]=0)	No/Yes	1
31:16	Reserved	RsvdP	Not Support.	No	0000h

# 8.2.105 GPIO 16-31 INPUT DATA REGISTER - OFFSET 640h (Global)

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
0	GPIO[16] Input Data	RO	GPIO[16] Input Data Return 0 if GPIO[16] is configured as an output (offset 630h[1]=1) Return the state of GPIO[16] pin if GPIO[16] is configured as an input (offset 630h[1]=0)	No/Yes	0
1	GPIO[17] Input Data	RO	GPIO[17] Input Data Return 0 if GPIO[17] is configured as an output (offset 630h[3]=1) Return the state of GPIO[17] pin if GPIO[17] is configured as an input (offset 630h[3]=0)	No/Yes	1
2	GPIO[18] Input Data	RO	GPIO[18] Input Data Return 0 if GPIO[18] is configured as an output (offset 630h[5]=1) Return the state of GPIO[18] pin if GPIO[18] is configured as an input (offset 630h[5]=0)	No/Yes	0
3	GPIO[19] Input Data	RO	GPIO[19] Input Data Return 0 if GPIO[19] is configured as an output (offset 630h[7]=1) Return the state of GPIO[19] pin if GPIO[19] is configured as an input (offset 630h[7]=0)	No/Yes	1
4	GPIO[20] Input Data	RO	GPIO[20] Input Data Return 0 if GPIO[20] is configured as an output (offset 630h[9]=1) Return the state of GPIO[20] pin if GPIO[20] is configured as an input (offset 630h[9]=0)	No/Yes	0
5	GPIO[21] Input Data	RO	GPIO[21] Input Data Return 0 if GPIO[21] is configured as an output (offset 630h[11]=1) Return the state of GPIO[21] pin if GPIO[21] is configured as an input (offset 630h[11]=0)	No/Yes	1
6	GPIO[22] Input Data	RO	GPIO[22] Input Data Return 0 if GPIO[22] is configured as an output (offset 630h[13]=1) Return the state of GPIO[22] pin if GPIO[22] is configured as an input (offset 630h[13]=0)	No/Yes	0
7	GPIO[23] Input Data	RO	GPIO[23] Input Data Return 0 if GPIO[23] is configured as an output (offset 630h[15]=1) Return the state of GPIO[23] pin if GPIO[23] is configured as an input (offset 630h[15]=0)	No/Yes	1
8	GPIO[24] Input Data	RO	GPIO[24] Input Data Return 0 if GPIO[24] is configured as an output (offset 630h[17]=1) Return the state of GPIO[24] pin if GPIO[24] is configured as an input (offset 630h[17]=0)	No/Yes	0





PI7C9X2G1616PR

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
9	GPIO[25] Input Data	RO	GPIO[25] Input Data Return 0 if GPIO[25] is configured as an output (offset 630h[19]=1) Return the state of GPIO[25] pin if GPIO[25] is configured as an input (offset 630h[19]=0)	No/Yes	1
10	GPIO[26] Input Data	RO	GPIO[26] Input Data Return 0 if GPIO[26] is configured as an output (offset 630h[21]=1) Return the state of GPIO[26] pin if GPIO[26] is configured as an input (offset 630h[21]=0)	No/Yes	0
11	GPIO[27] Input Data	RO	GPIO[27] Input Data Return 0 if GPIO[27] is configured as an output (offset 630h[23]=1) Return the state of GPIO[27] pin if GPIO[27] is configured as an input (offset 630h[23]=0)	No/Yes	1
12	GPIO[28] Input Data	RO	GPIO[28] Input Data Return 0 if GPIO[28] is configured as an output (offset 630h[25]=1) Return the state of GPIO[28] pin if GPIO[28] is configured as an input (offset 630h[25]=0)	No/Yes	0
13	GPIO[29] Input Data	RO	GPIO[29] Input Data Return 0 if GPIO[29] is configured as an output (offset 630h[27]=1) Return the state of GPIO[29] pin if GPIO[29] is configured as an input (offset 630h[27]=0)	No/Yes	1
14	GPIO[30] Input Data	RO	GPIO[30] Input Data Return 0 if GPIO[30] is configured as an output (offset 630h[29]=1) Return the state of GPIO[30] pin if GPIO[30] is configured as an input (offset 630h[29]=0)	No/Yes	0
15	GPIO[31] Input Data	RO	GPIO[31] Input Data Return 0 if GPIO[31] is configured as an output (offset 630h[31]=1) Return the state of GPIO[31] pin if GPIO[31] is configured as an input (offset 630h[31]=0)	No/Yes	1
31:16	Reserved	RsvdP	Not Support.	No/Yes	0000h

## 8.2.106 GPIO 0-15 OUTPUT DATA REGISTER – OFFSET 644h (Upstream Port Only)

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
0	GPIO[0] Output Data	RW	GPIO[0] Output Data The value written to this bit is driven to GPIO[0] output if GPIO[0] is configured as an output (offset 62Ch[1]=1)	No/Yes	0
1	GPIO[1] Output Data	RW	GPIO[1] Output Data The value written to this bit is driven to GPIO[1] output if GPIO[1] is configured as an output (offset 62Ch[3]=1)	No/Yes	0
2	GPIO[2] Output Data	RW	GPIO[2] Output Data The value written to this bit is driven to GPIO[2] output if GPIO[2] is configured as an output (offset 62Ch[5]=1)	No/Yes	0
3	GPIO[3] Output Data	RW	GPIO[3] Output Data The value written to this bit is driven to GPIO[3] output if GPIO[3] is configured as an output (offset 62Ch[7]=1)	No/Yes	0
4	GPIO[4] Output Data	RW	GPIO[4] Output Data The value written to this bit is driven to GPIO[4] output if GPIO[4] is configured as an output (offset 62Ch[9]=1)	No/Yes	0
5	GPIO[5] Output Data	RW	GPIO[5] Output Data The value written to this bit is driven to GPIO[5] output if GPIO[5] is configured as an output (offset 62Ch[11]=1)	No/Yes	0
6	GPIO[6] Output Data	RW	GPIO[6] Output Data The value written to this bit is driven to GPIO[6] output if GPIO[6] is configured as an output (offset 62Ch[13]=1)	No/Yes	0
7	GPIO[7] Output Data	RW	GPIO[7] Output Data The value written to this bit is driven to GPIO[7] output if GPIO[7] is configured as an output (offset 62Ch[15]=1)	No/Yes	0
8	GPIO[8] Output Data	RW	GPIO[8] Output Data The value written to this bit is driven to GPIO[8] output if GPIO[8] is configured as an output (offset 62Ch[17]=1)	No/Yes	0
9	GPIO[9] Output Data	RW	GPIO[9] Output Data The value written to this bit is driven to GPIO[9] output if GPIO[9] is configured as an output (offset 62Ch[19]=1)	No/Yes	0

PI7C9X2G1616PR Document Number DS40340 Rev 7-2 Page 99 of 198 www.diodes.com





PI7C9X2G1616PR

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
10	GPIO[10] Output Data	RW	GPIO[10] Output Data The value written to this bit is driven to GPIO[10] output if GPIO[10] is configured as an output (offset 62C[21]=1)	No/Yes	0
11	GPIO[11] Output Data	RW	GPIO[11] Output Data The value written to this bit is driven to GPIO[11] output if GPIO[11] is configured as an output (offset 62Ch[23]=1)	No/Yes	0
12	GPIO[12] Output Data	RW	GPIO[12] Output Data The value written to this bit is driven to GPIO[12] output if GPIO[12] is configured as an output (offset 62Ch[25]=1)	No/Yes	0
13	GPIO[13] Output Data	RW	GPIO[13] Output Data The value written to this bit is driven to GPIO[13] output if GPIO[13] is configured as an output (offset 62Ch[27]=1)	No/Yes	0
14	GPIO[14] Output Data	RW	GPIO[14] Output Data The value written to this bit is driven to GPIO[14] output if GPIO[14] is configured as an output (offset 62Ch[29]=1)	No/Yes	0
15	GPIO[15] Output Data	RW	GPIO[15] Output Data The value written to this bit is driven to GPIO[15] output if GPIO[15] is configured as an output (offset 62Ch[31]=1)	No/Yes	0
31:16	Reserved	RsvdP	Not Support.	No	0000h

# 8.2.107 GPIO 16-31 OUTPUT DATA REGISTER - OFFSET 648h (Upstream Port Only)

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
0	GPIO[16] Output Data	RW	GPIO[16] Output Data The value written to this bit is driven to GPIO[16] output if GPIO[16] is configured as an output (offset 630h[1]=1)	No/Yes	0
1	GPIO[17] Output Data	RW	GPIO[17] Output Data The value written to this bit is driven to GPIO[17] output if GPIO[17] is configured as an output (offset 630h[3]=1)	No/Yes	0
2	GPIO[18] Output Data	RW	GPIO[18] Output Data The value written to this bit is driven to GPIO[18] output if GPIO[18] is configured as an output (offset 630h[5]=1)	No/Yes	0
3	GPIO[19] Output Data	RW	GPIO[19] Output Data The value written to this bit is driven to GPIO[19] output if GPIO[19] is configured as an output (offset 630h[7]=1)	No/Yes	0
4	GPIO[20] Output Data	RW	GPIO[20] Output Data The value written to this bit is driven to GPIO[20] output if GPIO[20] is configured as an output (offset 630h[9]=1)	No/Yes	0
5	GPIO[21] Output Data	RW	GPIO[21] Output Data The value written to this bit is driven to GPIO[21] output if GPIO[21] is configured as an output (offset 630h[11]=1)	No/Yes	0
6	GPIO[22] Output Data	RW	GPIO[22] Output Data The value written to this bit is driven to GPIO[22] output if GPIO[22] is configured as an output (offset 630h[13]=1)	No/Yes	0
7	GPIO[23] Output Data	RW	GPIO[23] Output Data The value written to this bit is driven to GPIO[23] output if GPIO[23] is configured as an output (offset 630h[15]=1)	No/Yes	0
8	GPIO[24] Output Data	RW	GPIO[24] Output Data The value written to this bit is driven to GPIO[24] output if GPIO[24] is configured as an output (offset 630h[17]=1)	No/Yes	0
9	GPIO[25] Output Data	RW	GPIO[25] Output Data The value written to this bit is driven to GPIO[25] output if GPIO[25] is configured as an output (offset 630h[19]=1)	No/Yes	0
10	GPIO[26] Output Data	RW	GPIO[26] Output Data The value written to this bit is driven to GPIO[26] output if GPIO[26] is configured as an output (offset 630h[21]=1)	No/Yes	0
11	GPIO[27] Output Data	RW	GPIO[27] Output Data The value written to this bit is driven to GPIO[27] output if GPIO[27] is configured as an output (offset 630h[23]=1)	No/Yes	0
12	GPIO[28] Output Data	RW	GPIO[28] Output Data The value written to this bit is driven to GPIO[28] output if GPIO[28] is configured as an output (offset 630h[25]=1)	No/Yes	0

PI7C9X2G1616PR Document Number DS40340 Rev 7-2 Page 100 of 198 www.diodes.com





PI7C9X2G1616PR

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
13	GPIO[29] Output Data	RW	GPIO[29] Output Data The value written to this bit is driven to GPIO[29] output if GPIO[29] is configured as an output (offset 630h[27]=1)	No/Yes	0
14	GPIO[30] Output Data	RW	GPIO[30] Output Data The value written to this bit is driven to GPIO[30] output if GPIO[30] is configured as an output (offset 630h[29]=1)	No/Yes	0
15	GPIO[31] Output Data	RW	GPIO[31] Output Data The value written to this bit is driven to GPIO[31] output if GPIO[31] is configured as an output (offset 630h[31]=1)	No/Yes	0
31:16	Reserved	RsvdP	Not Support.	No	0000h

# 8.2.108 GPIO 0-31 INTERRUPT POLARITY REGISTER – OFFSET 64Ch (Upstream Port Only)

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
31:0	31:0 GPIO Interrupt Polarity	RW	Controls whether GPIO Interrupt input is Active-Low or Active- High for the corresponding GPIOx signal. Bit[31:0] correspond to GPIO[31:0] respectively.	No/Yes	0000_0000h
			0b: GPIO Interrupt input is Active-Low 1b: GPIO Interrupt input is Active-High		

# 8.2.109 GPIO 0-31 INTERRUPT STATUS REGISTER - OFFSET 650h (Global)

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
31:0	GPIO Interrupt Status	RO	Indicates whether GPIO interrupt are inactive or active for the corresponding GPIOx signal. Bit[31:0] correspond to GPIO[31:0] respectively. 0b: GPIO interrupt is inactive 1b: GPIO interrupt is active	No	5555_5554h

# 8.2.110 GPIO 0-31 INTERRUPT MASK REGISTER – OFFSET 654h (Upstream Port Only)

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
31:0	GPIO Interrupt Mask	RW	Indicates whether GPIO interrupts are masked or not masked for the corresponding GPIOx signal. Bit[31:0] correspond to GPIO[31:0] respectively. 0b: GPIO interrupt is unmasked 1b: GPIO interrupt is masked	No/Yes	0000_0000h

# 8.2.111 XPIP_CSR 0 REGISTER - OFFSET 844h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
31:0	XPIP_CSR0	RW	XPIP_CSR 0 value. Bit[2]: Cross_Link_En	Yes	0400_1060h

Page 101 of 198 www.diodes.com





## 8.2.112 XPIP_CSR 1 REGISTER – OFFSET 848h

	BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
L	31:0	XPIP_CSR1	RW	XPIP_CSR 1 value.	Yes	0400_0800h

### 8.2.113 DECODE VGA REGISTER – OFFSET 84Ch

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
30:0	Reserved	RsvdP	Not Support.	No	0-0h
31	Decode VGA Enable	RO	0b: Disable VGA decode 1b: Enable VGA decode	Yes	1

# 8.2.114 SWITCH OPERATION MODE REGISTER – OFFSET 850h (Upstream Port Only)

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
0	Store-Forward	RW	When set, a store-forward mode is used. Otherwise, the chip is working under cut-through mode.	Yes	0
2:1	Cut-through Threshold	RW	Cut-through Threshold. When forwarding a packet from low-speed port to high-speed mode, the chip provides the capability to adjust the forwarding threshold. 00b: the threshold is set at the middle of forwarding packet 01b: the threshold is set ahead 1-cycle of middle point 10b: the threshold is set ahead 2-cycle of middle point. 11b: the threshold is set ahead 3-cycle of middle point.	Yes	01b
3	Port Arbitration Mode	RW	When set, the round-robin arbitration will stay in the arbitrated port even if the credit is not enough but request is pending. When clear, the round-robin arbitration will always go to the requesting port, which the outgoing credit is enough for the packet queued in the port.	Yes	0
4	Credit Update Mode	RW	When set, the frequency of releasing new credit to the link partner will be one credit per update. When clear, the frequency of releasing new credit to the link partner will be two credits per update.	Yes	0
5	Ordering on Different Egress Port Mode	RW	When set, there has ordering rule on packets for different egress port.	Yes	0
6	Ordering on Different Tag of Completion Mode	RW	When set, there has ordering rule between completion packet with different tag.	Yes	1
7	NonPost TLP Store- Forward	RW	<ul><li>When set, for Non-port TLP store-forward mode is used. Otherwise, Non-post TLP is working under cut-through mode.</li><li>When write '1', this bit is changed to '0'.</li><li>When write '0', this bit is changed to '1'.</li></ul>	Yes	1
31:8	Reserved	RsvdP	Not Support.	No	0000_00h

### 8.2.115 XPIP_CSR 2 REGISTER - OFFSET 854h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
7:0	FTS Number	RW	Indicates FTS number.	Yes	80h
9:8	Scrambler Control	RW	Reset to 00b.	Yes	00b
10	LOs	RW	Reset to 0b.	Yes	0

PI7C9X2G1616PR Document Number DS40340 Rev 7-2 Page 102 of 198 www.diodes.com

December 2020 © Diodes Incorporated





PI7C9X2G1616PR

FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
Compliance to Detect	RW	Reset to 0b.	Yes	0
Change_Speed_Sel	RW	Reset to 00b.	Yes	00b
Change_Speed_En	RW	Reset to 0b.	Yes	0
Reserved	RsvdP	Not Support.	No	0
	Compliance to Detect Change_Speed_Sel Change_Speed_En	Compliance to Detect     RW       Change_Speed_Sel     RW       Change_Speed_En     RW	Compliance to Detect     RW     Reset to 0b.       Change_Speed_Sel     RW     Reset to 00b.       Change_Speed_En     RW     Reset to 0b.	FUNCTIONTYPEDESCRIPTION12C-SMBUSCompliance to DetectRWReset to 0b.YesChange_Speed_SelRWReset to 00b.YesChange_Speed_EnRWReset to 0b.Yes

## 8.2.116 PHY PARAMETER 1 REGISTER – OFFSET 854h (Upstream Port Only)

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
20:16	C_EMP_POST_GE N1_3P5_NOM (Golbal)	RW	Set the de-emphasis level for GEN1, -3.5db. Please refer to Section 6.1.7 for more detail information.	Yes	1_0101b
25:21	C_EMP_POST_GE N2_3P5_NOM (Global)	RW	Set the de-emphasis level for GEN2, -3.5db. Please refer to Section 6.1.7 for more detail information.	Yes	10_101b
30:26	C_EMP_POST_GE N2_6P0_NOM (Global)	RW	Set the de-emphasis level for GEN2, -6.0db. Please refer to Section 6.1.7 for more detail information.	Yes	111_01b
31	Reserved	RO	Not Support.	No	0

# 8.2.117 PHY PARAMETER 2 REGISTER - OFFSET 858h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
3:0	C_TX_PHY_ LATENACY (Global)	RW	Set the transmitter electrical idle latency. Please refer to Section 6.1.8 for more detail information. It is set by Upstream Port Only.	Yes	7h
6:4	C_REC_DETEC_ USEC (Global)	RW	Set the receiver detection threshold. Please refer to Section 6.1.1 for more detail information. It is set by Upstream Port Only.	Yes	010b
7	Reserved	RsvdP	Not Support.	No	0
8	P_CDR_FREQLOO P_EN	RW	Reset to 0b.	Yes	1
10:9	P_CDR_ THRESHOLD	RW	Reset to 01b.	Yes	10b
12:11	P_CDR_FREQLOO P_GAIN	RW	Reset to 01b.	Yes	11b
15:13	Reserved	RsvdP	Not Support.	No	000b
16	P_DRV_LVL_MGN _DELATA_EN	RW	Reset to 0b.	Yes	0
17	P_DRV_LVL_NOM _DELATA_EN	RW	Reset to 0b.	Yes	0
18	P_EMP_POST_MG N DELATA EN	RW	Reset to 0b.	Yes	0
19	P_EMP_POST_NO M DELATA EN	RW	Reset to 0b.	Yes	0
21:20	P_RX_SIGDET_ LVL	RW	Set the receiver signal detection threshold. Please refer to Section 6.1.2 for more detail information.	Yes	01b
25:22	P_RX_EQ_1	RW	Set the receiver equalization for GEN1 link. Please refer to Section 6.1.3 for more detail information.	Yes	0h
29:26	P_RX_EQ_2	RW	Set the receiver equalization for GEN2 link. Please refer to Section 6.1.3 for more detail information.	Yes	0h
30	P_TXSWING	RW	Set the transmitter swing. Please refer to Section 6.1.4 for more detail information. 0b: full voltage swing with de-emphasis 1b: half voltage swing without de-emphasis	Yes	0
31	Reserved	RsvdP	Not Support.	No	0





# 8.2.118 PHY PARAMETER 3 REGISTER - OFFSET 85Ch

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
6:0	PHY Parameter 3 (Per Port)	RW	PHY's Lane mode.	Yes	00h
14:7	Reserved	RsvdP	Not Support.	No	00h
31:15	PHY Parameter 3 (Global)	RW	PHY's delta value setting. It is set by Upstream Port Only.	Yes	0001h

## 8.2.119 PHY PARAMETER 4 REGISTER - OFFSET 860h (Upstream Port Only)

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
14:0	PHY TX Margin Parameter (Global)	RW	PHY Tx margin parameter.	Yes	116Bh
31:15	Reserved	RsvdP	Not Support.	No	0-0h

### 8.2.120 XPIP_CSR 3 REGISTER – OFFSET 864h

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
31:0	XPIP_CSR3	RW	XPIP_CSR3 value.	Yes	000F_0000h

#### 8.2.121 XPIP_CSR 4 REGISTER – OFFSET 868h (Upstream Port Only)

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
31:0	XPIP_CSR4 (Global)	RW	XPIP_CSR 4 value.	Yes	0000_0000h

### 8.2.122 XPIP_CSR 5 REGISTER – OFFSET 86Ch

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
29:0	XPIP_CSR5[29:0]	RW	Bit[10]: Default ACK Latency Timer Enable 0b: disable default ack latency timer 1b: enable default ack latency timer	Yes	3308_0008h
30	DO_CHG_DATA_ RATE_CTRL	RW	DO_CHG_DATA_RATE_CTRL.	Yes	1 for Up 0 for Down
31	Gen1_Cap_Only	RW	0b: report GEN2 capability 1b: report GEN1 capability	Yes	0

### 8.2.123 NON TRANSFER MODE REGISTER – OFFSET 870h (Upstream Port Only)

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
0	TX_SOF_FORM	RO	Test used only.	Yes	0
1	PM Data Select Register R/W Enable	RO	Test used only.	Yes	0
2	ARB_Abort_Sel	RO	Test used only.	Yes	1
3	4K Boundary Check Enable	RO	Test used only.	Yes	0
4	FIFOERR_FIX_SEL	RO	Test used only.	No	1

Page 104 of 198 www.diodes.com





PI7C9X2G1616PR

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
5	ORDER RULE5 Enable	RW	Test used only.	Yes	0
6	Ordering Frozen Disable for Post Pkt	RW	Test used only.	Yes	0
7	Ordering Frozen Disable for NP Pkt	RW	Test used only.	Yes	0
11:8	Reserved	RsvdP	Not Support.	No	0h
12	ARB_VCFLG_SEL	RO	Test used only.	Yes	1
13	DMA Capability	RO	0b: disable DMA capability 1b: enable DMA capability	No/Yes	1
14	Non-Trans_Mode	HwInt RO	Indicates the status of strapping pin NT_EN_L.	Yes	0
15	GNT_FAIL2IDLE	RO	Test used only.	Yes	1
31:16	Reserved	RsvdP	Not Support.	No	0000h

## 8.2.124 OPERATION MODE REGISTER - OFFSET 874h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
15:0	Operation Mode	HwInt RO	Bit[0]: Memory Bist Bit[1]: IDDRB Bit[2]: FAST_MODE Bit[3]: DEBUG_MODE Bit[4]: PHY_MODE Bit[8:5]: PORT_CFG[3:0] Bit[9]: PLCSEL Bit[10]: SCAN_MODE Bit[15:11]: Reserved	No	0002h for 1616 mode 0022h for 1316 mode 0042h for 1016 mode 0062h for 716 mode 0082h for 416 mode 00A2h for 916 mode 00C2h for 616 mode 00E2h for 316 mode 0102h for 216 mode 0122h for 716 mode
23:16	Reserved	RsvdP	Not Support.	No	00h
27:24	L1PM Option	RW	Set L1PM option.	Yes	0h
31:28	Reserved	RsvdP	Not Support.	No	0h

## 8.2.125 DEVICE SPECIFIC POWER MANAGEMENT EVENT- OFFSET 878h (Downstream Port Only)

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
0	Device Specific PME Capability	RO	0b: disable device specific PME. 1b: enable device specific PME.	Yes	0
1	PME Turnoff Message Request	RW	Request to send PME turnoff message.	No/Yes	0
2	Port Power	RW	Control GPIO[4:0] pins when Device Specific PME Capability is enabled. Downstream port 1 controls GPIO[0], Downstream port 2 controls GPIO[1], and so on. It is valid when Device Specific PME Capability is enabled.	No/Yes	1
3	Port Reset	RW	This bit when reset asserts an active low reset signal to the attached device. When set, the reset signal is de-asserted. It is valid when Device Specific PME Capability is enabled.	No/Yes	1
15:4	Reserved	RsvdP	Not Support.	No	000h
17:16	Link Status	RO	These two bits represent the link status of device connected to the downstream port. 00b: L0 01b: L0s 10b: L1 11b: L2/L3	No	00Ь
31:18	Reserved	RsvdP	Not Support.	No	0-0h





# 8.2.126 EEPROM CONTROL REGISTER - OFFSET 87Ch (Upstream Port Only)

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
0	EEPROM Start	RW	Starts the EEPROM read or write cycle. 1b: start read or write cycle	No/Yes	0
3:1	Reserved	RsvdP	Not Support.	No	000b
4	EEPROM Autoload Status	RO	0b: EEPROM autoload was unsuccessfully or is disabled 1b: EEPROM autoload occurred successfully after PERST_L.	No	0
5	EEPROM is Audoload Disabled	RW	0b: EEPROM autoload is enabled 1b: EEPROM autoload is disabled	No/Yes	0
7:6	EEPROM Clock Rate	RW	Determines the frequency of the EEPROM clock which is derived from the primary clock. 01b: PEXCLK/4 (PEXCLK is 250 MHz) Others: Reserved	No/Yes	01b
15:8	EEPROM Status	RO	Indicate the eeprom status.	No	00h
23:16	EEPROM Command	RW	01h: write STATUS register 02h: EEPROM write 03h: EEPROM read 04h: disable write operation 05h: read STATUS register 06h: enable write operation C7h: erase entire EEPROM	No/Yes	00h
30:24	Reserved	RsvdP	Not Support.	No	00h
31	Size 64K Mode	RW	0b: EEPROM size is less or equal to 64K 1b: EEPROM size is larger 64K	No/Yes	0

# 8.2.127 EEPROM ADDRESS AND DATA REGISTER – OFFSET 880h (Upstream Port Only)

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
15:0	EEPROM Address	RW	Contains the EEPROM address.	No/Yes	0000h
31:16	EEPROM Data	RW	Contains the EEPROM data.	No/Yes	0000h

## 8.2.128 DEBUGOUT CONTROL REGISTER – OFFSET 884h (Upstream Port Only)

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
4:0	Debug Mode Select	RW	Debug mode select.	No/Yes	0_0000b
7:5	Debug Port_Select_S1	RW	Debug port select s1.	No/Yes	000b
8	DebugPort_ Select_S2	RW	Debugport select s2.	No/Yes	0
9	Debug Output Start	RW	Start to select debug output data.	No/Yes	0
31:10	Reserved	RsvdP	Not Support.	No	0-0h

# 8.2.129 DEBUGOUT DATA REGISTER – OFFSET 888h (Upstream Port Only)

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
31:0	Debug Output Data	RO	Contains the debug output data.	No	0000_0000h





# 8.2.130 LTSSM_CSR REGISTER - OFFSET 88Ch (Downstream Port Only)

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
7:0	LTSSM_CSR	RW	Bit[2]: Pseudo MRL_PDC_En 0b: disable pseudo MRL_PDC function 1b: enable pseudo MRL_PDC function	Yes	00h
31:8	Reserved	RsvdP	Not Support.	No	0000_00h

## 8.2.131 MAC_CSR REGISTER - OFFSET 890h

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
15:0	Reserved	RsvdP	Not Support.	No	0000h
31:16	MAC_CSR	RW	MAC CSR value.	Yes	0004h

## 8.2.132 POWER SAVING DISABLE REGISTER - OFFSET 8A4h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
0	Power Saving Disable	RW	Disable power saving 0b: enable power saving 1b: disable power saving	Yes	0
31:1	Reserved	RsvdP	Not Support.	No	0-0h

## 8.2.133 TRANSACTION LAYER CSR REGISTER – OFFSET 8A8h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
0	Egress_Reqcredit_ Starve	RW	Test used only.	Yes	1
1	MF_Credit_Update_ Dis	RW	Test used only.	Yes	0
2	MC_Cap_Dis	RW	Test used only.	Yes	0
3	MEM_Sharing_Dis	RO	Test used only.	Yes	0
31:4	Reserved	RsvdP	Not Support.	No	0-0h

## 8.2.134 REPLAY TIME-OUT COUNTER REGISTER – OFFSET 8ACh

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
11:0	User Replay Timer	RW	A 12-bit register contains a user-defined value.	Yes	000h
12	Enable User Replay Timer	RW	<ul><li>When asserted, the user-defined replay time-out value is be employed.</li><li>0b: use the default replay time-out value</li><li>1b: use the user-defined replay time-out value on bit[11:0]</li></ul>	Yes	0
15:13	Reserved	RsvdP	Not Support.	No	000b





# 8.2.135 ACKNOWLEDGE LATENCY TIMER REGISTER - OFFSET 8ACh

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
29:16	User ACK Latency Timer	RW	A 14-bit register contains a user-defined value.	Yes	0-0h
30	Enable User ACK Latency	RW	When asserted, the user-defined ACK latency value is be employed. 0b: use the default ack latency value 1b: use the user-defined ack latency value on bit[29:16]	Yes	0
31	Reserved	RsvdP	Not Support.	No	0

# 8.2.136 PORT MISC 0 REGISTER - OFFSET 8B0h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
7:0	Reserved	RsvdP	Not Support.	No	00h
13:8	Power Management Control Parameter	RW	Power Management Control parameter.	Yes	00_0001b
14	RX Polarity Inversion Disable	RW	0b: enable rx polarity inversion circuit 1b: disable rx polarity inversion circuit	Yes	0
15	Compliance Pattern Parity Control Disable	RW	0b: enable compliance pattern parity control 1b: disable compliance pattern parity control It is set by Upstream Port Only.	Yes	0

# 8.2.137 PHY PARAMETER 0 REGISTER – OFFSET 8B0h (Upstream Port Only)

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
20:16	C_DRV_LVL_3P5_ NOM (Global)	RW	Set drive amplitude level. Please refer to Section 6.1.6 for more detail information.	Yes	1_0011b
25:21	C_DRV_LVL_6P0_ NOM (Global)	RW	Set drive amplitude level. Please refer to Section 6.1.6 for more detail information.	Yes	10_011b
30:26	C_DRV_LVL_HAL F_NOM (Global)	RW	Set drive amplitude level. Please refer to Section 6.1.6 for more detail information.	Yes	000_10b
31	Reserved	RsvdP	Not Support.	No	0

# 8.2.138 PORT MISC 1 REGISTER – OFFSET 8B4h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
7:0	Reserved	RsvdP	Not Support.	No	00h
9:8	DO_CHG_DATA_C NT_SEL	RW	The trying number for doing change data rate.	Yes	00b
10	Port Disable	RW	Disable this port. 0b: enable port 1b: disable port	Yes	0
11	Reset Select	RW	Reset select. It is valid for upstream port only.	Yes	1
15:12	Reserved	RsvdP	Not Support.	No	000b




## 8.2.139 XPIP_CSR 6 REGISTER – OFFSET 8B4h

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
23:1	5 XPIP_CSR6	RW	XPIP_CSR 6 value.	Yes	78h

#### 8.2.140 XPIP_CSR 7 REGISTER – OFFSET 8B4h

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
25:24	REV_TS_CTR	RW	Test used only.	Yes	00
29:26	MAC Control Parameter	RW	Test used only.	Yes	0h
30	Line_Loopback	RW	Test used only.	Yes	0
31	P35_GEN2_MODE (Global)	RW	Test used only.	Yes	0

#### 8.2.141 PORT MISC 2 REGISTER – OFFSET 8B8h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
0	Change_Role_En	RW	Test used only.	Yes	0
1	IPCore_Role	RW	Test used only.	Yes	0
31:2	Reserved	RsvdP	Not Support.	No	0-0h

#### 8.2.142 LED DISPLAY CSR REGISTER – OFFSET 8BCh (Global)

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
5:0	LED Display Mode Select	RW	Test used only.	Yes	00_0000b
7:6	Reserved	RsvdP	Not Support.	No	00b
13:8	Hotplug_Misc	RW	Bit[11:8] are used to control reset pulse for HotPlug function. Bit[8]: enable Bit[9]: issue reset pulse three times Bit[11:10]: control the width of the reset pulse 00b: 128 ms 01b: 256 ms 10b: 1 sec 11b: 2 sec Bit[12]: Reserved Bit[13]: enable the synchronize between IOE Interrupt and Hot- Plug state machine	Yes	Oh
31:14	Reserved	RsvdP	Not Support.	No	0-0h

#### 8.2.143 MULTI-CAST ENHANCED CAPABILITY HEADER REGISTER – OFFSET 900h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
15:0	Extended Capabilities ID	RO	Read as 0012h to indicate that these are PCI express extended capability registers for multi-cast capability.	No	0012h
19:16	Capability Version	RO	Read as 1h.	No	1h
31:20	Next Capability Offset	RO	Pointer points to 000h.	Yes	000h

Page 109 of 198 www.diodes.com





## 8.2.144 MULTI-CAST CAPABILITY REGISTER – OFFSET 904h

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
5:0	MC_Max_Group	RO	Value indicates the max. number of Multicast Groups that the component supports.	No	00_0001b
14:6	Reserved	RO	Not Support.	No	0
15	MC_ECRC_ Regeneration_ Supported	RO	If set, indicates that ECRC regeneration is supported.	No	0

## 8.2.145 MULTI-CAST CONTROL REGISTER - OFFSET 904h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
16	MC_Num_Group	RW	Value indicates the number of Multicast Groups configured for use.	No/Yes	00h
30:17	Reserved	RsvdP	Not Support.	No	0-0h
31	MC_ECRC_ Regeneration_ Supported	RW	When set, the Multicast mechanism is enabled for the component.	No/Yes	0

## 8.2.146 MULTI-CAST BASE ADDRESS 0 REGISTER - OFFSET 908h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
5:0	MC_Index_Position	RW	The location of the LSB of the Multicast Group number within the address.	No/Yes	00h
11:6	Reserved	RsvdP	Not Support.	No	00h
31:12	MC_Base_Address [31:12]	RW	The base address of the Multicast address range.	No/Yes	0-0h

## 8.2.147 MULTI-CAST BASE ADDRESS 1 REGISTER - OFFSET 90Ch

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
31:0	MC_Base_Address [63:32]	RW	The base address of the Multicast address range.	No/Yes	0000-0000h

#### 8.2.148 MULTI-CAST RECEIVER REGISTER – OFFSET 910h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
1:0	MC_Receive	RW	For each bit that's Set, this Function gets a copy of any Multicast TLPs for the associated Multicast Group.	No/Yes	00
31:2	Reserved	RsvdP	Not Support.	No	0-0h

## 8.2.149 MULTI-CAST BLOCK ALL REGISTER - OFFSET 918h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
1:0	MC_Block_All	RW	For each bit that is Set, this Function is blocked from sending TLPs to the associated Multicast Group.	No/Yes	00
31:2	Reserved	RsvdP	Not Support.	No	0-0h

Page 110 of 198 www.diodes.com





## 8.2.150 MULTI-CAST BLOCK UNTRANSLATED REGISTER - OFFSET 920h

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
1:0	MC_Block_ Untranslated	RW	For each bit that is Set, this Function is blocked from sending TLPs containing Untranslated Addresses to the associated MCG.	No/Yes	00
31:2	Reserved	RsvdP	Not Support.	No	0-0h

## 8.2.151 EEPROM_SCRATCHPAD REGISTER - OFFSET FB0h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
31:0	EEPROM_ Scratchpad	RO	Test used only.	Yes	0000_0000h

#### 8.2.152 PCI EXPRESS ADVANCED ERROR REPORTING ENHANCED CAPABILITY HEADER REGISTER – OFFSET FB4h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
15:0	Extended Capabilities ID	RO	Read as 0001h to indicate that these are PCI express extended capability registers for advance error reporting.	No	0001h
19:16	Capability Version	RO	Read as 1h.	No	1h
31:20	Next Capability Offset	RO	Pointer points to the Power Budgeting Extended Capability structure for upstream port / the Port VC Extended Capability structure for downstream ports.	Yes	138h for Up 148h for Down

## 8.2.153 UNCORRECTABLE ERROR STATUS REGISTER - OFFSET FB8h

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
0	Training Error Status	RW1C	When set, indicates that the Training Error event has occurred.	No/Yes	0
3:1	Reserved	RsvdP	Not Support.	No	000
4	Data Link Protocol Error Status	RW1C	When set, indicates that the Data Link Protocol Error event has occurred.	No/Yes	0
11:5	Reserved	RsvdP	Not Support.	No	0-0b
12	Poisoned TLP Status	RW1C	When set, indicates that a Poisoned TLP has been received or generated.	No/Yes	0
13	Flow Control Protocol Error Status	RW1C	When set, indicates that the Flow Control Protocol Error event has occurred.	No/Yes	0
14	Completion Timeout Status	RW1C	When set, indicates that the Completion Timeout event has occurred.	No/Yes	0
15	Completer Abort Status	RW1C	When set, indicates that the Completer Abort event has occurred.	No/Yes	0
16	Unexpected Completion Status	RW1C	When set, indicates that the Unexpected Completion event has occurred.	No/Yes	0
17	Receiver Overflow Status	RW1C	When set, indicates that the Receiver Overflow event has occurred.	No/Yes	0
18	Malformed TLP Status	RW1C	When set, indicates that a Malformed TLP has been received.	No/Yes	0
19	ECRC Error Status	RW1C	When set, indicates that an ECRC Error has been detected.	No/Yes	0
20	Unsupported Request Error Status	RW1C	When set, indicates that an Unsupported Request event has occurred.	No/Yes	0
21	ACS Violation Status	RW1C	When set, indicates that an ACS Violation event has occurred.	No/Yes	0
22	Reserved	RsvdP	Not Support.	No	0

Page 111 of 198 www.diodes.com





BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
23	MC Blocked TLP Status	RW1C	When set, indicates that an MC Blocked TLP event has occurred.	No/Yes	0
31:24	Reserved	RsvdP	Not Support.	No	00h

## 8.2.154 UNCORRECTABLE ERROR MASK REGISTER - OFFSET FBCh

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
0	Training Error Mask	RW	When set, the Training Error event is not logged in the Header Log register and not issued as an Error Message to RC either.	No/Yes	0
3:1	Reserved	RsvdP	Not Support.	No	000b
4	Data Link Protocol Error Mask	RW	When set, the Data Link Protocol Error event is not logged in the Header Log register and not issued as an Error Message to RC either.	No/Yes	0
11:5	Reserved	RsvdP	Not Support.	No	0-0b
12	Poisoned TLP Mask	RW	When set, an event of Poisoned TLP is not logged in the Header Log register and not issued as an Error Message to RC either.	No/Yes	0
13	Flow Control Protocol Error Mask	RW	When set, the Flow Control Protocol Error event is not logged in the Header Log register and not issued as an Error Message to RC either.	No/Yes	0
14	Completion Timeout Mask	RW	When set, the Completion Timeout event is not logged in the Header Log register and not issued as an Error Message to RC either.	No/Yes	0
15	Completer Abort Mask	RW	When set, the Completer Abort event is not logged in the Header Log register and not issued as an Error Message to RC either.	No/Yes	0
16	Unexpected Completion Mask	RW	When set, the Unexpected Completion event is not logged in the Header Log register and not issued as an Error Message to RC either.	No/Yes	0
17	Receiver Overflow Mask	RW	When set, the Receiver Overflow event is not logged in the Header Log register and not issued as an Error Message to RC either.	No/Yes	0
18	Malformed TLP Mask	RW	When set, an event of Malformed TLP is not logged in the Header Log register and not issued as an Error Message to RC either.	No/Yes	0
19	ECRC Error Mask	RW	When set, an event of ECRC Error is not logged in the Header Log register and not issued as an Error Message to RC either.	No/Yes	0
20	Unsupported Request Error Mask	RW	When set, the Unsupported Request event is not logged in the Header Log register and not issued as an Error Message to RC either.	No/Yes	0
21	ACS Violation Mask	RW	When set, the ACS Violation event is not logged in the Header Log register and not issued as an Error Message to RC either.	No/Yes	0
22	Reserved	RsvdP	Not Support.	No	0
23	MC Blocked TLP Mask	RW	When set, the MC Blocked TLP event is not logged in the Header Log register and not issued as an Error Message to RC either.	No/Yes	0
31:24	Reserved	RsvdP	Not Support.	No	00h

## 8.2.155 UNCORRECTABLE ERROR SEVERITY REGISTER – OFFSET FC0h

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
0	Training Error Severity	RW	0b: Non-Fatal 1b: Fatal	No/Yes	1
3:1	Reserved	RsvdP	Not Support.	No	000b
4	Data Link Protocol Error Severity	RW	0b: Non-Fatal 1b: Fatal	No/Yes	1
11:5	Reserved	RsvdP	Not Support.	No	0-0b
12	Poisoned TLP Severity	RW	0b: Non-Fatal 1b: Fatal	No/Yes	0
13	Flow Control Protocol Error Severity	RW	0b: Non-Fatal 1b: Fatal	No/Yes	1





PI7C9X2G1616PR

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
14	Completion Timeout Error Severity	RW	0b: Non-Fatal 1b: Fatal	No/Yes	0
15	Completer Abort Severity	RW	0b: Non-Fatal 1b: Fatal	No/Yes	0
16	Unexpected Completion Severity	RW	0b: Non-Fatal 1b: Fatal	No/Yes	0
17	Receiver Overflow Severity	RW	0b: Non-Fatal 1b: Fatal	No/Yes	1
18	Malformed TLP Severity	RW	0b: Non-Fatal 1b: Fatal	No/Yes	1
19	ECRC Error Severity	RW	0b: Non-Fatal 1b: Fatal	No/Yes	0
20	Unsupported Request Error Severity	RW	0b: Non-Fatal 1b: Fatal	No/Yes	0
21	ACS Violation Severity	RW	0b: Non-Fatal 1b: Fatal	No/Yes	0
22	Reserved	RsvdP	Not Support.	No	0
23	MC Blocked TLP Severity	RW	0b: Not-Fatal 1b: Fatal	No/Yes	0
31:24	Reserved	RsvdP	Not Support.	No	00h

## 8.2.156 CORRECTABLE ERROR STATUS REGISTER - OFFSET FC4h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
0	Receiver Error Status	RW1C	When set, the Receiver Error event is detected.	No/Yes	0
5:1	Reserved	RsvdP	Not Support.	No	0_000b
6	Bad TLP Status	RW1C	When set, the event of Bad TLP has been received is detected.	No/Yes	0
7	Bad DLLP Status	RW1C	When set, the event of Bad DLLP has been received is detected.	No/Yes	0
8	REPLAY_NUM Rollover status	RW1C	When set, the REPLAY_NUM Rollover event is detected.	No/Yes	0
11:9	Reserved	RsvdP	Not Support.	No	000b
12	Replay Timer Timeout status	RW1C	When set, the Replay Timer Timeout event is detected.	No/Yes	0
13	Advisory Non-Fatal Error status	RW1C	When set, the Advisory Non-Fatal Error event is detected.	No/Yes	0
31:14	Reserved	RsvdP	Not Support.	No	0-0h

## 8.2.157 CORRECTABLE ERROR MASK REGISTER - OFFSET FC8h

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
0	Receiver Error Mask	RW	When set, the Receiver Error event is not logged in the Header Log register and not issued as an Error Message to RC either.	No/Yes	0
5:1	Reserved	RsvdP	Not Support.	No	0_000b
6	Bad TLP Mask	RW	When set, the event of Bad TLP has been received is not logged in the Header Log register and not issued as an Error Message to RC either.	No/Yes	0
7	Bad DLLP Mask	RW	When set, the event of Bad DLLP has been received is not logged in the Header Log register and not issued as an Error Message to RC either.	No/Yes	0
8	REPLAY_NUM Rollover Mask	RW	When set, the REPLAY_NUM Rollover event is not logged in the Header Log register and not issued as an Error Message to RC either.	No/Yes	0
11:9	Reserved	RsvdP	Not Support.	No	000b
12	Replay Timer Timeout Mask	RW	When set, the Replay Timer Timeout event is not logged in the Header Log register and not issued as an Error Message to RC either.	No/Yes	0

PI7C9X2G1616PR Document Number DS40340 Rev 7-2 Page 113 of 198 www.diodes.com





BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
13	Advisory Non-Fatal Error Mask	RW	When set, the Advisory Non-Fatal Error event is not logged in the Header Long register and not issued as an Error Message to RC either.	No/Yes	1
31:14	Reserved	RsvdP	Not Support.	No	0-0h

# 8.2.158 ADVANCE ERROR CAPABILITIES AND CONTROL REGISTER – OFFSET FCCh

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
4:0	First Error Pointer	RO	It indicates the bit position of the first error reported in the Uncorrectable Error Status register.	No	0_000b
5	ECRC Generation Capable	RO	When set, it indicates the Switch has the capability to generate ECRC.	No	1
6	ECRC Generation Enable	RW	When set, it enables the generation of ECRC when needed.	No/Yes	0
7	ECRC Check Capable	RO	When set, it indicates the Switch has the capability to check ECRC.	No	1
8	ECRC Check Enable	RW	When set, the function of checking ECRC is enabled	No/Yes	0
31:9	Reserved	RsvdP	Not Support.	No	0-0h

## 8.2.159 HEADER LOG REGISTER - OFFSET From FD0h to FDCh

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
31:0	1 st DWORD	RO	Hold the 1st DWORD of TLP Header. The Head byte is in big endian.	No	0000_0000h
63:32	2 nd DWORD	RO	Hold the 2nd DWORD of TLP Header. The Head byte is in big endian.	No	0000_0000h
95:64	3 rd DWORD	RO	Hold the 3rd DWORD of TLP Header. The Head byte is in big endian.	No	0000_0000h
127:96	4 th DWORD	RO	Hold the 4th DWORD of TLP Header. The Head byte is in big endian.	No	0000_0000h





## 8.3 NON TRANSPARENT PORT LINK INTERFACE CONFIGURATION REGISTERS – NT Mode Only

When the port of the Switch is set to operate at the non-transparent mode, it is represented by an Other Bridge that implements type 0 configuration space header. The following table details the allocation of the register fields of the PCI 2.3 compatible type 0 configuration space header.

31 –24	23 - 16	15-8	7 –0	BYTE OFFSET
Γ	evice ID	Vend	dor ID	00h
Prin	nary Status	Com	mand	04h
	Class Code		Revision ID	08h
Reserved	Header Type	Reserved	Cache Line Size	0Ch
		AR 0		10h
	B	AR 1		14h
	B	AR 2		18h
	B	AR 3		1Ch
	B	AR 4		20h
	B	AR 5		24h
	Re	served		28h
	SSID	SS	VID	2Ch
	Re	served		30h
	Reserved		Capability Pointer to 40h	34h
	Re	served		38h
I	Reserved	Interrupt Pin	Interrupt Line	3Ch
Power Mana	gement Capabilities	Next Item Pointer=48h	Capability ID=01h	40h
PM Data	PPB Support Extensions	Power Mana	agement Data	44h
Mes	sage Control	Next Item Pointer=68h	Capability ID=05h	48h
	Messag	ge Address		4Ch
		Jpper Address		50h
Ι	Reserved	Messa	ge Data	54h
	Re	served		58h - 64h
PCI Express	Capabilities Register	Next Item Pointer=A4h	Capability ID=10h	68h
		Capabilities		6Ch
De	vice Status		Control	70h
	Link C	apabilities		74h
L	nk Status	Link	Control	78h
	Re	served		7Ch - 90h
		pabilities 2		94h
Liı	nk Status 2		Control 2	98h
		served		9Ch - A0h
I	Reserved	Next Item Pointer=C8h	SSID/SSVID Capability ID=0Dh	A4h
	SSID	SS	VID	A8h
	Re	served		ACh-C4h
	Length	Next Item Pointer=00h	Vendor Specific Capability ID=09h	C8h
	Vendor Specifi	ic Header Register	×	CCh
		served		D0h – E0h
		e BAR 0-1 Configuration		E4h
		ce BAR 2 Configuration		E8h
		e BAR 2-3 Configuration		ECh
		ce BAR 4 Configuration		F0h
		e BAR 4-5 Configuration		F4h
		served		F8h - FCh

Other than the PCI 2.3 compatible configuration space header, the Switch also implements PCI express extended configuration space header, which includes advanced error reporting, virtual channel, and power budgeting capability registers. The following table details the allocation of the register fields of PCI express extended capability space header. The first extended capability always begins at offset 100h with a PCI Express Enhanced Capability header and the rest of capabilities are located at an offset greater than 0FFh relative to the beginning of PCI compatible configuration space.

PI7C9X2G1616PR Document Number DS40340 Rev 7-2 Page 115 of 198 www.diodes.com





31 –24	23 -	- 16	15 - 8	7 –0	BYTE OFFSET
Next Capability Offset	=FB4h	Cap.	PCI Express Extended	l Capability ID=0003h	100h
		Version	L DW		1041
			er Lower DW er Upper DW		104h 108h
			erved		10Ch - 134h
Next Capability Offse	t=148h	Cap.		l Capability ID=0004h	138h
		Version	- I		
	Rese	erved	•	Data Select Register	13Ch
			legister		140h
	Rese	erved		Power Budget Capability Register	144h
Next Capability Offse	t=000h	Cap. Version	PCI Express Extended	Capability ID=0002h	148h
		Port VC Capab	ility Register 1		14Ch
VC Arbitration Table Offset=4h			Port VC Capability Register 2		150h
Port VC	C Status		Port VC	Control	154h
Port Arbitration Table	Status	VC	C Resource Capability Register		15 hl
Offset=5h			1 2 2		
			ntrol Register (0)		15Ch
VC Resource St	atus Register ((			erved	160h
Port Arbitration Table Offset=6h			C Resource Capability Register	(1)	164h
			ntrol Register (1)		168h
VC Resource St	atus Register (1			erved	16Ch
			erved tion Table 0		170h – 184h 188h
			tion Table 1		188h
			tion Table 2		190h
			tion Table 3		194h
			ion Table 0 (Low)		198h
			on Table 0 (Upper)		19Ch
			ion Table 1 (Low)		1A0h
			on Table 1 (Upper) ion Table 0 (Low)		1A4h 1A8h
			on Table 0 (Upper)		1ACh
			ion Table 1 (Low)		1B0h
			on Table 1 (Upper)		1B4h
		Rese	erved		1B8h - 840h
		XPIP	CSR 0		844h
	1	XPIP_	CSR 1		848h
Decode VGA		Dage	Reserved		84Ch 850h
Rese	erved	Kest		CSR 2	854h
	lived	PHY Par	rameter 2	COR 2	858h
			rameter 3		85Ch
		Rese	erved		860h
			CSR 3		864h
			erved		868h
			CSR 5		86Ch
			erved on Mode		870h 874h
			erved		878h - 88Ch
			CSR 1		890h
			erved		894h - 8A0h
			ing Disable		8A4h
		Transaction	Layer CSR		8A8h
	ncy Timer		1,2	e-out Counter	8ACh
	rved	CSR 6		Mise 1	8B0h 8B4h
XPIP_CSR 7	rved	CSKO		Misc 1 Misc 2	8B4h 8B8h
Kest	1 v Cu	Rese	erved	1150 2	8BCh – C30h
Next Capability Offse	t=000h	Cap.	PCI Express Extended	l Capability ID=000Bh	C34h
1 9		Version	1		

PI7C9X2G1616PR Document Number DS40340 Rev 7-2 Page 116 of 198 www.diodes.com





PI7C9X2G1616PR

31 –24	23 - 16	15 - 8	7 -0	BYTE OFFSET
	Vendor Sp	becific Header	÷	C38h
		tion BAR 2		C3Ch
		tion BAR 3		C40h
		tion BAR 4		C44h
	Translat	tion BAR 5		C48h
	served		IF IRQ Set	C4Ch
	served		F IRQ Clear	C50h
	served		RQ Mask Set	C54h
	served		RQ Mask Clear	C58h
	served		F IRQ Set	C5Ch
	served		IRQ Clear	C60h
	served		RQ Mask Set	C64h
Res	served		Q Mask Clear	C68h
		tchpad 0		C6Ch
		tchpad 1		C70h
		tchpad 2		C74h
		tchpad 3		C78h
		tchpad 4		C7Ch
		tchpad 5		C80h
		tchpad 6		C84h
		tchpad 7		C88h
		served		C8Ch – D90h
		-Bits LTT Entry 0		D94h
		-Bits LTT Entry 1		D98h
		-Bits LTT Entry 2		D9Ch
		-Bits LTT Entry 3		DA0h
		-Bits LTT Entry 4		DA4h
		-Bits LTT Entry 5		DA8h
		-Bits LTT Entry 6		DACh
		-Bits LTT Entry 7		DB0h
		Bits LTT Entry 0-1		DB4h
		Bits LTT Entry 2-3		DB8h
		Bits LTT Entry 4-5		DBCh
		Bits LTT Entry 6-7		DC0h
		Bits LTT Entry 8-9		DC4h
		ts LTT Entry 10-11		DC8h
		ts LTT Entry 12-13		DCCh
		ts LTT Entry 14-15		DD0h
		ts LTT Entry 16-17		DD4h
		ts LTT Entry 18-19		DD8h
		ts LTT Entry 20-21		DDCh
		ts LTT Entry 22-23		DE0h
		ts LTT Entry 24-25		DE4h
		ts LTT Entry 26-27		DE8h
		ts LTT Entry 28-29		DECh
		ts LTT Entry 30-31		DF0h
		Over CSR		DF4h
		served Seratahnad		DF8h – FACh
Next Capability Offs		I_Scratchpad	ed Capability ID=0001h	FB0h FB4h
Next Capability Offs	et=138h Cap. Version	PCI Express Extende	a Capability ID=0001h	FB4n
		rror Status Register		FB8h
	Uncorrectable E	Error Mask Register		FBCh
		ror Severity Register		FC0h
		ror Status Register		FC0h FC4h
		ror Mask Register		FC8h
		ilities and Control Register		FCCh
		og Register 0		FDOh
		og Register 1		FD4h
		og Register 1		FD4h FD8h
		og Register 2		FD8h
	Re	served		FE0h – FFCh





#### 8.3.1 VENDOR ID REGISTER - OFFSET 00h

]	BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
1	15:0	Vendor ID	RO	Identifies Pericom as the vendor of this device.	Yes	12D8h

#### 8.3.2 DEVICE ID REGISTER - OFFSET 00h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
31:16	Device ID	RO	Identifies this device as the PI7C9X2G1616PR.	Yes	8619h

## 8.3.3 COMMAND REGISTER - OFFSET 04h

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
0	I/O Space Enable	RW	0b: Ignores I/O transactions on the primary interface 1b: Enables responses to I/O transactions on the primary interface	No/Yes	0
1	Memory Space Enable	RW	0b: Ignores memory transactions on the primary interface 1b: Enables responses to memory transactions on the primary interface	No/Yes	0
2	Bus Master Enable	RW	<ul> <li>Ob: Does not initiate memory or I/O transactions on the upstream port and handles as an Unsupported Request (UR) to memory and I/O transactions on the downstream port. For Non-Posted Requests, a completion with UR completion status must be returned</li> <li>Ib: Enables the Switch Port to forward memory and I/O Read/Write transactions in the upstream direction</li> </ul>	No/Yes	0
3	Special Cycle Enable	RsvdP	Not Support.	No	0
4	Memory Write And Invalidate Enable	RsvdP	Not Support.	No	0
5	VGA Palette Snoop Enable	RsvdP	Not Support.	No	0
6	Parity Error Response Enable	RW	<ul><li>0b: Switc0b: Switch may ignore any parity errors that it detects and continue normal operation</li><li>1b: Switch must take its normal action when a parity error is detected</li></ul>	No/Yes	0
7	Wait Cycle Control	RsvdP	Not Support.	No	0
8	SERR# enable	RW	<ul><li>0b: Disables the reporting of Non-fatal and Fatal errors detected by the Switch to the Root Complex</li><li>1b: Enables the Non-fatal and Fatal error reporting to Root Complex</li></ul>	No/Yes	0
9	Fast Back-to-Back Enable	RsvdP	Not Support.	No	0
10	Interrupt Disable	RW	0b: Enable to generate INTx Interrupt Messages 1b: Disable to generate INTx Interrupt Messages	No/Yes	0
15:11	Reserved	RsvdP	Reset to 5'b0.	No	0000_0b

## 8.3.4 PRIMARY STATUS REGISTER - OFFSET 04h

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
18:16	Reserved	RsvdP	Not Support.	No	000b
19	Interrupt Status	RO	Indicates that an INTx Interrupt Message is pending internally to the device. In the Switch, the forwarding of INTx messages from the downstream device of the Switch port is not reflected in this bit. Must be hardwired to 1'b0.	No	0
20	Capabilities List	RO	Set to 1b to enable support for the capability list (offset 34h is the pointer to the data structure).	No	1

PI7C9X2G1616PR Document Number DS40340 Rev 7-2 Page 118 of 198 www.diodes.com





PI7C9X2G1616PR

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
21	66MHz Capable	RsvdP	Not Support.	No	0
22	Reserved	RsvdP	Not Support.	No	0
23	Fast Back-to-Back Capable	RsvdP	Not Support.	No	0
24	Master Data Parity Error	RW1C	Set to 1b (by a requester) whenever a Parity error is detected or forwarded on the primary side of the port in a Switch. If the Parity Error Response Enable bit is cleared, this bit is never set.	No/Yes	
26:25	DEVSEL# timing	RsvdP	Not Support.	No	00b
27	Signaled Target Abort	RsvdP	Not Support.	No	0
28	Received Target Abort	RsvdP	Not Support.	No	0
29	Received Master Abort	RsvdP	Not Support.	No	0
30	Signaled System Error	RW1C	Set to 1b when the Switch sends an ERR_FATAL or ERR_NONFATAL Message, and the SERR Enable bit in the Command register is 1.	No/Yes	0
31	Detected Parity Error	RW1C	Set to 1b whenever the primary side of the port in a Switch receives a Poisoned TLP.	No/Yes	0

## 8.3.5 REVISION ID REGISTER - OFFSET 08h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
7:0	Revision	RO	Indicates revision number of device.	No/Yes	00h

## 8.3.6 CLASS CODE REGISTER - OFFSET 08h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
15:8	Programming Interface	RO	Read as 00h to indicate no programming interfaces have been defined for PCI-to-PCI Bridges.	No	00h
23:16	Sub-Class Code	RO	Read as 80h to indicate device is an Other Bridge.	No	80h
31:24	Base Class Code	RO	Read as 06h to indicate device is a Bridge device.	No	06h

## 8.3.7 CACHE LINE REGISTER - OFFSET 0Ch

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
7:0	Cache Line Size	RW	The cache line size register is set by the system firmware and the operating system cache line size. This field is implemented by PCI Express devices as a RW field for legacy compatibility, but it has no impact on any PCI Express device functionality.	No/Yes	00h

## 8.3.8 PRIMARY LATENCY TIMER REGISTER - OFFSET 0Ch

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
15:8	Primary Latency Timer	RsvdP	Not Support.	No	00h





## 8.3.9 HEADER TYPE REGISTER - OFFSET 0Ch

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
23:16	Header Type	RO	Read as 00h to indicate that the register layout conforms to Type 0 Configuration Header for the NT Port.	No	00h

## 8.3.10 BAR 0 REGISTER - OFFSET 10h

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
0	Memory Space Indicator	RO	Reset to 0b to indicate the Base Address register maps NT Port Configuration registers into Memory Space.	No	0
2:1	Memory Map Type	RO	00b: support 32-bit Memory Space. 10b: support 64-bit Memory Space.	No	00b
3	Prefetchable	RO	Reset to 0b to indicate NT Port Configuration registers maps to Non-Prefetchable Memory Space.	No	0
16:4	Reserved	RsvdP	Not Support.	No	0-0h
31:17	Base Address 0	RW	Use this Memory base address to map the NT-Port Configuration registers.	No/Yes	0-0h

## 8.3.11 BAR 1 REGISTER - OFFSET 14h

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
31:0	Base Address 1	RW	RO when the Base Address 0 register is not 64-bit addressing (offset 10h[2:1] is not 10b). RW when the Base Address 0 register is 64-bit addressing. Base Address 1 is used to provide the upper 32 Address bits when offset 10h[2:1] is set to 10b.	No/Yes	0000_0000h

## 8.3.12 BAR 2 REGISTER - OFFSET 18h

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
0	Memory Space Indicator	RO	Reset to 0b to indicate it is a Memory BAR.	No	0
2:1	Memory Map Type	RO	00b: support 32-bit Memory Space 10b: support 64-bit Memory Space	No	00b
3	Prefetchable	RO	Reset to 0b to indicate NT Port Configuration registers maps to Non-Prefetchable Memory Space.	No	0
19:4	Reserved	RsvdP	Not Support.	No	0-0h
31:20	Base Address 2	RW	Base Address 2.	No/Yes	000h

## 8.3.13 BAR 3 REGISTER - OFFSET 1Ch

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
	Mamory Space	RO	When 18h[2:1]=00b, BAR 3 is used as an independent 32-bit BAR.	No	0
0	Memory Space Indicator	RW	When 18h[2:1]=10b, BAR 3 is used as the upper 32 bits of 64-bit BAR 2/3.	No/Yes	0
	Memory Map Type	RO	When 18h[2:1]=00b, BAR 3 is used as an independent 32-bit BAR.	No	00b
2:1		RW	When 18h[2:1]=10b, BAR 3 is used as the upper 32 bits of 64-bit BAR 2/3.	No/Yes	00b
3	Prefetchable	RO	When 18h[2:1]=00b, BAR 3 is used as an independent 32-bit BAR.	No	0





PI7C9X2G1616PR

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
		RW	When 18h[2:1]=10b, BAR 3 is used as the upper 32 bits of 64-bit BAR 2/3.	No/Yes	0
		RsvdP	When 18h[2:1]=00b, BAR 3 is used as an independent 32-bit BAR.	No	0000_000h
31:4	Base Address 3	RW	When 18h[2:1]=10b, BAR 3 is used as the upper 32 bits of 64-bit BAR 2/3.	No/Yes	0000_000h

## 8.3.14 BAR 4 REGISTER - OFFSET 20h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
0	Memory Space Indicator	RO	Reset to 0b to indicate it is a Memory BAR.	No	0
2:1	Memory Map Type	RO	00b: support 32-bit Memory Space 10b: support 64-bit Memory Space	No	00b
3	Prefetchable	RO	Reset to 0b to indicate NT Port Configuration registers maps to Non-Prefetchable Memory Space.	No	0
19:4	Reserved	RsvdP	Not Support.	No	0-0h
31:20	Base Address 4	RW	Base Address 4.	No/Yes	000h

## 8.3.15 BAR 5 REGISTER - OFFSET 24h

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
	Memory Space	RO	When 20h[2:1]=00b, BAR 5 is used as an independent 32-bit BAR.	No	0
0	Indicator	RW	When 20h[2:1]=10b, BAR 5 is used as the upper 32 bits of 64-bit BAR 4/5.	No/Yes	0
	Memory Space Enable	RO	When 20h[2:1]=00b, BAR 5 is used as an independent 32-bit BAR.	No	00b
1		RW	When 20h[2:1]=10b, BAR 5 is used as the upper 32 bits of 64-bit BAR 4/5.	No/Yes	00b
2:1	Memory Map Type	RO	When 20h[2:1]=00b, BAR 5 is used as an independent 32-bit BAR.	No	0
3	Prefetchable	RW	When 20h[2:1]=10b, BAR 5 is used as the upper 32 bits of 64-bit BAR 4/5.	No/Yes	0
		RsvdP	When 20h[2:1]=00b, BAR 5 is used as an independent 32-bit BAR.	No	0000_000h
31:4	Base Address 3	RW	When 20h[2:1]=10b, BAR 5 is used as the upper 32 bits of 64-bit BAR 4/5.	No/Yes	0000_000h

#### 8.3.16 SUBSYSTEM VENDOR ID REGISTER - OFFSET 2Ch

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
15:0	SSVID	RO	It indicates the sub-system vendor id.	No/Yes	12D8h

#### 8.3.17 SUBSYSTEM ID REGISTER – OFFSET 2Ch

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
31:16	SSID	RO	It indicates the sub-system device id.	No/Yes	8619h

## 8.3.18 CAPABILITY POINTER REGISTER – OFFSET 34h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
7:0	Capability Pointer	RO	Indicates next capability pointer.	Yes	40h

PI7C9X2G1616PR Document Number DS40340 Rev 7-2 Page 121 of 198 www.diodes.com





## 8.3.19 INTERRUPT LINE REGISTER – OFFSET 3Ch

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
7:0	Interrupt Line	RW	Indicates Interrupt Line.	No/Yes	00h

#### 8.3.20 INTERRUPT PIN REGISTER – OFFSET 3Ch

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
15:8	Interrupt Pin	RO	The Switch implements INTA virtual wire interrupt signal. Only 00h or 01h is valid.	Yes	01h

## 8.3.21 POWER MANAGEMENT CAPABILITIES REGISTER - OFFSET 40h

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
7:0	Enhanced Capabilities ID	RO	Read as 01h to indicate that these are power management enhanced capability registers.	No	01h
15:8	Next Item Pointer	RO	The pointer points to the MSI capability Structure.	Yes	48h
18:16	Power Management Revision	RO	Read as 011b to indicate the device is compliant to Revision 1.2 of <i>PCI Power Management Interface Specifications</i> .	No	011b
19	PME# Clock	RsvdP	Not Support.	No	0
20	Reserved	RsvdP	Not Support.	No	0
21	Device Specific Initialization	RO	Read as 0b to indicate Switch does not have device specific initialization requirements.	Yes	0
24:22	AUX Current	RO	Reset to 000b.	Yes	000b
25	D1 Power State Support	RO	Read as 0b to indicate Switch does not support the D1 power management state.	Yes	0
26	D2 Power State Support	RO	Read as 0b to indicate Switch does not support the D2 power management state.	Yes	0
31:27	PME# Support	RO	Read as 19h to indicate Switch supports the forwarding of PME# message in D0, D3 and D4 states.	Yes	19h

## 8.3.22 POWER MANAGEMENT DATA REGISTER - OFFSET 44h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
			Indicates the current power state of the Switch. Writing a value of D0 when the previous state was D3 cause a hot reset without asserting DWNRST_L.		
1:0	Power State	RW	00b: D0 state	No/Yes	00b
			01b: D1 state 10b: D2 state		
			11b: D3 hot state		
2	Reserved	RsvdP	Not Support.	No	0
3	No_Soft_Reset	RO	When set, this bit indicates that device transitioning from D3hot to D0 does not perform an internal reset. When clear, an internal reset is performed when power state transits from D3hot to D0.	Yes	1
7:4	Reserved	RsvdP	Not Support.	No	0h
8	PME# Enable	RW	When asserted, the Switch will generate the PME# message.	No/Yes	0
12:9	Data Select	RW	Select data registers RW if offset 870h[1]=1 and RO if offset 870h[1]=0.	No/Yes	0h
14:13	Data Scale	RO	Reset to 00b.	No	00b
15	PME Status	RO	Read as 0b as the PME# message is not implemented.	No	0





## 8.3.23 PPB SUPPORT EXTENSIONS - OFFSET 44h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
21:16	Reserved	RsvdP	Not Support.	No	00_0000b
22	B2_B3 Support for D3 _{HOT}	RO	Does not apply to PCI Express. Must be hardwired to 0.	No	0
23	Bus Power / Clock Control Enable	RO	Does not apply to PCI Express. Must be hardwired to 0.	No	0

## 8.3.24 DATA REGISTER – OFFSET 44h

	BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
I	31:24	Data Register	RO	Data Register.	Yes	00h

#### 8.3.25 MSI CAPABILITIES REGISTER – OFFSET 48h

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
7:0	Enhanced Capabilities ID	RO	Read as 05h to indicate that this is message signal interrupt capability register.	No	05h
15:8	Next Item Pointer	RO	Indicates next capability pointer.	Yes	68h
16	MSI Enable	RW	0b: The function is prohibited from using MSI to request service 1b: The function is permitted to use MSI to request service and is prohibited from using its INTx # pin	No/Yes	0
19:17	Multiple Message Capable	RO	Do not support multiple messages.	No	000b
22:20	Multiple Message Enable	RW	Reset to 000b.	No/Yes	000b
23	64-bit address capable	RO	0b: The function is not capable of generating a 64-bit message address 1b: The function is capable of generating a 64-bit message address	No	1b
31:24	Reserved	RsvdP	Not Support.	No	00h

## 8.3.26 MESSAGE ADDRESS REGISTER – OFFSET 4Ch

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
1:0	Reserved	RsvdP	Not Support.	No	00b
31:2	Message Address	RW	If the message enable bit is set, the contents of this register specify the DWORD aligned address for MSI memory write transaction.	No/Yes	0-0h

#### 8.3.27 MESSAGE UPPER ADDRESS REGISTER - OFFSET 50h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
31:0	Message Upper Address	RW	This register is only effective if the device supports a 64-bit message address is set.	No/Yes	0000_0000h





## 8.3.28 MESSAGE DATA REGISTER - OFFSET 54h

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
15:0	Message Data	RW	Message data.	No/Yes	0000h

## 8.3.29 PCI EXPRESS CAPABILITIES REGISTER - OFFSET 68h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
7:0	Enhanced Capabilities ID	RO	Read as 10h to indicate that these are PCI express enhanced capability registers.	No	10h
15:8	Next Item Pointer	RO	Pointer points to the SSID/SSVID Extended Capability Structure.	Yes	A4h
19:16	Capability Version	RO	Read as 2h to indicate the device is compliant to Revision .2.0 of <i>PCI Express Base Specifications</i> .	No	2h
23:20	Device/Port Type	RO	Indicates the type of PCI Express logical device.	No	0h
24	Slot Implemented	RO	Reset to 0b.	No	0
29:25	Interrupt Message Number	RO	Read as 0. No MSI messages are generated in the transparent mode.	No	00_000b
31:30	Reserved	RsvdP	Not Support.	No	00b

#### 8.3.30 DEVICE CAPABILITIES REGISTER - OFFSET 6Ch

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
2:0	Max_Payload_Size Supported	RO	Indicates the maximum payload size that the device can support for TLPs. 000b: 128 payload size 001b: 256 payload size 010b: 512 payload size	Yes	001b
4:3	Phantom Functions Supported	RO	Indicates the support for use of unclaimed function numbers as Phantom functions. Read as 00b, since the Switch does not act as a requester.	No	00b
5	Extended Tag Field Supported	RO	Indicates the maximum supported size of Tag field as a Requester. Read as 0, since the Switch does not act as a requester.	No	0
8:6	Endpoint L0s Acceptable Latency	RO	Acceptable total latency that an Endpoint can withstand due to the transition from L0s state to the L0 state. For Switch, the ASPM software would not check this value.	No	111b
11:9	Endpoint L1 Acceptable Latency	RO	Acceptable total latency that an Endpoint can withstand due to the transition from L1 state to the L0 state. For Switch, the ASPM software would not check this value.	No	111b
14:12	Reserved	RsvdP	Not Support.	No	000b
15	Role_Based Error Reporting	RO	When set, indicates that the device implements the functionality originally defined in the Error Reporting ECN.	Yes	1
17:16	Reserved	RsvdP	Not Support.	No	00b
25:18	Captured Slot Power Limit Value	RO	In combination with the Slot Power Limit Scale value, specifies the upper limit on power supplied by slot. This value is set by the Set_Slot_Power_Limit message.	No	00h
27:26	Captured Slot Power Limit Scale	RO	Specifies the scale used for the Slot Power Limit Value. This value is set by the Set_Slot_Power_Limit message.	No	00b
31:28	Reserved	RsvdP	Not Support.	No	0h





## 8.3.31 DEVICE CONTROL REGISTER - OFFSET 70h

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
0	Correctable Error Reporting Enable	RW	0b: Disable Correctable Error Reporting 1b: Enable Correctable Error Reporting	No/Yes	0
1	Non-Fatal Error Reporting Enable	RW	0b: Disable Non-Fatal Error Reporting 1b: Enable Non-Fatal Error Reporting	No/Yes	0
2	Fatal Error Reporting Enable	RW	0b: Disable Fatal Error Reporting 1b: Enable Fatal Error Reporting	No/Yes	0
3	Unsupported Request Reporting Enable	RW	0b: Disable Unsupported Request Reporting 1b: Enable Unsupported Request Reporting	No/Yes	0
4	Enable Relaxed Ordering	RO	When set, it permits the device to set the Relaxed Ordering bit in the attribute field of transaction. Since the Switch can not either act as a requester or alter the content of packet it forwards, this bit always returns '0' when read.	No	0
7:5	Max_Payload_Size	RW	This field sets maximum TLP payload size for the device. Permissible values that can be programmed are indicated by the Max_Payload_Size Supported in the Device Capabilities register. Any value exceeding the Max_Payload_Size Supported written to this register results into clamping to the Max_Payload_Size Supported value.	No/Yes	000Ь
8	Extended Tag Field Enable	RsvdP	Not Support.	No	0
9	Phantom Function Enable	RsvdP	Not Support.	No	0
10	Auxiliary (AUX) Power PM Enable	RsvdP	Not Support.	No	0
11	Enable No Snoop	RsvdP	Not Support.	No	0
14:12	Max_Read_ Request_Size	RO	This field sets the maximum Read Request size for the device as a Requester. Since the Switch does not generate read request by itself, these bits are hardwired to 0.	No	000Ъ
15	Reserved	RsvdP	Not Support.	No	0

#### 8.3.32 DEVICE STATUS REGISTER - OFFSET 70h

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
16	Correctable Error Detected	RW1C	Asserted when correctable error is detected. Errors are logged in this register regardless of whether error reporting is enabled or not in the Device Control register.	No/Yes	0
17	Non-Fatal Error Detected	RW1C	Asserted when non-fatal error is detected. Errors are logged in this register regardless of whether error reporting is enabled or not in the Device Control register.	No/Yes	0
18	Fatal Error Detected	RW1C	Asserted when fatal error is detected. Errors are logged in this register regardless of whether error reporting is enabled or not in the Device Control register.	No/Yes	0
19	Unsupported Request Detected	RW1C	Asserted when unsupported request is detected. Errors are logged in this register regardless of whether error reporting is enabled or not in the Device Control register.	No/Yes	0
20	AUX Power Detected	RO	Asserted when the AUX power is detected by the Switch	No	0
21	Transactions Pending	RO	Each port of Switch does not issue Non-posted Requests on its own behalf, so this bit is hardwired to 0.	No	0
31:22	Reserved	RsvdP	Not Support.	No	0-0h





## 8.3.33 LINK CAPABILITIES REGISTER - OFFSET 74h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
3:0	Maximum Link Speed	RO	Indicates the maximum speed of the Express link. 0001b: 2.5 Gb/s 0010b: 5.0Gb/s Others: Reserved	No	lh
9:4	Maximum Link Width	HWInt RO	Indicates the maximum width of the given PCIe Link. 00_0001b: x1 link 00_0010b: x2 link 00_0100b: x4 link 00_1000b: x8 link Others: Reserved	No	08h, 04h, 02h or 01h
11:10	Active State Power Management (ASPM) Support	RO	Indicates the level of ASPM supported on the given PCIe Link. Each port of Switch supports L0s and L1 entry.	Yes	01b
14:12	L0s Exit Latency	RO	Indicates the L0s exit latency for the given PCIe Link. The length of time this port requires to complete transition from L0s to L0 is in the range of 256ns to less than 512ns.	Yes	011b
17:15	L1 Exit Latency	RO	Indicates the L1 exit latency for the given PCIe Link. The length of time this port requires to complete transition from L1 to L0 is less than 1us.	Yes	000Ь
18	Clock Power Management	RO	A value of 1b indicates that component tolerates the removal of any reference clock via CLKREQ#.	Yes	1
19	Surprise Down Capability Enable	RsvdP	Not Support.	No	0
20	Data Link Layer Active Reporting Capable	RsvdP	Not Support.	No	0
21	Link BW Notify Capability	RsvdP	Not Support.	No	0
23:20	Reserved	RsvdP	Not Support.	No	0-0h
31:24	Port Number	RO	Indicates the NT-Port Number.	Yes	00h port 0 01h port 1 

## 8.3.34 LINK CONTROL REGISTER - OFFSET 78h

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
1:0	Active State Power Management (ASPM) Control	RW	00b: ASPM is Disabled 01b: L0s Entry Enabled 10b: L1 Entry Enabled 11b: L0s and L1 Entry Enabled Note that the receiver must be capable of entering L0s even when the field is disabled	No/Yes	00ь
2	Reserved	RsvdP	Not Support.	No	0
3	Read Completion Boundary (RCB)	RO	Does not apply to PCI Express Switch. Returns '0' when read.	No	0
4	Link Disable	RsvdP	Not Support.	No	0
5	Retrain Link	RsvdP	Not Support.	No	0
6	Common Clock Configuration	RW	<ul><li>0b: The components at both ends of a link are operating with synchronous reference clock.</li><li>1b: The components at both ends of a link are operating with a distributed common reference clock</li></ul>	No/Yes	0
7	Extended Synch	RW	When set, it transmits 4096 FTS ordered sets in the L0s state for entering L0 state and transmits 1024 TS1 ordered sets in the L1 state for entering L0 state.	No/Yes	0





PI7C9X2G1616PR

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
8	Enable Clock Power Management	RW	<ul><li>0b: clock power management is disable and must hold CLKREQ# low.</li><li>1b: device is permitted to use CLKREQ# to power manage link clock.</li></ul>	No/Yes	0
9	HW Autonomous Width Disable	RW	Reset to 0b.	No/Yes	0
10	Link Bandwidth Management Interrupt Enable	RW	Reset to 0b.	No/Yes	0
11	Link Autonomous Bandwidth Interrupt Enable	RW	Reset to 0b	No/Yes	0
15:12	Reserved	RsvdP	Not Support.	No	00h

#### 8.3.35 LINK STATUS REGISTER - OFFSET 78h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
19:16	Link Speed	RO	Indicate the negotiated speed of the Express link. 1h: link to 2.5 Gb/s 2h: link to 5.0 Gb/s	No	1h
25:20	Negotiated Link Width	RO	Indicates the negotiated width of the given PCIe link. 01h: x1 link 02h: x2 link 04h: x4 link	No	01h
26	Training Error	RsvdP	Not Support.	No	0
27	Link Training	RsvdP	Not Support.	No	0
28	Slot Clock Configuration	RO	<ul><li>0b: the Switch uses an independent clock correspective of the presence of a reference on the connector</li><li>1b: the Switch uses the same reference clock that the platform provides on the connector</li></ul>	Yes	1
29	Data Link Layer Link Active	RsvdP	Not Support.	No	0
30	Link Bandwidth Management Status	RO	Reset to 0b.	No	0
31	Link Autonomous Bandwidth Status	RO	Reset to 0b.	No	0

## 8.3.36 LINK CONTROL REGISTER 2 – OFFSET 94h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
31:0	Reserved	RsvdP	Not Support.	No	000b

#### 8.3.37 LINK CONTROL REGISTER 2 – OFFSET 98h

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
3:0	Target Link Speed	RW	0001b: target link speed set to 2.5 Gb/s 0010b: target link speed set to 5.0 Gb/s Others: Reserved	No/Yes	2h
4	Enter Compliance	RW	1b: enter compliance mode	No/Yes	0
5	Hardware Autonomous Speed Disable	RW	Not Support.	No	0
6	Selectable De-Emphasis	RO	Not Support.	No	0





PI7C9X2G1616PR

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
9:7	Tran_Margin	RW	Test used only.	No/Yes	000b
10	Enter Modify Compliance	RW	Not Support.	No	0
11	Compliance SOS	RW	Not Support.	No	0
12	Compliance_Deemp	RW	Not Support.	No	0
15:13	Reserved	RsvdP	Not Support.	No	000b

## 8.3.38 LINK STATUS REGISTER 2 - OFFSET 98h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
16	Current De-emphasis level	RO	0b: -6dB 1b: -3.5dB	No	0
31:17	Link status 2	RO	Not Support.	No	0-0h

#### 8.3.39 SSID/SSVID CAPABILITIES REGISTER - OFFSET A4h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
7:0	SSID/SSVID Capabilities ID	RO	Read as 0Dh to indicate that these are SSID/SSVID capability registers.	No	0Dh
15:8	Next Item Pointer	RO	Indicates next capability pointer.	Yes	C8h
31:16	Reserved	RsvdP	Not Support.	No	0000h

#### 8.3.40 SUBSYSTEM VENDOR ID REGISTER – OFFSET A8h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
15:0	SSVID	RO	It indicates the sub-system vendor id.	Yes	12D8h

#### 8.3.41 SUBSYSTEM ID REGISTER – OFFSET A8h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
31:16	SSID	RO	It indicates the sub-system device id.	Yes	8619h

#### 8.3.42 VENDOR SPECIFIC CAPABILITIES REGISTER - OFFSET C8h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
7:0	Enhanced Capabilities ID	RO	Read as 09h to indicate that these are vendor specific capability registers.	No	09h
15:8	Next Item Pointer	RO	Read as 00h. No other ECP registers.	No	00h
31:16	Length Information	RO	The length field provides the information for number of bytes in the capability structure.	No	0038h





## 8.3.43 VENDOR SPECIFIC HEADER REGISTER – OFFSET CCh

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
31:0	Reserved	RsvdP	Reset to 0380_0002h.	No	0380_0002h

## 8.3.44 NT PORT LINK INTERFACE BAR 0-1 CONFIGURATION REGISTER – OFFSET E4h

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
1:0	BAR0 Type	RW	00b: Disable BAR0/1 01b: Reserved 10b: BAR0 is implemented as a 32-bit Memory BAR 11b: BAR0/1 is implemented as a 64-bit Memory BAR	Yes	10b
2	BAR0 Prefetchable	RW	0b: Non Prefetchable 1b: Prefetchable	Yes	0
31:3	Reserved	RsvdP	Not Support.	No	0-0h

# 8.3.45 NT PORT LINK INTERFACE BAR 2 CONFIGURATION REGISTER – OFFSET E8h

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
0	Type Selector	RsvdP	Not Support.	No	0
2:1	BAR2 Type	RW	00b: BAR2 is implemented as a 32 bit Memory BAR 10b: BAR2/3 is implemented as a 64-bit Memory BAR	No/Yes	00b
3	Prefetchable	RW	0b: Non Prefetchable 1b: Prefetchable	No/Yes	0
19:4	Reserved	RsvdP	Not Support.	No	0_000h
30:20	BAR2 Size	RW	To specify BAR2 size. 0b: Corresponding BAR2 bits are RO bits that always return 0 1b: Corresponding BAR2 bits are RW bits	No/Yes	0-0h
31	BAR 2 Enable	RW	Valid when bits[2:1]=00b. 0b: Disable BAR2 1b: Enable BAR2	No/Yes	0
	BAR 2 Size	RW	Includes with bits[30:20] when tis BAR is used as a 64-bit BAR (bits[2:1]=10b).		

# 8.3.46 NT PORT LINK INTERFACE BAR 2-3 CONFIGURATION REGISTER – OFFSET ECh

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
0	Type Selector	RsvdP	Not Support.	No	0
2:1	BAR3 Type	RO	00b: BAR3 is implemented as a 32-bit Memory BAR.	No	00b
3	Prefetchable	RW	0b: Non Prefetchable 1b: Prefetchable	No/Yes	0
		RsvdP Not Support when E8h[2:1]=00b.	Not Support when E8h[2:1]=00b.	No	0_000h
19:4	Upper 32 Bits	RW	When E8h[2:1]=10b, BAR2/3 are used as a 64-bit BAR, bit[31:0] (including bit[19:4]) are used as the upper 32-bits.	No/Yes	0_000h
30:20	BAR3 Size	RW	To specify BAR3 size. 0b: Corresponding BAR3 bits are RO bits that always return 0 1b: Corresponding BAR3 bits are RW bits	No/Yes	000h

PI7C9X2G1616PR Document Number DS40340 Rev 7-2 Page 129 of 198 www.diodes.com





PI7C9X2G1616PR

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
31	BAR 3 Enable	RW	Valid when E8h[2:1]=00b. 0b: Disable BAR3 1b: Enable BAR3	No/Yes	0
	64-Bit BAR	RW	Valid when E8h[2:1]=10b. 0b: BAR2/3 is disabled, all BAR2/3 bits read 0. 1b: BAR2/3 is enabled as a 64-bit BAR.	NO/ I es	

# 8.3.47 NT PORT LINK INTERFACE BAR 4 CONFIGURATION REGISTER – OFFSET F0h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
0	Type Selector	RsvdP	Not Support.	No	0
2:1	BAR4 Type	RW	00b: BAR4 is implemented as a 32 bit Memory BAR 10b: BAR4/5 is implemented as a 64-bit Memory BAR	No/Yes	00b
3	Prefetchable	RW	0b: Non Prefetchable 1b: Prefetchable	No/Yes	0
19:4	Reserved	RsvdP	Not Support.	No	0_000h
30:20	BAR4 Size	RW	To specify BAR4 size. 0b: Corresponding BAR4 bits are RO bits that always return 0 1b: Corresponding BAR4 bits are RW bits	No/Yes	0-0h
31	BAR4 Enable	RW	Valid when bis[2:1]=00b. 0b: Disable BAR4 1b: Enable BAR4	No/Yes	0
	BAR 4 Size	RW	Includes with bits[30:20] when tis BAR is used as a 64-bit BAR (bits[2:1]=10b).		

# 8.3.48 NT PORT LINK INTERFACE BAR 4-5 CONFIGURATION REGISTER – OFFSET F4h

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
0	Type Selector	RsvdP	Not Support.	No	0
2:1	BAR5 Type	RO	00b: BAR5 is implemented as a 32-bit Memory BAR.	No	00b
3	Prefetchable	RW	0b: Non Prefetchable 1b: Prefetchable	No/Yes	0
		RsvdP	Not Support when F0h[2:1]=00b.	No 0_	0_000h
19:4	Upper 32 Bits	RW	When F0h[2:1]=10b, BAR4/5 are used as a 64-bit BAR, bit[31:0] (including bit[19:4]) are used as the upper 32-bits.	No/Yes	0_000h
30:20	BAR5 Size	RW	To specify BAR5 size. 0b: Corresponding BAR5 bits are RO bits that always return 0 1b: Corresponding BAR5 bits are RW bits	No/Yes	000h
31	BAR 5 Enable	RW	Valid when F0h[2:1]=00b. 0b: Disable BAR5. 1b: Enable BAR5.	No/Yes	0
51	64-Bit BAR	RW	Valid when F0h[2:1]=10b. 0b: BAR4/5 is disabled, all BAR4/5 bits read 0. 1b: BAR4/5 is enabled as a 64-bit BAR.	110/105	





## 8.3.49 DEVICE SERIAL NUMBER ENHANCED CAPABILITY HEADER REGISTER – OFFSET 100h

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
15:0	Extended Capabilities ID	RO	Read as 0003h to indicate that these are PCI express extended capability registers for device serial number extend capability register.	No	0003h
19:16	Capability Version	RO	Must be 1h for this version.	No	1h
31:20	Next Capability Offset	RO	Indicates next capability pointer.	Yes	FB4h

## 8.3.50 DEVICE SERIAL NUMBER LOWER DW REGISTER - OFFSET 104h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
31:0	Device serial number 1 st DW	RO	First dword for device serial number.	Yes	0000_0000h

#### 8.3.51 DEVICE SERIAL NUMBER HIGHTER DW REGISTER – OFFSET 108h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
31:0	Device serial number 2 nd DW	RO	Second dword for device serial number.	Yes	0000_0000h

#### 8.3.52 PCI EXPRESS POWER BUDGETING ENHANCED CAPABILITY HEADER REGISTER – OFFSET 138h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
15:0	Extended Capabilities ID	RO	Read as 0004h to indicate that these are PCI express extended capability registers for power budgeting.	No	0004h
19:16	Capability Version	RO	Must be 1h for this version.	No	01h
31:20	Next Capability Offset	RO	Indicates next capability pointer.	Yes	148h

## 8.3.53 DATA SELECT REGISTER – OFFSET 13Ch

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
7:0	Data Selection	RW	It indexes the power budgeting data reported through the data register. When 00h, it selects D0 Max power budget When 01h, it selects D0 Sustained power budget Other values would return zero power budgets, which means not supported.	No/Yes	00h
31:8	Reserved	RsvdP	Not Support.	No	0-0h





## 8.3.54 POWER BUDGETING DATA REGISTER – OFFSET 140h

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
7:0	Base Power	RO	It specifies the base power value in watts. This value represents the required power budget in the given operation condition.	Yes	04h if 13Ch[0]=0 03h if 13Ch[0]=1
9:8	Data Scale	RO	It specifies the scale to apply to the base power value.	Yes	00b
12:10	PM Sub State	RO	It specifies the power management sub state of the given operation condition. It is initialized to the default sub state.	No	000b
14:13	PM State	RO	It specifies the power management state of the given operation condition. It defaults to the D0 power state.	Yes	00b
17:15	Туре	RO	It specifies the type of the given operation condition. It defaults to the Maximum power state.	No/Yes	111b if 13Ch[0]=0 011b if 13Ch[0]=1
20:18	Power Rail	RO	It specifies the power rail of the given operation condition	No	010b
31:21	Reserved	RsvdP	Not Support.	No	0-0h

## 8.3.55 POWER BUDGET CAPABILITY REGISTER - OFFSET 144h

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
0	System Allocated	RO	When set, it indicates that the power budget for the device is included within the system power budget.	Yes	1
31:1	Reserved	RsvdP	Not Support.	No	0-0h

#### 8.3.56 PCI EXPRESS VIRTUAL CHANNEL ENHANCED CAPABILITY HEADER REGISTER – OFFSET 148h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
15:0	Extended Capabilities ID	RO	Read as 0002h to indicate that these are PCI express extended capability registers for virtual channel.	No	02h
19:16	Capability Version	RO	Read as 1h.	No	01h
31:20	Next Capability Offset	RO	Read as 000h. No other ECP registers.	No	000h

## 8.3.57 PORT VC CAPABILITY REGISTER 1 - OFFSET 14Ch

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
2:0	Extended VC Count	RO	It indicates the number of extended Virtual Channels in addition to the default VC supported by the Switch.	Yes	000b
3	Reserved	RsvdP	Not Support.	No	0
6:4	Low Priority Extended VC Count	RO	It indicates the number of extended Virtual Channels in addition to the default VC belonging to the low-priority VC (LPVC) group.	Yes	000b
7	Reserved	RsvdP	Not Support.	No	0
9:8	Reference Clock	RO	It indicates the reference clock for Virtual Channels that support time-based WRR Port Arbitration. Defined encoding is 00b for 100 ns reference clock.	No	00b
11:10	Port Arbitration Table Entry Size	RO	Read as 10b to indicate the size of Port Arbitration table entry in the device is 4 bits.	No	10b
31:12	Reserved	RsvdP	Not Support.	No	0000_0h





## 8.3.58 PORT VC CAPABILITY REGISTER 2 – OFFSET 150h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
7:0	VC Arbitration Capability	RO	It indicates the types of VC Arbitration supported by the device for the LPVC group. This field is valid when LPVC is greater than 0. The Switch supports Hardware fixed arbitration scheme, e.g., Round Robin and Weight Round Robin arbitration with 32 phases in LPVC.	No	03h
23:8	Reserved	RsvdP	Not Support.	No	0000h
31:24	VC Arbitration Table Offset	RO	It indicates the location of the VC Arbitration Table as an offset from the base address of the Virtual Channel Capability register in the unit of DQWD (16 bytes).	No	00h if VC1=0 04h if VC1=1

## 8.3.59 PORT VC CONTROL REGISTER - OFFSET 154h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
0	Load VC Arbitration Table	RW	When set, the programmed VC Arbitration Table is applied to the hardware. This bit always returns '0' when read.	Yes	0
3:1	VC Arbitration Select	RW	This field is used to configure the VC Arbitration by selecting one of the supported VC Arbitration schemes. The valid values for the schemes supported by Switch are 0b and 1b. Other value than these written into this register will be treated as default.	No/Yes	000Ь
15:4	Reserved	RsvdP	Not Support.	No	000h

## 8.3.60 VC STATUS REGISTER - OFFSET 154h

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
16	VC Arbitration Table Status	RO	When set, it indicates that any entry of the VC Arbitration Table is written by software. This bit is cleared when hardware finishes loading values stored in the VC Arbitration Table after the bit of "Load VC Arbitration Table" is set.	No	0
31:17	Reserved	RsvdP	Not Support.	No	0-0h

## 8.3.61 VC RESOURCE CAPABILITY REGISTER (0) – OFFSET 158h

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
7:0	Port Arbitration Capability	RO	It indicates the types of Port Arbitration supported by the VC resource. The Switch supports Hardware fixed arbitration scheme, e.g., Round Robin, Weight Round Robin (WRR) arbitration with 128 phases (3~4 enabled ports) and Time-based WRR with 128 phases (3~4 enabled ports). Note that the Time-based WRR is only valid in VC1.	No	03h
13:8	Reserved	RsvdP	Not Support.	No	00_0000h
14	Advanced Packet Switching	RO	When set, it indicates the VC resource only supports transaction optimized for Advanced Packet Switching (AS).	No	0
15	Reject Snoop Transactions	RO	This bit is not applied to PCIe Switch.	No	0
22:16	Maximum Time Slots	RO	It indicates the maximum numbers of time slots (minus one) are allocated for Isochronous traffic.	No	3Fh
23	Reserved	RsvdP	Not Support.	No	0
31:24	Port Arbitration Table Offset	RO	It indicates the location of the Port Arbitration Table (n) as an offset from the base address of the Virtual Channel Capability register in the unit of DQWD (16 bytes).	No	05h

PI7C9X2G1616PR Document Number DS40340 Rev 7-2 Page 133 of 198 www.diodes.com





## 8.3.62 VC RESOURCE CONTROL REGISTER (0) – OFFSET 15Ch

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
7:0	TC/VC Map	RW	This field indicates the TCs that are mapped to the VC resource. Bit locations within this field correspond to TC values. When the bits in this field are set, it means that the corresponding TCs are mapped to the VC resource.	Yes	FFh
15:8	Reserved	RsvdP	Not Support.	No	00h
16	Load Port Arbitration Table	RW	When set, the programmed Port Arbitration Table is applied to the hardware. This bit always returns 0b when read.	No/Yes	0
19:17	Port Arbitration Select	RW	This field is used to configure the Port Arbitration by selecting one of the supported Port Arbitration schemes. The permissible values for the schemes supported by Switch are 000b and 011b at VC0, other value than these written into this register will be treated as default.	No/Yes	000Ъ
23:20	Reserved	RsvdP	Not Support.	No	0h
26:24	VC ID	RO	This field assigns a VC ID to the VC resource.	No	000b
30:27	Reserved	RsvdP	Not Support.	No	0h
31	VC Enable	RO	0b: it disables this Virtual Channel 1b: it enables this Virtual Channel	No	1

## 8.3.63 VC RESOURCE STATUS REGISTER (0) - OFFSET 160h

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
15:0	Reserved	RsvdP	Not Support.	No	0000h
16	Port Arbitration Table Status	RO	When set, it indicates that any entry of the Port Arbitration Table is written by software. This bit is cleared when hardware finishes loading values stored in the Port Arbitration Table after the bit of "Load Port Arbitration Table" is set.	No	0
17	VC Negotiation Pending	RO	When set, it indicates that the VC resource is still in the process of negotiation. This bit is cleared after the VC negotiation is complete.	No	0
31:18	Reserved	RsvdP	Not Support.	No	0-0h

## 8.3.64 VC RESOURCE CAPABILITY REGISTER (1) - OFFSET 164h

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
7:0	Port Arbitration Capability	RO	It indicates the types of Port Arbitration supported by the VC resource. The Switch supports Hardware fixed arbitration scheme, e.g., Round Robin, Weight Round Robin (WRR) arbitration with 128 phases (3~4 enabled ports) and Time-based WRR with 128 phases (3~4 enabled ports). Note that the Time-based WRR is only valid in VC1.	No	00h if VC1=0 13h if VC1=1
13:8	Reserved	RsvdP	Not Support.	No	0-0h
14	Advanced Packet Switching	RO	When set, it indicates the VC resource only supports transaction optimized for Advanced Packet Switching (AS).	No	0
15	Reject Snoop Transactions	RO	This bit is not applied to PCIe Switch.	No	0
22:16	Maximum Time Slots	RO	It indicates the maximum numbers of time slots (minus one) are allocated for Isochronous traffic.	Yes	00h if VC1=0 3Fh if VC1=1
23	Reserved	RsvdP	Not Support.	No	0
31:24	Port Arbitration Table Offset	RO	It indicates the location of the Port Arbitration Table (n) as an offset from the base address of the Virtual Channel Capability register in the unit of DQWD (16 bytes).	No	00h if VC1=0 06h if VC1=1





## 8.3.65 VC RESOURCE CONTROL REGISTER (1) – OFFSET 168h

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
7:0	TC/VC Map	RW	This field indicates the TCs that are mapped to the VC resource. Bit locations within this field correspond to TC values. When the bits in this field are set, it means that the corresponding TCs are mapped to the VC resource. Bit 0 of this filed is read-only and must be set to "0" for the VC1.	Yes	00h
15:8	Reserved	RsvdP	Not Support.	No	0-0h
16	Load Port Arbitration Table	RW	When set, the programmed Port Arbitration Table is applied to the hardware. This bit always returns 0b when read.	No/Yes	0
19:17	Port Arbitration Select	RW	This field is used to configure the Port Arbitration by selecting one of the supported Port Arbitration schemes. The permissible values for the schemes supported by Switch are 000b, 011b and 100b at VC1, other value than these written into this register will be treated as default.	No/Yes	000Ь
23:20	Reserved	RsvdP	Not Support.	No	0h
26:24	VC ID	RW	This field assigns a VC ID to the VC resource.	No/Yes	000b if VC1=0 001b if VC1=1
30:27	Reserved	RsvdP	Not Support.	No	0h
31	VC Enable	RW	0b: it disables this Virtual Channel 1b: it enables this Virtual Channel	No/Yes	0

## 8.3.66 VC RESOURCE STATUS REGISTER (1) - OFFSET 16Ch

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
15:0	Reserved	RsvdP	Not Support.	No	0000h
16	Port Arbitration Table Status	RO	When set, it indicates that any entry of the Port Arbitration Table is written by software. This bit is cleared when hardware finishes loading values stored in the Port Arbitration Table after the bit of "Load Port Arbitration Table" is set.	No	0
17	VC Negotiation Pending	RO	When set, it indicates that the VC resource is still in the process of negotiation. This bit is cleared after the VC negotiation is complete.	No	0
31:18	Reserved	RsvdP	Not Support.	No	0-0h

#### 8.3.67 VC ARBITRATION TABLE REGISTER - OFFSET 188h

The VC arbitration table is a read-write register array that contains a table for VC arbitration. Each table entry allocates four bits, of which three bits are used to represent VC ID and one bit is reserved. A total of 32 entries are used to construct the VC arbitration table. The layout for this register array is shown below.

31 - 28	27 - 24	23 - 20	19 - 16	15 - 12	11 - 8	7 - 4	3 - 0	Byte Location	EEPROM/ I2C-SMBUS	DEFAULT
Phase [7]	Phase [6]	Phase [5]	Phase [4]	Phase [3]	Phase [2]	Phase [1]	Phase [0]	00h	No/Yes	0000_0000h
Phase [15]	Phase [14]	Phase [13]	Phase [12]	Phase [11]	Phase [10]	Phase [9]	Phase [8]	04h	No/Yes	0000_0000h
Phase [23]	Phase [22]	Phase [21]	Phase [20]	Phase [19]	Phase [18]	Phase [17]	Phase [16]	08h	No/Yes	0000_0000h
Phase [31]	Phase [30]	Phase [29]	Phase [28]	Phase [27]	Phase [26]	Phase [25]	Phase [24]	0Ch	No/Yes	0000_0000h

#### Table 8-4 Register Array Layout for VC Arbitration





#### 8.3.68 PORT ARBITRATION TABLE REGISTER (0) and (1) – OFFSET 198h and 1A8h

The Port arbitration table is a read-write register array that contains a table for Port arbitration. Each table entry allocates two bits to represent Port Number. The table entry size is dependent on the number of enabled ports (refer to bit 10 and 11 of Port VC capability register 1). The arbitration table contains 32 entries if three or four ports are to be enabled. The following table shows the register array layout for the size of entry equal to two.

#### Table 8-5 Table Entry Size in 4 Bits

31 - 24	23 - 16	15 - 8	7 - 0	Byte Location	EEPROM/ I2C-SMBUS	DEFAULT
Phase [7:6]	Phase [5:4]	Phase [3:2]	Phase [1:0]	00h	No/Yes	0000_0000h
Phase [15:14]	Phase [13:12]	Phase [11:10]	Phase [9:8]	04h	No/Yes	0000_0000h
Phase [23:22]	Phase [21:20]	Phase [19:18]	Phase [17:16]	08h	No/Yes	0000_0000h
Phase [31:30]	Phase [29:28]	Phase [27:26]	Phase [25:24]	0Ch	No/Yes	0000_0000h

#### 8.3.69 XPIP_CSR 0 REGISTER - OFFSET 844h

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
31:0	XPIP_CSR0	RW	XPIP CSR 0 value. Bit[2]: Cross_Link_En. These bits always return '0' when read.	Yes	0400_1060h

#### 8.3.70 XPIP_CSR 1 REGISTER – OFFSET 848h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
31:0	XPIP_CSR1	RW	XPIP CSR 1 value.	Yes	0400_0800h
	_		These bits always return '0' when read.		—

#### 8.3.71 DECODE VGA REGISTER – OFFSET 84Ch

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
30:0	Reserved	RsvdP	Not Support.	No	0-0h
31	Decode VGA Enable	RO	0b: Disable VGA decode 1b: Enable VGA decode This bit always returns '0' when read.	Yes	1

#### 8.3.72 XPIP_CSR 2 REGISTER – OFFSET 854h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
7:0	FTS Number	RW	These bits always return '0' when read.	Yes	80h
9:8	Scrambler Control	RW	These bits always return '0' when read.	Yes	00b
10	LOs	RW	This bit always returns '0' when read.	Yes	0
11	Compliance to Detect	RW	This bit always returns '0' when read.	Yes	0
13:12	Change_Speed_Sel	RW	These bits always return '0' when read.	Yes	00b

PI7C9X2G1616PR Document Number DS40340 Rev 7-2 Page 136 of 198 www.diodes.com





BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
14	Change_Speed_En	RW	This bit always returns '0' when read.	Yes	0
31:15	Reserved	RsvdP	Not Support.	No	0_0000h

## 8.3.73 PHY PARAMETER 2 REGISTER – OFFSET 858h

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
7:0	Reserved	RsvdP	Not Support.	No	27h
8	P_CDR_FREQLOO P_EN	RW	This bit always returns '0' when read.	Yes	1
10:9	P_CDR_ THRESHOLD	RW	These bits always return '0' when read.	Yes	10b
12:11	P_CDR_FREQLOO P_GAIN	RW	These bits always return '0' when read.	Yes	11b
15:13	Reserved	RsvdP	Not Support.	No	000b
16	P_DRV_LVL_MGN _DELATA_EN	RW	This bit always returns '0' when read.	Yes	0
17	P_DRV_LVL_NOM _DELATA_EN	RW	This bit always returns '0' when read.	Yes	0
18	P_EMP_POST_MG N_DELATA_EN	RW	This bit always returns '0' when read.	Yes	0
19	P_EMP_POST_NO M_DELATA_EN	RW	This bit always returns '0' when read.	Yes	0
21:20	P_RX_SIGDET_ LVL	RW	Set the receiver signal detection threshold. Please refer to Section 6.1.2 for more detail information.	Yes	01b
25:22	P_RX_EQ_1	RW	These bits always return '0' when read. Set the receiver equalization for GEN1 link. Please refer to Section 6.1.3 for more detail information. These bits always return '0' when read.	Yes	0h
29:26	P_RX_EQ_2	RW	Set the receiver equalization for GEN2 link. Please refer to Section 6.1.3 for more detail information. These bits always return '0' when read.	Yes	0h
30	P_TXSWING	RW	Set the transmitter swing. Please refer to Section 6.1.4 for more detail information. 0b: full voltage swing with de-emphasis 1b: half voltage swing without de-emphasis This bit always returns '0' when read.	Yes	0
31	Reserved	RsvdP	Not Support.	No	0

#### 8.3.74 PHY PARAMETER 3 REGISTER - OFFSET 85Ch

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
6:0	PHY Parameter 3 (Per Lane)	RW	PHY's Lane mode. These bits always return '0' when read.	Yes	00h
14:7	Reserved	RsvdP	Not Support.	No	00h
31:15	PHY Parameter 3 (Per Port)	RW	PHY's delta value setting. These bits always return '0' when read.	Yes	0001h





## 8.3.75 XPIP_CSR 3 REGISTER - OFFSET 864h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
31:0	XPIP CSR3	RW	XPIP CSR 3 value.	Yes	000F 0000h
51.0	MIII_CONO	ic.	These bits always return '0' when read.	105	0001_000001

## 8.3.76 XPIP_CSR 5 REGISTER - OFFSET 86Ch

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
29:0	XPIP_CSR5[29:0]	RW	Bit[10]: Default ACK Latency Timer Enable 0b: disable default ack latency timer 1b: enable default ack latency timer These bits always return '0' when read.	Yes	3308_0008h
30	DO_CHG_DATA_ RATE_CTRL	RW	DO_CHG_DATA_RATE_CTRL. This bit always returns '0' when read.	Yes	0
31	Gen1_Cap_Only	RW	0b: report GEN2 capability 1b: report GEN1 capability This bit always returns '0' when read.	Yes	0

## 8.3.77 OPERATION MODE REGISTER - OFFSET 874h (Global)

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
15:0	Operation Mode	HwInt RO	Bit[0]: Memory Bist Bit[1]: IDDRB Bit[2]: FAST_MODE Bit[3]: DEBUG_MODE Bit[4]: PHY_MODE Bit[8:5]: PORT_CFG[3:0] Bit[9]: PLCSEL Bit[10]: SCAN_MODE Bit[15:11]: Reserved These bits always return '0' when read.	No	0002h for 1616 mode 0022h for 1316 mode 0042h for 1016 mode 0062h for 716 mode 0082h for 416 mode 00A2h for 916 mode 00C2h for 616 mode 00E2h for 316 mode 0102h for 216 mode 0122h for 716 mode
31:16	Reserved	RsvdP	Not Support.	No	0000h

#### 8.3.78 MAC_CSR REGISTER - OFFSET 890h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
15:0	Reserved	RsvdP	Not Support.	No	0000h
31:16	MAC_CSR	RW	These bits always return '0' when read.	Yes	0004h

#### 8.3.79 POWER SAVING DISABLE REGISTER - OFFSET 8A4h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
0	Power Saving Disable	RW	Disable power saving. This bit always returns '0' when read.	Yes	0
31:1	Reserved	RsvdP	Not Support.	No	0-0h

PI7C9X2G1616PR Document Number DS40340 Rev 7-2 Page 138 of 198 www.diodes.com





## 8.3.80 TRANSACTION LAYER CSR REGISTER - OFFSET 8A8h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
0	Egress_Reqcredit_ Starve	RW	Test used only.	Yes	1
1	MF_Credit_Update_ Dis	RW	Test used only.	Yes	0
2	MC_Cap_Dis	RW	Test used only.	Yes	0
3	MEM_Sharing_Dis	RO	Test used only.	Yes	0
31:4	Reserved	RsvdP	Not Support.	No	0-0h

## 8.3.81 REPLAY TIME-OUT COUNTER REGISTER - OFFSET 8ACh

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
11:0	User Replay Timer	RW	A 12-bit register contains a user-defined value. These bits always return '0' when read.	Yes	000h
12	Enable User Replay Timer	RW	When asserted, the user-defined replay time-out value is be employed. This bit always returns '0' when read.	Yes	0
15:13	Reserved	RsvdP	Not Support.	No	000b

## 8.3.82 ACKNOWLEDGE LATENCY TIMER REGISTER - OFFSET 8ACh

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
29:16	User ACK Latency Timer	RW	A 14-bit register contains a user-defined value. These bits always return '0' when read.	Yes	0-0h
30	Enable User ACK Latency	RW	When asserted, the user-defined ACK latency value is be employed. This bit always returns '0' when read.	Yes	0
31	Reserved	RsvdP	Not Support.	No	0

## 8.3.83 PORT MISC 0 REGISTER - OFFSET 8B0h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
7:0	Reserved	RsvdP	Not Support.	No	00h
13:8	Power Management Control Parameter	RW	Power Management Control parameter.	Yes	00_0001b
14	RX Polarity Inversion Disable	RW	0b: enable rx polarity inversion circuit 1b: disable rx polarity inversion circuit	Yes	0
15	Compliance Pattern Parity Control Disable	RW	0b: enable compliance pattern parity control 1b: disable compliance pattern parity control	Yes	0
31:16	Reserved	RsvdP	Not Support	No	0000h

## 8.3.84 PORT MISC 1 REGISTER – OFFSET 8B4h

]	BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
	7:0	Reserved	RsvdP	Not Support.	No	00h

Page 139 of 198 www.diodes.com





PI7C9X2G1616PR

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
8:9	DO_CHG_DATA_ CNT_SEL	RW	The trying number for doing change data rate. These bits always return '0' when read.	Yes	00b
10	Port Disable	RW	Disable this port. This bit always returns '0' when read.	Yes	0
15:11	Reserved	RsvdP	Not Support.	No	0_0000b

## 8.3.85 XPIP_CSR 6 REGISTER - OFFSET 8B4h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
23:16	XPIP_CSR6	RW	XPIP_CSR 6 Value.	Yes	78h
			These bits always return '0' when read.		

## 8.3.86 XPIP_CSR 7 REGISTER - OFFSET 8B4h

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
25:24	REV_TS_CTR	RW	Test used only. These bits always return '0' when read.	Yes	00
29:26	MAC Control Parameter	RW	Test used only. These bits always return '0' when read.	Yes	Oh
30	Line_Loopback	RW	Test used only. This bit always returns '0' when read.	No	0
31	P35_GEN2_MODE	RW	Test used only. This bit always returns '0' when read.	Yes	0

## 8.3.87 PORT MISC 2 REGISTER - OFFSET 8B8h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
0	Change_Role_En	RW	Test used only. This bit always returns '0' when read.	Yes	0
1	IPCore_Role	RW	Test used only. This bit always returns '0' when read.	Yes	0
31:2	Reserved	RsvdP	Not Support.	No	0-0h

## 8.3.88 VENDOR SPECIFIC CAPABILITIES HEADER REGISTER – OFFSET C34h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
15:0	Extended Capabilities ID	RO	Read as 000Bh to indicate that these are PCI express extended capability registers for vendor specific registers.	No	000Bh
19:16	Capability Version	RO	Read as 1h.	No	1h
31:20	Next Capability Offset	RO	Read as 000h. No other ECP registers.	No	000h

Page 140 of 198 www.diodes.com





## 8.3.89 VENDOR SPECIFIC HEADER REGISTER – OFFSET C38h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
31:0	Vendor Specific Header	RO	Reset to 0780_0003h.	No	0780_0003h

## 8.3.90 MEMORY BAR 2 ADDRESS TRANSLATION REGISTER – OFFSET C3Ch

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
19:0	Reserved	RsvdP	Not Support.	No	0_0000h
31:20	Memory BAR 2 Address Translation	RW	Valid when BAR 2 is enabled (offset E8h[31]=1).	Yes	000h

#### 8.3.91 MEMORY BAR 3 ADDRESS TRANSLATION REGISTER – OFFSET C40h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
19:0	Reserved	RsvdP	Not Support.	No	000h
31:20	Memory BAR 3 Address Translation	RW	Valid when BAR 3 is enabled (ECh[31]=1).	Yes	000h

#### 8.3.92 MEMORY BAR4 ADDRESS TRANSLATION REGISTER - OFFSET C44h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
19:0	Reserved	RsvdP	Not Support.	No	0_0000h
31:20	Memory BAR 4 Address Translation	RW	Valid when BAR 4 is enabled (offset F0h[31]=1).	Yes	000h

#### 8.3.93 MEMORY BAR 5 ADDRESS TRANSLATION REGISTER - OFFSET C48h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
19:0	Reserved	RsvdP	Not Support.	No	000h
31:0	Memory BAR 5 Address Translation	RW	Valid when BAR 5 is enabled (F4h[31]=1).	Yes	000h

#### 8.3.94 VIRTUAL IF IRQ SET REGISTER – OFFSET C4Ch

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
15:0	Set IRQ	RW	Set virtual interface IRQ.	No/Yes	0000h
31:16	Reserved	RsvdP	Not Support.	No	0000h

#### 8.3.95 VIRTUAL IF IRQ CLEAR REGISTER - OFFSET C50h

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
15:0	Clear IRQ	RW1C	Clear virtual interface IRQ.	No/Yes	0000h

Page 141 of 198 www.diodes.com





BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
31:16	Reserved	RsvdP	Not Support.	No	0000h

#### 8.3.96 VIRTUAL IF IRQ MASK SET REGISTER – OFFSET C54h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
15:0	Set IRQ Mask	RW	Set virtual interface interrupt IRQ mask.	No/Yes	FFFFh
31:16	Reserved	RsvdP	Not Support.	No	0000h

#### 8.3.97 VIRTUAL IF IRQ MASK CLEAR REGISTER - OFFSET C58h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
15:0	Clear IRQ Mask	RW1C	Clear virtual interface interrupt IRQ mask.	No/Yes	0000h
31:16	Reserved	RsvdP	Not Support.	No	0000h

#### 8.3.98 LINK IF IRQ SET REGISTER – OFFSET C5Ch

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
15:0	Set IRQ	RW	Set link interface IRQ.	No/Yes	0000h
31:16	Reserved	RsvdP	Not Support.	No	0000h

#### 8.3.99 LINK IF IRQ CLEAR REGISTER - OFFSET C60h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
15:0	Clear IRQ	RW1C	Clear link interface IRQ.	No/Yes	0000h
31:16	Reserved	RsvdP	Not Support.	No	0000h

#### 8.3.100 LINK IF IRQ MASK SET REGISTER - OFFST C64h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
15:0	Set IRQ Mask	RW	Set link interface interrupt IRQ mask.	No/Yes	FFFFh
31:16	Reserved	RsvdP	Not Support.	No	0000h

#### 8.3.101 LINK IF IRQ MASK CLEAR REGISTER - OFFSET C68h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
15:0	Clear IRQ Mask	RW1C	Clear link interface interrupt IRQ mask.	No/Yes	0000h
31:16	Reserved	RsvdP	Not Support.	No	0000h

#### 8.3.102 SCRATCHPAD 0 REGISTER - OFFSET C6Ch

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
31:0	Scratchpad 0	RW	Scratchpad 0 register.	No/Yes	0000_0000h

PI7C9X2G1616PR Document Number DS40340 Rev 7-2 Page 142 of 198 www.diodes.com





#### 8.3.103 SCRATCHPAD 1 REGISTER - OFFSET C70h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
31:0	Scratchpad 1	RW	Scratchpad 1 register.	No/Yes	0000_0000h

#### 8.3.104 SCRATHPAD 2 REGISTER – OFFSET C74h

]	BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
	31:0	Scratchpad 2	RW	Scratchpad 2 register.	No/Yes	0000_0000h

#### 8.3.105 SCRATCHPAD 3 REGISTER – OFFSET C78h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
31:0	Scratchpad 3	RW	Scratchpad 3 register.	No/Yes	0000_0000h

#### 8.3.106 SCRATHPAD 4 REGISTER – OFFSET C7Ch

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
31:0	Scratchpad 4	RW	Scratchpad 4 register.	No/Yes	0000_0000h

#### 8.3.107 SCRATCHPAD 5 REGISTER - OFFSET C80h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
31:0	Scratchpad 5	RW	Scratchpad 5 register.	No/Yes	0000_0000h

#### 8.3.108 SCRATCHPAD 6 REGISTER - OFFSET C84h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
31:0	Scratchpad 6	RW	Scratchpad 6 register.	No/Yes	0000_0000h

#### 8.3.109 SCRATCHPAD 7 REGISTER - OFFSTE C88h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
31:0	Scratchpad 8	RW	Scratchpad 8 register.	No/Yes	0000_0000h

#### 8.3.110 VIRTUAL PORT 32-BITS LTT ENTRY 0-7 – OFFSET D94h to DB0h

#### Table 8-6 Virtual Port 32-Bits LTT Entry 0-7 Register Locations

CFG_OFFSET	LTT Entry_n	CFG_OFFSET	LTT Entry_n
D94h	0	DA4h	4





CFG_OFFSET	LTT Entry_n	CFG_OFFSET	LTT Entry_n
D98h	1	DA8h	5
D9Ch	2	DACh	6
DA0h	3	DB0h	7

#### Table 8-7 Virtual Port 32-Bits LTT Entry_n (n=0 through 7)

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
15:0	ReqID	RW	Bit[2:0]: function number Bit[7:3]: device number Bit[15:8]: bus number	No/Yes	0000h
29:16	Reserved	RsvdP	Not Support.	No	0-0h
30	LUT Entry_n_ No Snoop Enable	RsvdP	Not Support.	No	0
31	LUT Entry_n Enable	RW	0b: disable 1b: enable	No/Yes	0

#### 8.3.111 LINK PORT 16-BITS LTT ENTRY 0-31 REGISTER - OFFSET DB4h - DF4h

## Table 8-8 Link Port 16-Bits LTT Entry 0-31 Register Locations

CFG_OFFSET	LTT Entry_n	CFG_OFFSET	LTT Entry_n
DB4h	0-1	DD4h	16-17
DB8h	2-3	DD8h	18-19
DBCh	4-5	DDCh	20-21
DC0h	6-7	DE0h	22-23
DC4h	8-9	DE4h	24-25
DC8h	10-11	DE8h	26-27
DCCh	12-13	DECh	28-29
DD0h	14-15	DF0h	30-31

#### Table 8-9 Link Port 16-Bits LTT Entry_n_m (n_m 0-1 to 30-31)

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
0	LUT Entry_n Enable	RW	0b: disable 1b: enable	No/Yes	0
1	LUT Entry_n_ No Snoop Enable	RsvdP	Not Support.	No	0
2	Reserved	RsvdP	Not Support.	No	0
15:3	ReqID	RW	Bit[7:3]: device number Bit[15:8]: device id	No/Yes	00h
16	LUT Entry_m Enable	RW	0b: disable 1b: enable	No/Yes	0
17	LUT Entry_m_ No Snoop Enable	RW	0b: disable 1b: enable	No/Yes	0
18	Reserved	RsvdP	Not Support.	No	0
31:19	ReqID	RW	Bit[7:3]: device number Bit[15:8]: device id	No/Yes	00h

#### 8.3.112 FAIL-OVER CSR REGISTER - OFFSET DF4h

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
0	Pri_Linksdown_Force	RW	Test used only.	Yes	0
1	2nd_Linksdown_Force	RW	Test used only.	Yes	0
2	Failover Enable	RW	Test used only.	Yes	0
3	Disable Hot Reset	RW	Test used only.	Yes	0
31:4	Reserved	RsvdP	Not Support.	No	0-0h

PI7C9X2G1616PR Document Number DS40340 Rev 7-2 Page 144 of 198 www.diodes.com




## 8.3.113 EEPROM_SCRATCHPAD REGISTER - OFFSET FB0h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
31:0	EEPROM_ Scratchpad	RO	Test used only.	Yes	0000_0000h

## 8.3.114 PCI EXPRESS ADVANCED ERROR REPORTING ENHANCED CAPABILITY HEADER REGISTER – OFFSET FB4h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
15:0	Extended Capabilities ID	RO	Read as 0001h to indicate that these are PCI express extended capability registers for advance error reporting.	No	0001h
19:16	Capability Version	RO	Read as 1h.	No	1h
31:20	Next Capability Offset	RO	Indicates next capability pointer.	No/Yes	138h

## 8.3.115 UNCORRECTABLE ERROR STATUS REGISTER - OFFSET FB8h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
0	Training Error Status	RW1C	When set, indicates that the Training Error event has occurred.	No/Yes	0
3:1	Reserved	RsvdP	Not Support.	No	000
4	Data Link Protocol Error Status	RW1C	When set, indicates that the Data Link Protocol Error event has occurred.	No/Yes	0
11:5	Reserved	RsvdP	Not Support.	No	0-0b
12	Poisoned TLP Status	RW1C	When set, indicates that a Poisoned TLP has been received or generated.	No/Yes	0
13	Flow Control Protocol Error Status	RW1C	When set, indicates that the Flow Control Protocol Error event has occurred.	No/Yes	0
14	Completion Timeout Status	RW1C	When set, indicates that the Completion Timeout event has occurred.	No/Yes	0
15	Completer Abort Status	RW1C	When set, indicates that the Completer Abort event has occurred.	No/Yes	0
16	Unexpected Completion Status	RW1C	When set, indicates that the Unexpected Completion event has occurred.	No/Yes	0
17	Receiver Overflow Status	RW1C	When set, indicates that the Receiver Overflow event has occurred.	No/Yes	0
18	Malformed TLP Status	RW1C	When set, indicates that a Malformed TLP has been received.	No/Yes	0
19	ECRC Error Status	RW1C	When set, indicates that an ECRC Error has been detected.	No/Yes	0
20	Unsupported Request Error Status	RW1C	When set, indicates that an Unsupported Request event has occurred.	No/Yes	0
21	ACS Violation Status	RW1C	When set, indicates that an ACS Violation event has occurred	No/Yes	0
22	Reserved	RsvdP	Not Support.	No	0
23	MC Blocked TLP Status	RW1C	When set, indicates that an MC Blocked TLP event has occurred.	No/Yes	0
31:24	Reserved	RsvdP	Not Support.	No	00h

## 8.3.116 UNCORRECTABLE ERROR MASK REGISTER – OFFSET FBCh

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
0	Training Error Mask	RW	When set, the Training Error event is not logged in the Header Log register and not issued as an Error Message to RC either.	No/Yes	0





PI7C9X2G1616PR

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
3:1	Reserved	RsvdP	Not Support.	No	000b
4	Data Link Protocol Error Mask	RW	When set, the Data Link Protocol Error event is not logged in the Header Log register and not issued as an Error Message to RC either.	No/Yes	0
11:5	Reserved	RsvdP	Not Support.	No	0-0b
12	Poisoned TLP Mask	RW	When set, an event of Poisoned TLP is not logged in the Header Log register and not issued as an Error Message to RC either.	No/Yes	0
13	Flow Control Protocol Error Mask	RW	When set, the Flow Control Protocol Error event is not logged in the Header Log register and not issued as an Error Message to RC either.	No/Yes	0
14	Completion Timeout Mask	RW	When set, the Completion Timeout event is not logged in the Header Log register and not issued as an Error Message to RC either.	No/Yes	0
15	Completer Abort Mask	RW	When set, the Completer Abort event is not logged in the Header Log register and not issued as an Error Message to RC either.	No/Yes	0
16	Unexpected Completion Mask	RW	When set, the Unexpected Completion event is not logged in the Header Log register and not issued as an Error Message to RC either.	No/Yes	0
17	Receiver Overflow Mask	RW	When set, the Receiver Overflow event is not logged in the Header Log register and not issued as an Error Message to RC either.	No/Yes	0
18	Malformed TLP Mask	RW	When set, an event of Malformed TLP is not logged in the Header Log register and not issued as an Error Message to RC either.	No/Yes	0
19	ECRC Error Mask	RW	When set, an event of ECRC Error is not logged in the Header Log register and not issued as an Error Message to RC either.	No/Yes	0
20	Unsupported Request Error Mask	RW	When set, the Unsupported Request event is not logged in the Header Log register and not issued as an Error Message to RC either.	No/Yes	0
21	ACS Violation Mask	RW	When set, the ACS Violation event is not logged in the Header Log register and not issued as an Error Message to RC either.	No/Yes	0
22	Reserved	RsvdP	Not Support.	No	0
23	MC Blocked TLP Mask	RW1C	When set, the MC Blocked TLP event is not logged in the Header Log register and not issued as an Error Message to RC either.	No/Yes	0
31:24	Reserved	RsvdP	Not Support.	No	00h

## 8.3.117 UNCORRECTABLE ERROR SEVERITY REGISTER - OFFSET FC0h

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
0	Training Error Severity	RW	0b: Non-Fatal 1b: Fatal	No/Yes	1
3:1	Reserved	RsvdP	Not Support.	No	000b
4	Data Link Protocol Error Severity	Ib: Fatal       RsvdP     Not Support.       tocol     RW       Ib: Fatal       RsvdP     Not Support.       RW     Ob: Non-Fatal Ib: Fatal       P     Ob: Non-Fatal Ib: Fatal		No/Yes	1
11:5	Reserved	RsvdP	Not Support.	No	0-0b
12	Poisoned TLP Severity	RW		No/Yes	0
13	Flow Control Protocol Error Severity	RW	0b: Non-Fatal 1b: Fatal	No/Yes	1
14	Completion Timeout Error Severity	RW	0b: Non-Fatal 1b: Fatal	No/Yes	0
15	Completer Abort Severity	RW	0b: Non-Fatal 1b: Fatal	No/Yes	0
16	Unexpected Completion Severity	RW	0b: Non-Fatal 1b: Fatal	No/Yes	0
17	Receiver Overflow Severity	RW	0b: Non-Fatal 1b: Fatal	No/Yes	1
18	Malformed TLP Severity	RW	0b: Non-Fatal 1b: Fatal	No/Yes	1
19	ECRC Error Severity	RW	0b: Non-Fatal 1b: Fatal	No/Yes	0

Page 146 of 198 www.diodes.com





PI7C9X2G1616PR

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
20	Unsupported Request Error Severity	RW	0b: Non-Fatal 1b: Fatal	No/Yes	0
21	ACS Violation Severity	RW	0b: Non-Fatal 1b: Fatal	No/Yes	0
22	Reserved	RsvdP	Not Support.	No	0
23	MC Blocked TLP Severity	RW	0b: Not-Fatal 1b: Fatal	No/Yes	0
31:24	Reserved	RsvdP	Not Support.	No	00h

## 8.3.118 CORRECTABLE ERROR STATUS REGISTER - OFFSET FC4 h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
0	Receiver Error Status	RW1C	When set, the Receiver Error event is detected.	No/Yes	0
5:1	Reserved	RsvdP	Not Support.	No	0_000b
6	Bad TLP Status	RW1C	When set, the event of Bad TLP has been received is detected.	No/Yes	0
7	Bad DLLP Status	RW1C	When set, the event of Bad DLLP has been received is detected.	No/Yes	0
8	REPLAY_NUM Rollover status	RW1C	When set, the REPLAY_NUM Rollover event is detected.	No/Yes	0
11:9	Reserved	RsvdP	Not Support.	No	000b
12	Replay Timer Timeout status	RW1C	When set, the Replay Timer Timeout event is detected.	No/Yes	0
13	Advisory Non-Fatal Error status	RW1C	hen set, the Advisory Non-Fatal Error event is detected. No/Yes		0
31:14	Reserved	RsvdP	Not Support.	No	0-0h

## 8.3.119 CORRECTABLE ERROR MASK REGISTER - OFFSET FC8 h

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
0	Receiver Error Mask	RW	When set, the Receiver Error event is not logged in the Header Log register and not issued as an Error Message to RC either.	No/Yes	0
5:1	Reserved	RsvdP	Not Support.	No	0_000b
6	Bad TLP Mask	RW	When set, the event of Bad TLP has been received is not logged in the Header Log register and not issued as an Error Message to RC either.	No/Yes	0
7	Bad DLLP Mask	RW	When set, the event of Bad DLLP has been received is not logged in the Header Log register and not issued as an Error Message to RC either.	No/Yes	0
8	REPLAY_NUM Rollover Mask	RW	When set, the REPLAY_NUM Rollover event is not logged in the Header Log register and not issued as an Error Message to RC either.	No/Yes	0
11:9	Reserved	RsvdP	Not Support.	No	000b
12	Replay Timer Timeout Mask	RW	When set, the Replay Timer Timeout event is not logged in the Header Log register and not issued as an Error Message to RC either.	No/Yes	0
13	Advisory Non-Fatal Error Mask	RW	When set, the Advisory Non-Fatal Error event is not logged in the Header Long register and not issued as an Error Message to RC either.	No/Yes	1
31:14	Reserved	RsvdP	Not Support.	No	0-0h





# 8.3.120 ADVANCE ERROR CAPABILITIES AND CONTROL REGISTER – OFFSET FCCh

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
4:0	First Error Pointer	RO	It indicates the bit position of the first error reported in the Uncorrectable Error Status register. Reset to 5'd0.	No	0_0000b
5	ECRC Generation Capable	RO	When set, it indicates the Switch has the capability to generate ECRC.	No	1
6	ECRC Generation Enable	RW	When set, it enables the generation of ECRC when needed.	No/Yes	0
7	ECRC Check Capable	RO	When set, it indicates the Switch has the capability to check ECRC.	No	1
8	ECRC Check Enable	RW	When set, the function of checking ECRC is enabled	Vhen set, the function of checking ECRC is enabled No/Yes	
31:9	Reserved	RsvdP	Not Support.	No	0-0h

## 8.3.121 HEADER LOG REGISTER – OFFSET From FD0h to FDCh

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
31:0	1 st DWORD	RO	Hold the 1st DWORD of TLP Header. The Head byte is in big endian.	No	0000-0000h
63:32	2 nd DWORD	RO	Hold the 2nd DWORD of TLP Header. The Head byte is in big endian.	No	0000-0000h
95:64	3 rd DWORD	RO	Hold the 3rd DWORD of TLP Header. The Head byte is in big endian.	No	0000-0000h
127:96	4 th DWORD	RO	Hold the 4th DWORD of TLP Header. The Head byte is in big endian.	No	0000-0000h





## 8.4 NON TRANSPARENT PORT VIRTUAL INTERFACE CONFIGURATION REGISTERS – NT Mode Only

When the port of the Switch is set to operate at the non-transparent mode, it is represented by an Other Bridge that implements type 0 configuration space header. The following table details the allocation of the register fields of the PCI 2.3 compatible type 0 configuration space header.

31 –24	23 - 16	15-8	7 –0	BYTE OFFSET					
De	vice ID	Vend	or ID	00h					
Prima	ary Status	Com	mand	04h					
	Class Code		Revision ID	08h					
Reserved	Header Type	Reserved	Cache Line Size	0Ch					
	BA	R 0		10h					
	BA	.R 1		14h					
	BA	R 2		18h					
	BA	.R 3		1Ch					
	BA	R 4		20h					
	BA	.R 5		24h					
	Rese	erved		28h					
	SSID SSVID								
	Rese	erved		30h					
	Reserved		Capability Pointer to 40h	34h					
	Rese	erved		38h					
Re	eserved	Interrupt Pin	Interrupt Line	3Ch					
	ement Capabilities	Next Item Pointer=48h	Capability ID=01h	40h					
PM Data	PPB Support Extensions		gement Data	44h					
	ge Control	Next Item Pointer=68h	Capability ID=05h	48h					
		Address		4Ch					
				50h					
Re	Message Upper Address Reserved Message Data								
	Reserved Message Data								
PCI Express C	apabilities Register	Next Item Pointer=A4h	Capability ID=10h	<u>58h - 64h</u> 68h					
I CI Exploss C		apabilities	Cupublinty ID Toli	6Ch					
Devi	ce Status		Control	70h					
Devi		pabilities	control	74h					
Lin	k Status		Control	78h					
Liii		erved	Control	7Ch - 90h					
		abilities 2		94h					
Link	: Status 2		ontrol 2	98h					
LIIIK		erved	0111012	9Ch – A0h					
Re	eserved	Next Item Pointer=C8h	SSID/SSVID Capability ID=0Dh	A4h					
	SSID	SS	VID	A8h					
		erved		ACh – C4h					
L	ength	Next Item Pointer=00h	Vendor Specific Capability ID=09h	C8h					
	Rese	erved	- ap	CCh					
·		e BAR 0-1 Configuration		D0h					
·				D4h					
·	NT Port Virtual Interface BAR 2 Configuration NT Port Virtual Interface BAR 2-3 Configuration								
		ce BAR 4 Configuration		D8h DCh					
		e BAR 4-5 Configuration		E0h					
	Rese			E4h - FCh					

Other than the PCI 2.3 compatible configuration space header, the Switch also implements PCI express extended configuration space header, which includes advanced error reporting, virtual channel, and power budgeting capability registers. The following table details the allocation of the register fields of PCI express extended capability space header. The first extended capability always begins at offset 100h with a PCI Express Enhanced Capability header and the rest of capabilities are located at an offset greater than 0FFh relative to the beginning of PCI compatible configuration space.

PI7C9X2G1616PR Document Number DS40340 Rev 7-2 Page 149 of 198 www.diodes.com





PI7C9X2G1616PR

31 –24	23 - 16	15 - 8	7 –0	BYTE OFFSET
Next Capability Offset=C34h	1	PCI Express Extende	d Capability ID=0003h	100h
	Version	L DW		10.41
		er Lower DW		104h 108h
	Rese	er Upper DW		108h 10Ch – C30h
Next Capability Offset=000h	Cap.		d Capability ID=000Bh	C34h
Next Capability Offset=0000	Version	I CI Express Extended	u Capability ID=000Bli	03411
		cific Header		C38h
		on BAR 2		C3Ch
	Translati	on BAR 3		C40h
	Translatio	on BAR 4		C44h
	Translati	on BAR 5		C48h
Reserved			F IRQ Set	C4Ch
Reserved			FIRQ Clear	C50h
Reserved			RQ Mask Set	C54h
Reserved			Q Mask Clear	C58h
Reserved			IRQ Set	C5Ch
Reserved			IRQ Clear	C60h
Reserved			Q Mask Set D Mask Clear	C64h C68h
Reserved	Canata	hpad 0	2 Mask Clear	C68h
	Scrate			C70h
		hpad 2		C74h
		hpad 3		C78h
		hpad 4		C7Ch
		hpad 5		C80h
		hpad 6		C84h
	Scrate			C88h
	Rese			C8Ch – D90h
		Bits LTT Entry 0		D94h
		Bits LTT Entry 1		D98h
		Bits LTT Entry 2		D9Ch
	Virtual Port 32-1	Bits LTT Entry 3		DA0h
		Bits LTT Entry 4		DA4h
		Bits LTT Entry 5		DA8h
		Bits LTT Entry 6		DACh
		Bits LTT Entry 7		DB0h
	Link Port 16-Bit			DB4h
	Link Port 16-Bit			DB8h
		ts LTT Entry 4-5		DBCh
		ts LTT Entry 6-7		DC0h
		ts LTT Entry 8-9		DC4h DC8h
<b></b>	Link Port 16-Bits	LTT Entry 12-13		DC8h
		LTT Entry 14-15		DCCh
-	Link Port 16-Bits			DD0ll DD4h
		LTT Entry 18-19		DD4h DD8h
	Link Port 16-Bits			DDCh
	Link Port 16-Bits			DE0h
		LTT Entry 24-25		DE4h
		LTT Entry 26-27		DE8h
		LTT Entry 28-29		DECh
		LTT Entry 30-31		DF0h
		ver CSR		DF4h
	Rese	erved		DF8 - FFCh





## 8.4.1 VENDOR ID REGISTER - OFFSET 00h

]	BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
1	15:0	Vendor ID	RO	Identifies Pericom as the vendor of this device.	Yes	12D8h

## 8.4.2 DEVICE ID REGISTER - OFFSET 00h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
31:16	Device ID	RO	Identifies this device as the PI7C9X2G1616PR.	Yes	8619h

## 8.4.3 COMMAND REGISTER - OFFSET 04h

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
0	I/O Space Enable	RW	0b: Ignores I/O transactions on the primary interface 1b: Enables responses to I/O transactions on the primary interface	No/Yes	0
1	Memory Space Enable	RW	0b: Ignores memory transactions on the primary interface 1b: Enables responses to memory transactions on the primary interface	No/Yes	0
2	Bus Master Enable	RW	<ul> <li>Ob: Does not initiate memory or I/O transactions on the upstream port and handles as an Unsupported Request (UR) to memory and I/O transactions on the downstream port. For Non-Posted Requests, a completion with UR completion status must be returned</li> <li>Ib: Enables the Switch Port to forward memory and I/O Read/Write transactions in the upstream direction</li> </ul>	No/Yes	0
3	Special Cycle Enable	RsvdP	Not Support.	No	0
4	Memory Write And Invalidate Enable	RsvdP	Not Support.	No	0
5	VGA Palette Snoop Enable	RsvdP	Not Support.	No	0
6	Parity Error Response Enable	RW	<ul><li>0b: Switc0b: Switch may ignore any parity errors that it detects and continue normal operation</li><li>1b: Switch must take its normal action when a parity error is detected</li></ul>	No/Yes	0
7	Wait Cycle Control	RsvdP	Not Support.	No	0
8	SERR# enable	RW	<ul><li>0b: Disables the reporting of Non-fatal and Fatal errors detected by the Switch to the Root Complex</li><li>1b: Enables the Non-fatal and Fatal error reporting to Root Complex</li></ul>	No/Yes	0
9	Fast Back-to-Back Enable	RsvdP	Not Support.	No	0
10	Interrupt Disable	RW	0b: Enable to generate INTx Interrupt Messages 1b: Disable to generate INTx Interrupt Messages	No/Yes	0
15:11	Reserved	RsvdP	Not Support.	No	0000_0b

## 8.4.4 PRIMARY STATUS REGISTER - OFFSET 04h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
18:16	Reserved	RsvdP	Not Support.	No	000b
19	Interrupt Status	RO	Indicates that an INTx Interrupt Message is pending internally to the device. In the Switch, the forwarding of INTx messages from the downstream device of the Switch port is not reflected in this bit. Must be hardwired to 0.	No	0
20	Capabilities List	RO	Set to 1b to enable support for the capability list (offset 34h is the pointer to the data structure).	No	1

PI7C9X2G1616PR Document Number DS40340 Rev 7-2 Page 151 of 198 www.diodes.com

December 2020 © Diodes Incorporated





PI7C9X2G1616PR

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
21	66MHz Capable	RsvdP	Not Support	No	0
22	Reserved	RsvdP	Not Support.	No	0
23	Fast Back-to-Back Capable	RsvdP	Not Support.	No	0
24	Master Data Parity Error	RW1C	Set to 1b (by a requester) whenever a Parity error is detected or forwarded on the primary side of the port in a Switch. If the Parity Error Response Enable bit is cleared, this bit is never set.	No/Yes	0
26:25	DEVSEL# timing	RsvdP	Not Support.	No	00b
27	Signaled Target Abort	RW1C	Set to 1b (by a requester) whenever a Completer Abort is detected.	No/Yes	0
28	Received Target Abort	RsvdP	Not Support.	No	0
29	Received Master Abort	RsvdP	Not Support.	No	0
30	Signaled System Error	RW1C	Set to 1b when the Switch sends an ERR_FATAL or ERR_NONFATAL Message, and the SERR Enable bit in the Command register is 1.	No	0
31	Detected Parity Error	RW1C	Set to 1b whenever the primary side of the port in a Switch receives a Poisoned TLP.	No/Yes	0

## 8.4.5 REVISION ID REGISTER - OFFSET 08h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
7:0	Revision	RO	Indicates revision number of device.	No/Yes	00h

## 8.4.6 CLASS CODE REGISTER - OFFSET 08h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
15:8	Programming Interface	RO	Read as 00h to indicate no programming interfaces have been defined for PCI-to-PCI Bridges.	No	00h
23:16	Sub-Class Code	RO	Read as 80h to indicate device is an Other Bridge.	No	80h
31:24	Base Class Code	RO	Read as 06h to indicate device is a Bridge device.	No	06h

## 8.4.7 CACHE LINE REGISTER – OFFSET 0Ch

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
7:0	Cache Line Size	RW	The cache line size register is set by the system firmware and the operating system cache line size. This field is implemented by PCI Express devices as a RW field for legacy compatibility, but it has no impact on any PCI Express device functionality.	No/Yes	00h

## 8.4.8 PRIMARY LATENCY TIMER REGISTER - OFFSET 0Ch

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
15:8	Primary Latency Timer	RsvdP	Not Support.	No	00h





## 8.4.9 HEADER TYPE REGISTER - OFFSET 0Ch

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
23:16	Header Type	RO	Read as 00h to indicate that the register layout conforms to Type 0 Configuration Header for the NT Port.	No	00h

## 8.4.10 BAR 0 REGISTER - OFFSET 10h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
0	Memory Space Indicator	RO	Reset to 0b to indicate the Base Address register maps NT Port Configuration registers into Memory Space.	No	0
2:1	Memory Map Type	RO	00b: support 32-bit Memory Space. 10b: support 64-bit Memory Space.	No	00b
3	Prefetchable	RO	Reset to 0b to indicate NT Port Configuration registers maps to Non-Prefetchable Memory Space.	No	0
16:4	Reserved	RsvdP	Not Support.	No	0-0h
31:17	Base Address 0	RW	Use this Memory base address to map the NT-Port Configuration registers.	No/Yes	0-0h

## 8.4.11 BAR 1 REGISTER - OFFSET 14h

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
		RO	When 10h[2:1]=00b, BAR 0 is not enabled as a 64-bit BAR.	No	0
31:0	Base Address 1	RW	When 10h[2:1]=10b, for 64-bit addressing (BAR 0/1), BAR 1 extends BAR 0 to provide the upper 32 Address bits.	No/Yes	0

## 8.4.12 BAR 2 REGISTER - OFFSET 18h

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
0	Memory Space Indicator	RO	Reset to 0b to indicate it is a Memory BAR.	No	0
2:1	Memory Map Type	RO	00b: support 32-bit Memory Space. 10b: support 64-bit Memory Space.	No	00b
3	Prefetchable	RO	Reset to 0b to indicate NT Port Configuration registers maps to Non-Prefetchable Memory Space.	No	0
19:4	Reserved	RsvdP	Not Support.	No	0-0h
31:20	Base Address 2	RW	Base Address 2.	No/Yes	000h

## 8.4.13 BAR 3 REGISTER - OFFSET 1Ch

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
0	0 Memory Space Indicator	RO	When 18h[2:1]=00b, BAR 3 is used as an independent 32-bit BAR.	No	0
0		RW	When 18h[2:1]=10b, BAR 3 is used as the upper 32 bits of 64-bit BAR 2/3.	No/Yes	0
2.1		RO	When 18h[2:1]=00b, BAR 3 is used as an independent 32-bit BAR.	No	00b
2:1	Memory Map Type	RW	When 18h[2:1]=10b, BAR 3 is used as the upper 32 bits of 64-bit BAR 2/3.	No/Yes	00b
3	Prefetchable	RO	When 18h[2:1]=00b, BAR 3 is used as an independent 32-bit BAR.	No	0

PI7C9X2G1616PR Document Number DS40340 Rev 7-2 Page 153 of 198 www.diodes.com

December 2020 © Diodes Incorporated





PI7C9X2G1616PR

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
		RW	When 18h[2:1]=10b, BAR 3 is used as the upper 32 bits of 64-bit BAR 2/3.	No/Yes	0
21.4	Paga Addrags 2		When 18h[2:1]=00b, BAR 3 is used as an independent 32-bit BAR.	No	0000_000h
31:4	Base Address 3	RW	When 18h[2:1]=10b, BAR 3 is used as the upper 32 bits of 64-bit BAR 2/3.	No/Yes	0000_000h

## 8.4.14 BAR 4 REGISTER - OFFSET 20h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
0	Memory Space Indicator	RO	Reset to 0b to indicate it is a Memory BAR.	No	0
2:1	Memory Map Type	RO	00b: support 32-bit Memory Space 10b: support 64-bit Memory Space	No	00b
3	Prefetchable	RO	Reset to 0b to indicate NT Port Configuration registers maps to Non-Prefetchable Memory Space.	No	0
19:4	Reserved	RsvdP	Not Support.	No	0-0h
31:20	Base Address 4	RW	Base Address 4.	No/Yes	000h

## 8.4.15 BAR 5 REGISTER - OFFSET 24h

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
0	Memory Space	RO	When 20h[2:1]=00b, BAR 5 is used as an independent 32-bit BAR.	No	0
	Indicator	RW	When 20h[2:1]=10b, BAR 5 is used as the upper 32 bits of 64-bit BAR 4/5.	No/Yes	0
		RO	When 20h[2:1]=00b, BAR 5 is used as an independent 32-bit BAR.	No	00b
2:1	Memory Map Type	RW	When 20h[2:1]=10b, BAR 5 is used as the upper 32 bits of 64-bit BAR 4/5.	No/Yes	00b
		RO	When 20h[2:1]=00b, BAR 5 is used as an independent 32-bit BAR.	No	0
3	Prefetchable	RW	When 20h[2:1]=10b, BAR 5 is used as the upper 32 bits of 64-bit BAR 4/5.	No/Yes	0
		RsvdP	When 20h[2:1]=00b, BAR 5 is used as an independent 32-bit BAR.	No	0000_000h
31:4	Base Address 3	RW	When 20h[2:1]=10b, BAR 5 is used as the upper 32 bits of 64-bit BAR 4/5.	No/Yes	0000_000h

## 8.4.16 SUBSYSTEM VENDOR ID REGISTER – OFFSET 2Ch

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
15:0	SSVID	RO	It indicates the sub-system vendor id.	No/Yes	12D8h

## 8.4.17 SUBSYSTEM ID REGISTER – OFFSET 2Ch

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
31:16	SSID	RO	It indicates the sub-system device id.	No/Yes	8619h





## 8.4.18 CAPABILITY POINTER REGISTER - OFFSET 34h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
7:0	Capability Pointer	RO	Indicates next capability pointer.	Yes	40h

## 8.4.19 INTERRUPT LINE REGISTER – OFFSET 3Ch

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
7:0	Interrupt Line	RW	Indicates Interrupt Line.	No/Yes	00h

## 8.4.20 INTERRUPT PIN REGISTER – OFFSET 3Ch

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
15:8	Interrupt Pin	RO	The Switch implements INTA virtual wire interrupt signal. Only 00h or 01h is valid.	Yes	01h

## 8.4.21 POWER MANAGEMENT CAPABILITIES REGISTER - OFFSET 40h

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
7:0	Enhanced Capabilities ID	RO	Read as 01h to indicate that these are power management enhanced capability registers.	No	01h
15:8	Next Item Pointer	RO	Indicates next capability pointer.	Yes	48h
18:16	Power Management Revision	RO	Read as 011b to indicate the device is compliant to Revision 1.2 of PCI Power Management Interface Specifications.	No	011b
19	PME# Clock	RsvdP	Not Support.	No	0
20	Reserved	RsvdP	Not Support.	No	0
21	Device Specific Initialization	RO	Read as 0b to indicate Switch does not have device specific initialization requirements.	Yes	0
24:22	AUX Current	RO	Reset to 000b.	Yes	000b
25	D1 Power State Support	RO	Read as 0b to indicate Switch does not support the D1 power management state.	Yes	0
26	D2 Power State Support	RO	Read as 0b to indicate Switch does not support the D2 power management state.	Yes	0
31:27	PME# Support	RO	Read as 19h to indicate Switch supports the forwarding of PME# message in D0, D3 and D4 states.	Yes	19h

## 8.4.22 POWER MANAGEMENT DATA REGISTER – OFFSET 44h

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
1:0	Power State	RW	Indicates the current power state of the Switch. Writing a value of D0 when the previous state was D3 cause a hot reset without asserting DWNRST_L. 00b: D0 state 01b: D1 state 10b: D2 state 11b: D3 hot state	No/Yes	00Ь
2	Reserved	RsvdP	Not Support.	No	0
3	No_Soft_Reset	RO	When set, this bit indicates that device transitioning from D3hot to D0 does not perform an internal reset. When clear, an internal reset is performed when power state transits from D3hot to D0.	Yes	1

PI7C9X2G1616PR Document Number DS40340 Rev 7-2 Page 155 of 198 www.diodes.com

December 2020 © Diodes Incorporated





PI7C9X2G1616PR

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
7:4	Reserved	RsvdP	Not Support.	No	0h
8	PME# Enable	RW	When asserted, the Switch will generate the PME# message.	No/Yes	0
12:9	Data Select	RO	Select data registers.	No/Yes	0h
14:13	Data Scale	RO	Reset to 00b.	No	00b
15	PME Status	RO	Read as 0b as the PME# message is not implemented.	No	0

## 8.4.23 PPB SUPPORT EXTENSIONS – OFFSET 44h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
21:16	Reserved	RsvdP	Not Support.	No	00_0000b
22	B2_B3 Support for D3 _{HOT}	RO	Does not apply to PCI Express. Must be hardwired to 0.	No	0
23	Bus Power / Clock Control Enable	RO	Does not apply to PCI Express. Must be hardwired to 0.	No	0

## 8.4.24 DATA REGISTER - OFFSET 44h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
31:2	Data Register	RO	Data Register.	Yes	00h

## 8.4.25 MSI CAPABILITIES REGISTER – OFFSET 48h

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
7:0	Enhanced Capabilities ID	RO	Read as 05h to indicate that this is message signal interrupt capability register.	No	05h
15:8	Next Item Pointer	RO	Indicates next capability pointer.	Yes	68h
16	MSI Enable	RW	0b: The function is prohibited from using MSI to request service 1b: The function is permitted to use MSI to request service and is prohibited from using its INTx # pin	No/Yes	0
19:17	Multiple Message Capable	RO	Do not support multiple messages.	No	000b
22:20	Multiple Message Enable	RW	Reset to 000b.	No/Yes	000b
23	64-bit address capable	RO	<ul><li>0b: The function is not capable of generating a 64-bit message address</li><li>1b: The function is capable of generating a 64-bit message address</li></ul>	No	1b
31:24	Reserved	RsvdP	Not Support.	No	00h

## 8.4.26 MESSAGE ADDRESS REGISTER – OFFSET 4Ch

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
1:0	Reserved	RsvdP	Not Support.	No	00b
31:2	Message Address	RW	If the message enable bit is set, the contents of this register specify the DWORD aligned address for MSI memory write transaction.	No/Yes	0-0h





## 8.4.27 MESSAGE UPPER ADDRESS REGISTER - OFFSET 50h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
31:0	Message Upper Address	RW	This register is only effective if the device supports a 64-bit message address is set.	No/Yes	0000_0000h

## 8.4.28 MESSAGE DATA REGISTER - OFFSET 54h

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
15:0	Message Data	RW	Message data.	No/Yes	0000h
31:16	Reserved	RsvdP	Not Support.	No	0000h

## 8.4.29 PCI EXPRESS CAPABILITIES REGISTER - OFFSET 68h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
7:0	Enhanced Capabilities ID	RO	Read as 10h to indicate that these are PCI express enhanced capability registers.	No	10h
15:8	Next Item Pointer	RO	Indicates next capability pointer.	Yes	A4h
19:16	Capability Version	RO	Read as 2h to indicate the device is compliant to Revision .2.0 of <i>PCI Express Base Specifications</i> .	No	2h
23:20	Device/Port Type	RO	Indicates the type of PCI Express logical device.	No	0h
24	Slot Implemented	RO	Reset to 0b.	No	0
29:25	Interrupt Message Number	RO	Read as 0. No MSI messages are generated in the transparent mode.	No	00_000b
31:30	Reserved	RsvdP	Not Support.	No	00b

## 8.4.30 DEVICE CAPABILITIES REGISTER - OFFSET 6Ch

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
2:0	Max_Payload_Size Supported	RO	Indicates the maximum payload size that the device can support for TLPs. 000b: 128 payload size 001b: 256 payload size 010b: 512 payload size	Yes	001b
4:3	Phantom Functions Supported	RO	Indicates the support for use of unclaimed function numbers as Phantom functions. Read as 0, since the Switch does not act as a requester.	No	00b
5	Extended Tag Field Supported	RO	Indicates the maximum supported size of Tag field as a Requester. Read as 0, since the Switch does not act as a requester.	No	0
8:6	Endpoint L0s Acceptable Latency	RO	Acceptable total latency that an Endpoint can withstand due to the transition from L0s state to the L0 state. For Switch, the ASPM software would not check this value.	No	111b
11:9	Endpoint L1 Acceptable Latency	RO	Acceptable total latency that an Endpoint can withstand due to the transition from L1 state to the L0 state. For Switch, the ASPM software would not check this value.	No	111b
14:12	Reserved	RsvdP	Not Support.	No	000b
15	Role_Based Error Reporting	RO	When set, indicates that the device implements the functionality originally defined in the Error Reporting ECN.	Yes	1
17:16	Reserved	RsvdP	Not Support.	No	00b
25:18	Captured Slot Power Limit Value	RO	These bits are hardwired to 0.	No	00h
27:26	Captured Slot Power Limit Scale	RO	These bits are hardwired to 0.	No	00b
31:28	Reserved	RsvdP	Not Support.	No	0h

Page 157 of 198 www.diodes.com





## 8.4.31 DEVICE CONTROL REGISTER - OFFSET 70h

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
0	Correctable Error Reporting Enable	RW	0b: Disable Correctable Error Reporting 1b: Enable Correctable Error Reporting	No/Yes	0
1	Non-Fatal Error Reporting Enable	RW	0b: Disable Non-Fatal Error Reporting 1b: Enable Non-Fatal Error Reporting	No/Yes	0
2	Fatal Error Reporting Enable	RW	0b: Disable Fatal Error Reporting 1b: Enable Fatal Error Reporting	No/Yes	0
3	Unsupported Request Reporting Enable	RW	0b: Disable Unsupported Request Reporting 1b: Enable Unsupported Request Reporting	No/Yes	0
4	Enable Relaxed Ordering	RO	When set, it permits the device to set the Relaxed Ordering bit in the attribute field of transaction. Since the Switch can not either act as a requester or alter the content of packet it forwards, this bit always returns '0' when read.	No	0
7:5	Max_Payload_Size	RW	This field sets maximum TLP payload size for the device. Permissible values that can be programmed are indicated by the Max_Payload_Size Supported in the Device Capabilities register. Any value exceeding the Max_Payload_Size Supported written to this register results into clamping to the Max_Payload_Size Supported value.	No/Yes	000Ь
8	Extended Tag Field Enable	RsvdP	Not Support.	No	0
9	Phantom Function Enable	RsvdP	Not Support.	No	0
10	Auxiliary (AUX) Power PM Enable	RsvdP	Not Support.	No	0
11	Enable No Snoop	RsvdP	Not Support.	No	0
14:12	Max_Read_ Request_Size	RO	This field sets the maximum Read Request size for the device as a Requester. Since the Switch does not generate read request by itself, these bits are hardwired to 0.	No	000Ъ
15	Reserved	RsvdP	Not Support.	No/No	0

## 8.4.32 DEVICE STATUS REGISTER - OFFSET 70h

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
16	Correctable Error Detected	RW1C	Asserted when correctable error is detected. Errors are logged in this register regardless of whether error reporting is enabled or not in the Device Control register.	No/Yes	0
17	Non-Fatal Error Detected	RW1C	Asserted when non-fatal error is detected. Errors are logged in this register regardless of whether error reporting is enabled or not in the Device Control register.	No/Yes	0
18	Fatal Error Detected	RW1C	Asserted when fatal error is detected. Errors are logged in this register regardless of whether error reporting is enabled or not in the Device Control register.	No/Yes	0
19	Unsupported Request Detected	RW1C	Asserted when unsupported request is detected. Errors are logged in this register regardless of whether error reporting is enabled or not in the Device Control register.	No/Yes	0
20	AUX Power Detected	RO	Asserted when the AUX power is detected by the Switch	No	0
21	Transactions Pending	RO	Each port of Switch does not issue Non-posted Requests on its own behalf, so this bit is hardwired to 0.	No	0
31:22	Reserved	RsvdP	Not Support.	No	0-0h





## 8.4.33 LINK CAPABILITIES REGISTER - OFFSET 74h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
3:0	Maximum Link Speed	RO	Indicates the maximum speed of the Express link. 0001b: link is 2.5 Gb/s 0010b: link is 5Gb/s Others: Reserved	No	2h
9:4	Maximum Link Width	HWInt RO	Indicates the maximum width of the given PCIe Link. 00_0001b: x1 link 00_0010b: x2 link 00_0100b: x4 link 00_1000b: x8 link Others: Reserved	No	08h, 04h, 02h or 01h
11:10	Active State Power Management (ASPM) Support	RO	Indicates the level of ASPM supported on the given PCIe Link. Each port of Switch supports L0s and L1 entry.	Yes	01b
14:12	L0s Exit Latency	RO	Indicates the L0s exit latency for the given PCIe Link. The length of time this port requires to complete transition from L0s to L0 is in the range of 256ns to less than 512ns.	Yes	011b
17:15	L1 Exit Latency	RO	Indicates the L1 exit latency for the given PCIe Link. The length of time this port requires to complete transition from L1 to L0 is less than 1us.	Yes	000Ь
18	Clock Power Management	RO	This bit must be hardwired to 0.	Yes	1
19	Surprise Down Capability Enable	RsvdP	Not Support.	No	0
20	Data Link Layer Active Reporting Capable	RsvdP	Not Support.	No	0
21	Link BW Notify Capability	RsvdP	Not Support.	No	0
23:20	Reserved	RsvdP	Not Support.	No	0-0h
31:24	Port Number	RO	Indicates the NT-Port Number.	Yes	00h Port 0 01h Port 1 

## 8.4.34 LINK CONTROL REGISTER - OFFSET 78h

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
1:0	Active State Power Management (ASPM) Control	RW	00b: ASPM is Disabled 01b: L0s Entry Enabled 10b: L1 Entry Enabled 11b: L0s and L1 Entry Enabled Note that the receiver must be capable of entering L0s even when the field is disabled	No/Yes	00ь
2	Reserved	RsvdP	Not Support.	No	0
3	Read Completion Boundary (RCB)	RO	Does not apply to PCI Express Switch. Returns '0' when read.	No	0
4	Link Disable	RsvdP	Not Support.	No	0
5	Retrain Link	RsvdP	Not Support.	No	0
6	Common Clock Configuration	RW	<ul><li>0b: The components at both ends of a link are operating with synchronous reference clock.</li><li>1b: The components at both ends of a link are operating with a distributed common reference clock</li></ul>	No/Yes	0
7	Extended Synch	RW	When set, it transmits 4096 FTS ordered sets in the L0s state for entering L0 state and transmits 1024 TS1 ordered sets in the L1 state for entering L0 state.	No/Yes	0
8	Enable Clock Power Management	RsvdP	Not Support.	No/Yes	0

Page 159 of 198 www.diodes.com





PI7C9X2G1616PR

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
9	HW Autonomous Width Disable	RW	Reset to 0b.	No/Yes	0
10	Link Bandwidth Management Interrupt Enable	RW	Reset to 0b.	No/Yes	0
11	Link Autonomous Bandwidth Interrupt Enable	RW	Reset to 0b.	No/Yes	0
15:12	Reserved	RsvdP	Not Support.	No	00h

## 8.4.35 LINK STATUS REGISTER - OFFSET 78h

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
19:16	Link Speed	RO	Indicate the negotiated speed of the Express link. 0001b: link is 2.5 Gb/s 0010b: link is 5.0 Gb/s	No	1h
25:20	Negotiated Link Width	RO	Indicates the negotiated width of the given PCIe link. 00_0001b: x1 link 00_0010b: x2 link 00_0100b: x4 link	No	00_0001b
26	Training Error	RsvdP	Not Support.	No	0
27	Link Training	RsvdP	Not Support.	No	0
28	Slot Clock Configuration	RO	<ul><li>0b: the Switch uses an independent clock correspective of the presence of a reference on the connector</li><li>1b: the Switch uses the same reference clock that the platform provides on the connector</li></ul>	Yes	1
29	Data Link Layer Link Active	RsvdP	Not Support.	No	0
30	Link Bandwidth Management Status	RO	Reset to 0b.	No	0
31	Link Autonomous Bandwidth Status	RO	Reset to 0b.	No	0

## 8.4.36 LINK CONTROL REGISTER 2 - OFFSET 98h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
3:0	Target Link Speed	RW	Not Support.	No/Yes	2h
4	Enter Compliance	RW	Not Support.	No/Yes	0
5	Hardware Autonomous Speed Disable	RW	Not Support.	No/Yes	0
6	Selectable De-Emphasis	RsvdP	Not Support.	No	0
9:7	Tran_Margin	RW	Not Support.	No/Yes	000b
10	Enter Modify Compliance	RW	Not Support.	No/Yes	0
11	Compliance SOS	RW	Not Support.	No/Yes	0
12	Compliance_Deemp	RW	Not Support.	No/Yes	0
15:13	Reserved	RsvdP	Not Support.	No	000b

## 8.4.37 LINK STATUS REGISTER 2 – OFFSET 98h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
16	Current De-emphasis	RO	0b: -6dB	No	0

PI7C9X2G1616PR Document Number DS40340 Rev 7-2 Page 160 of 198 www.diodes.com





Ī		level		1b: -3.5dB		
I	31:17	Link status 2	RO	Not Support.	No	0-0h

### 8.4.38 SSID/SSVID CAPABILITIES REGISTER - OFFSET A4h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
7:0	SSID/SSVID Capabilities ID	RO	Read as 0D to indicate that these are SSID/SSVID capability registers.	No	0Dh
15:8	Next Item Pointer	RO	Indicates next capability pointer.	Yes	C8h
31:16	Reserved	RsvdP	Not Support.	No	0000h

## 8.4.39 SUBSYSTEM VENDOR ID REGISTER - OFFSET A8h

I	BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
Ι	15:0	SSVID	RO	It indicates the sub-system vendor id.	Yes	12D8h

### 8.4.40 SUBSYSTEM ID REGISTER – OFFSET A8h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
31:16	SSID	RO	It indicates the sub-system device id.	Yes	8619h

### 8.4.41 VENDOR SPECIFIC CAPABILITIES REGISTER – OFFSET C8h

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
7:0	Enhanced Capabilities ID	RO	Read as 09h to indicate that these are vendor specific capability registers.	No	09h
15:8	Next Item Pointer	RO	Read as 00h. No other ECP registers.	No	00h
31:16	Length Information	RO	The length field provides the information for number of bytes in the capability structure.	No	0038h

## 8.4.42 VENDOR SPECIFIC HEADER REGISTER – OFFSET CCh

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
31:0	Reserved	RsvdP	Reset to 0380_0002h.	No	0380_0002h

# 8.4.43 NT PORT VIRTUAL INTERFACE BAR 0-1 CONFIGURATION REGISTER – OFFSET D0h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
1:0	BAR0 Type	RW	00b: Disable BAR0/1 01b: Reserved 10b: BAR0 is implemented as a 32 bit Memory BAR 11b: BAR0/1 is implemented as a 64-bit Memory BAR	Yes	10b
2	BAR0 Prefetchable	RW	0b: Non Prefetchable 1b: Prefetchable	Yes	0
31:3	Reserved	RsvdP	Not Support.	No	0-0h

Page 161 of 198 www.diodes.com





# 8.4.44 NT PORT VIRTUAL INTERFACE BAR 2 CONFIGURATION REGISTER – OFFSET D4h

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
0	Type Selector	RsvdP	Not Support.	No	0
2:1	BAR2 Type	RW	00b: BAR2 is implemented as a 32 bit Memory BAR 10b: BAR2/3 is implemented as a 64-bit Memory BAR	No/Yes	00b
3	Prefetchable	RW	0b: Non Prefetchable 1b: Prefetchable	No/Yes	0
19:4	Reserved	RsvdP	Not Support.	No	0_000h
30:20	BAR2 Size	RW	To specify BAR2 size. 0b: Corresponding BAR2 bits are RO bits that always return 0 1b: Corresponding BAR2 bits are RW bits	No/Yes	0-0h
31	BAR 2 Enable	RW	Valid when bits[2:1]=00b. 0b: Disable BAR2 1b: Enable BAR2	No/Yes	0
	BAR 2 Size	RW	Includes with bits[30:20] when tis BAR is used as a 64-bit BAR (bits[2:1]=10b).		

# 8.4.45 NT PORT VIRTUAL INTERFACE BAR 2-3 CONFIGURATION REGISTER – OFFSET D8h

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
0	Type Selector	RsvdP	Not Support.	No	0
2:1	BAR3 Type	RO	00b: BAR3 is implemented as a 32-bit Memory BAR.	No	00b
3	Prefetchable	RW	0b: Non Prefetchable 1b: Prefetchable	No/Yes	0
		RsvdP	Not Support when D4h[2:1]=00b.		0_000h
19:4	Upper 32 Bits	RW	When D4h[2:1]=10b, BAR2/3 are used as a 64-bit BAR, bit[31:0] (including bit[19:4]) are used as the upper 32-bits.	No/Yes	0_000h
30:20	BAR3 Size	RW	To specify BAR3 size. 0b: Corresponding BAR3 bits are RO bits that always return 0 1b: Corresponding BAR3 bits are RW bits	No/Yes	000h
21	BAR 3 Enable	RW	Valid when D4h[2:1]=00b. 0b: Disable BAR3 1b: Enable BAR3	No/Yes	0
31	64-Bit BAR	RW	Valid when D4h[2:1]=10b. 0b: BAR2/3 is disabled, all BAR2/3 bits read 0. 1b: BAR2/3 is enabled as a 64-bit BAR.		

# 8.4.46 NT PORT VIRTUAL INTERFACE BAR 4 CONFIGURATION REGISTER – OFFSET DCh

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
0	Type Selector	RsvdP	Not Support.	No	0
2:1	BAR4 Type	RW	00b: BAR4 is implemented as a 32 bit Memory BAR 10b: BAR4/5 is implemented as a 64-bit Memory BAR	No/Yes	00b
3	Prefetchable	RW	0b: Non Prefetchable 1b: Prefetchable	No/Yes	0
19:4	Reserved	RsvdP	Not Support.	No	0_000h
30:20	BAR4 Size	RW	To specify BAR4 size. 0b: Corresponding BAR4 bits are RO bits that always return 0 1b: Corresponding BAR4 bits are RW bits	No/Yes	0-0h
31	BAR4 Enable	RW	Valid when bis[2:1]=00b. 0b: Disable BAR4 1b: Enable BAR4	No/Yes	0

Page 162 of 198 www.diodes.com





BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
	BAR 4 Size	RW	Includes with bits[30:20] when tis BAR is used as a 64-bit BAR (bits[2:1]=10b).		

# 8.4.47 NT PORT VIRTUAL INTERFACE BAR 4/5 CONFIGURATION REGISTER – OFFSET E0h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
0	Type Selector	RsvdP	Not Support.	No	0
2:1	BAR5 Type	RO	00b: BAR5 is implemented as a 32-bit Memory BAR.	No	00b
3	Prefetchable	RW	0b: Non Prefetchable 1b: Prefetchable	No/Yes	0
		RsvdP	Not Support when DCh[2:1]=00b.		0_000h
19:4	Upper 32 Bits	RW	When DCh[2:1]=10b, BAR4/5 are used as a 64-bit BAR, bit[31:0] (including bit[19:4]) are used as the upper 32-bits.	No/Yes	0_000h
30:20	BAR5 Size	RW	To specify BAR5 size. 0b: Corresponding BAR5 bits are RO bits that always return 0 1b: Corresponding BAR5 bits are RW bits	No/Yes	000h
31	BAR 5 Enable	RW	Valid when DCh[2:1]=00b. 0b: Disable BAR5. 1b: Enable BAR5.	No/Yes	0
51	64-Bit BAR	RW	Valid when DCh[2:1]=10b. 0b: BAR4/5 is disabled, all BAR4/5 bits read 0. 1b: BAR4/5 is enabled as a 64-bit BAR.		

# 8.4.48 DEVICE SERIAL NUMBER ENHANCED CAPABILITY HEADER REGISTER – OFFSET 100h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
15:0	Extended Capabilities ID	RO	Read as 0003h to indicate that these are PCI express extended capability registers for device serial number extend capability register.	No	0003h
19:16	Capability Version	RO	Must be 1h for this version.	No	1h
31:20	Next Capability Offset	RO	Pointer points to the Advanced Error Reporting Extended Capability structure.	Yes	C34h

## 8.4.49 DEVICE SERIAL NUMBER LOWER DW REGISTER - OFFSET 104h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
31:0	Device serial number 1 st DW	RO	First dword for device serial number.	Yes	0000_0000h

## 8.4.50 DEVICE SERIAL NUMBER HIGHER DW REGISTER - OFFSET 108h

Bľ	<b>FUNCTION</b>	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
31:	Device serial number $2^{nd}$ DW	RO	Second dword for device serial number.	Yes	0000_0000h





# 8.4.51 VENDOR SPECIFIC ENHANCED CAPABILIY HEADER REGISTER – OFFSET C34h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
15:0	Extended Capabilities ID	RO	Read as 000Bh to indicate that these are PCI express extended capability registers for vendor specific registers.	No	000Bh
19:16	Capability Version	RO	Read as 1h.	No	1h
31:20	Next Capability Offset	RO	Read as 000h. No other ECP registers.	No	000h

## 8.4.52 VENDOR SPECIFIC HEADER REGISTER – OFFSET C38h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
31:0	Vendor Specific Header	RO	Reset to 0780_0003h.	No	0780_0003h

### 8.4.53 MEMORY BAR 2 ADDRESS TRANSLATION REGISTER - OFFSET C3Ch

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
19:0	Reserved	RsvdP	Not Support.	No	0_0000h
31:20	Memory BAR 2 Address Translation	RW	Valid when BAR 2 is enabled (offset E8h[31]=1).	Yes	000h

## 8.4.54 MEMORY BAR 3 ADDRESS TRANSLATION REGISTER - OFFSET C40h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
19:0	Reserved	RsvdP	Not Support.	No	000h
31:20	Memory BAR 3 Address Translation	RW	Valid when BAR 3 is enabled (ECh[31]=1).	Yes	000h

## 8.4.55 MEMORY BAR4 ADDRESS TRANSLATION REGISTER – OFFSET C44h

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
19:0	Reserved	RsvdP	Not Support.	No	0_0000h
31:20	Memory BAR 4 Address Translation	RW	Valid when BAR 4 is enabled (offset F0h[31]=1).	Yes	000h

## 8.4.56 MEMORY BAR 5 ADDRESS TRANSLATION REGISTER – OFFSET C48h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
19:0	Reserved	RsvdP	Not Support.	No	000h
31:0	Memory BAR 5 Address Translation	RW	Valid when BAR 5 is enabled (F4h[31]=1).	Yes	000h





## 8.4.57 VIRTUAL IF IRQ SET REGISTER – OFFSET C4Ch

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
15:0	Set IRQ	RW	Set virtual interface IRQ.	No/Yes	0000h
31:16	Reserved	RsvdP	Not Support.	No	0000h

## 8.4.58 VIRTUAL IF IRQ CLEAR REGISTER – OFFSET C50h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
15:0	Clear IRQ	RW1C	Clear virtual interface IRQ.	No/Yes	0000h
31:16	Reserved	RsvdP	Not Support.	No	0000h

### 8.4.59 VIRTUAL IF IRQ MASK SET REGISTER - OFFSET C54h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
15:0	Set IRQ Mask	RW	Set virtual interface interrupt IRQ mask.	No/Yes	FFFFh
31:16	Reserved	RsvdP	Not Support.	No	0000h

### 8.4.60 VIRTUAL IF IRQ MASK CLEAR REGISTER – OFFSET C58h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
15:0	Clear IRQ Mask	RW1C	Clear virtual interface interrupt IRQ mask.	No/Yes	FFFFh
31:16	Reserved	RsvdP	Not Support.	No	0000h

#### 8.4.61 LINK IF IRQ SET REGISTER – OFFSET C5Ch

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
15:0	Set IRQ	RW	Set link interface IRQ.	No/Yes	0000h
31:16	Reserved	RsvdP	Not Support.	No	0000h

#### 8.4.62 LINK IF IRQ CLEAR REGISTER – OFFSET C60h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
15:0	Clear IRQ	RW1C	Clear link interface IRQ.	No/Yes	0000h
31:16	Reserved	RsvdP	Not Support.	No	0000h

### 8.4.63 LINK IF IRQ MASK SET REGISTER – OFFSET C64h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
15:0	Set IRQ Mask	RW	Set link interface interrupt IRQ mask.	No/Yes	FFFFh
31:16	Reserved	RsvdP	Not Support.	No	0000h





## 8.4.64 LINK IF IRQ MASK CLEAR REGISTER – OFFSET C68h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
15:0	Clear IRQ Mask	RW1C	Clear link interface interrupt IRQ mask.	No/Yes	FFFFh
31:16	Reserved	RsvdP	Not Support.	No	0000h

## 8.4.65 SCRATCHPAD 0 REGISTER – OFFSET C6Ch

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
31:0	Scratchpad 0	RW	Scratchpad 0 register.	No/Yes	0000_0000h

### 8.4.66 SCRATCHPAD 1 REGISTER – OFFSET C70h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
31:0	Scratchpad 1	RW	Scratchpad 1 register.	No/Yes	0000_0000h

#### 8.4.67 SCRATHPAD 2 REGISTER – OFFSET C74h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
31:0	Scratchpad 2	RW	Scratchpad 2 register.	No/Yes	0000_0000h

#### 8.4.68 SCRATCHPAD 3 REGISTER – OFFSET C78h

BI	Т	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
31	:0	Scratchpad 3	RW	Scratchpad 3 register.	No/Yes	0000_0000h

## 8.4.69 SCRATHPAD 4 REGISTER - OFFSET C7Ch

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
31:0	Scratchpad 4	RW	Scratchpad 4 register.	No/Yes	0000_0000h

#### 8.4.70 SCRATCHPAD 5 REGISTER – OFFSET C80h

ВІТ	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
31:0		RW	Scratchpad 5 register.	No/Yes	0000_0000h

#### 8.4.71 SCRATCHPAD 6 REGISTER – OFFSET C84h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
31:0	Scratchpad 6	RW	Scratchpad 6 register.	No/Yes	0000_0000h





## 8.4.72 SCRATCHPAD 7 REGISTER - OFFSTE C88h

BI	Т	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
31	:0	Scratchpad 8	RW	Scratchpad 8 register.	No/Yes	0000_0000h

## 8.4.73 VIRTUAL PORT 32-BITS LTT ENTRY 0-7 - OFFSET D94h to DB0h

#### Table 8-10 Virtual Port 32-Bits LTT Entry 0-7 Register Locations

CFG_OFFSET	LTT Entry_n	CFG_OFFSET	LTT Entry_n
D94h	0	DA4h	4
D98h	1	DA8h	5
D9Ch	2	DACh	6
DA0h	3	DB0h	7

#### Table 8-11 Virtual Port 32-Bits LTT Entry_n (n=0 through 7)

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
15:0	ReqID	RW	Bit[2:0]: function number Bit[7:3]: device number Bit[15:8]: bus number	No/Yes	0000h
29:16	Reserved	RsvdP	Not Support.	No	0-0h
30	LUT Entry_n_ No Snoop Enable	RsvdP	Not Support.	No	0
31	LUT Entry_n Enable	RW	0b: disable 1b: enable	No/Yes	0

## 8.4.74 LINK PORT 16-BITS LTT ENTRY 0-31 REGISTER - OFFSET DB4h - DF4h

#### Table 8-12 Link Port 16-Bits LTT Entry 0-31 Register Locations

CFG_OFFSET	LTT Entry_n	CFG_OFFSET	LTT Entry_n
DB4h	0-1	DD4h	16-17
DB8h	2-3	DD8h	18-19
DBCh	4-5	DDCh	20-21
DC0h	6-7	DE0h	22-23
DC4h	8-9	DE4h	24-25
DC8h	10-11	DE8h	26-27
DCCh	12-13	DECh	28-29
DD0h	14-15	DF0h	30-31

#### Table 8-13 Link Port 16-Bits LTT Entry_n_m (n_m 0-1 to 30-31)

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
0	LUT Entry_n Enable	RW	0b: disable 1b: enable	No/Yes	0
1	LUT Entry_n_ No Snoop Enable	RsvdP	Not Support.	No	0
2	Reserved	RsvdP	Not Support.	No	0
15:3	ReqID	RW	Bit[7:3]: device number Bit[15:8]: device id	No/Yes	00h
16	LUT Entry_m Enable	RW	0b: disable 1b: enable	No/Yes	0
17	LUT Entry_m_ No Snoop Enable	RsvdP	Not Support.	No	0
18	Reserved	RsvdP	Not Support.	No	0

Page 167 of 198 www.diodes.com





BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
31:19	ReqID	RW	Bit[7:3]: device number Bit[15:8]: device id	No/Yes	00h

## 8.4.75 FAIL-OVER CSR REGISTER – OFFSET DF4h

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
0	Pri_Linksdown_Force	RW	Test used only.	Yes	0
1	2nd_Linksdown_Force	RW	Test used only.	Yes	0
2	Failover Enable	RW	Test used only.	Yes	0
3	Disable Hot Reset	RW	Test used only.	Yes	0
31:4	Reserved	RsvdP	Not Support.	No	0-0h





## 8.5 DMA ENGINE CONFIGURATION REGISTERS (FUNC1)

The switch contains one DMA engine (function number 1). The following table details the allocation of the register fields of the PCI 2.3 compatible type 0 configuration space header.

31 –24	23 - 16	15 - 8	7 –0	BYTE OFFSET				
E	Device ID	Vend	or ID	00h				
Prir	nary Status	Com	mand	04h				
	Class Code	•	Revision ID	08h				
Reserved	Header Type	Reserved	Cache Line Size	0Ch				
	BA	.R 0		10h				
	Res	erved		14h - 28h				
	SSID	SSV	/ID	2Ch				
	Res	erved		30h				
	Reserved		Capability Pointer to 40h	34h				
	Res	erved		38h				
H	Reserved	Interrupt Pin	Interrupt Line	3Ch				
	gement Capabilities	Next Item Pointer=48h	Capability ID=01h	40h				
PM Data	PPB Support Extensions	Power Mana	44h					
Mess	sage Control	Next Item Pointer=68h	Capability ID=05h	48h				
	Message Address							
	Message Uj	oper Address		50h				
I	Reserved	Messag	54h					
	Res	erved	58h - 64h					
PCI Express	Capabilities Register	Next Item Pointer=A4h	Capability ID=10h	68h				
	Device C	apabilities		6Ch				
De	vice Status	Device	Control	70h				
		pabilities		74h				
Li	ink Status	Link C	Control	78h				
	Res	erved		7Ch - 90h				
	Link Cap	abilities 2		94h				
Lit	nk Status 2	Link Co	ontrol 2	98h				
		erved		9Ch-A0h				
F	Reserved	Next Item Pointer=C8h	SSID/SSVID Capability ID=0Dh	A4h				
	SSID	SSV	/ID	A8h				
	Res	erved		ACh - FCh				

Other than the PCI 2.3 compatible configuration space header, Func 0 (upstream port of the switch) and Func 1 (DMA engine) share the PCI express extended configuration space header, which includes advanced error reporting, virtual channel, and power budgeting capability registers. Please refer to Section 8-2.

## 8.5.1 VENDOR ID REGISTER – OFFSET 00h

BI	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
15:	Vendor ID	RO	Identifies Pericom as the vendor of this device.	Yes	12D8h

## 8.5.2 DEVICE ID REGISTER - OFFSET 00h

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
31:16	Device ID	RO	Identifies this device as the PI7C9X2G1616PR.	Yes	8619h





## 8.5.3 COMMAND REGISTER - OFFSET 04h

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
0	I/O Space Enable	RW	0b: Ignores I/O transactions on the primary interface 1b: Enables responses to I/O transactions on the primary interface	No/Yes	0
1	Memory Space Enable	RW	0b: Ignores memory transactions on the primary interface 1b: Enables responses to memory transactions on the primary interface	No/Yes	0
2	Bus Master Enable	RW	0b: Does not initiate memory or I/O transactions on the upstream port and handles as an Unsupported Request (UR) to memory and I/O transactions on the downstream port. For Non-Posted Requests, a completion with UR completion status must be returned 1b: Enables the Switch Port to forward memory and I/O Read/Write transactions in the upstream direction	No/Yes	0
3	Special Cycle Enable	RsvdP	Not Support.	No	0
4	Memory Write And Invalidate Enable	RsvdP	Not Support.	No	0
5	VGA Palette Snoop Enable	RsvdP	Not Support.	No	0
6	Parity Error Response Enable	RW	<ul> <li>0b: Switc0b: Switch may ignore any parity errors that it detects and continue normal operation</li> <li>1b: Switch must take its normal action when a parity error is detected</li> </ul>	No/Yes	0
7	Wait Cycle Control	RsvdP	Not Support.	No	0
8	SERR# enable	RW	<ul><li>0b: Disables the reporting of Non-fatal and Fatal errors detected by the Switch to the Root Complex</li><li>1b: Enables the Non-fatal and Fatal error reporting to Root Complex</li></ul>	No/Yes	0
9	Fast Back-to-Back Enable	RsvdP	Not Support.	No	0
10	Interrupt Disable	RW	0b: Enable to generate INTx Interrupt Messages 1b: Disable to generate INTx Interrupt Messages	No/Yes	0
15:11	Reserved	RsvdP	Not Support.	No	0000_0b

## 8.5.4 PRIMARY STATUS REGISTER - OFFSET 04h

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
18:16	Reserved	RsvdP	Not Support.	No	000b
19	Interrupt Status	RO	Indicates that an INTx Interrupt Message is pending internally to the device. In the Switch, the forwarding of INTx messages from the downstream device of the Switch port is not reflected in this bit. Must be hardwired to 1'b0.	No	0
20	Capabilities List	RO	Set to 1b to enable support for the capability list (offset 34h is the pointer to the data structure).	No	1
21	66MHz Capable	RsvdP	Not Support	No	0
22	Reserved	RsvdP	Not Support.	No	0
23	Fast Back-to-Back Capable	RsvdP	Not Support.	No	0
24	Master Data Parity Error	RW1C	Set to 1b (by a requester) whenever a Parity error is detected or forwarded on the primary side of the port in a Switch. If the Parity Error Response Enable bit is cleared, this bit is never set.	No/Yes	
26:25	DEVSEL# timing	RsvdP	Not Support.	No	00b
27	Signaled Target Abort	RW1C	Set to 1b (by a requester) whenever a Completer Abort is detected.	No/Yes	0
28	Received Target Abort	RsvdP	Not Support.	No	0
29	Received Master Abort	RsvdP	Not Support.	No	0

Page 170 of 198 www.diodes.com





PI7C9X2G1616PR

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
30	Signaled System Error	RW1C	Set to 1b when the Switch sends an ERR_FATAL or ERR_NONFATAL Message, and the SERR Enable bit in the Command register is 1b.	No	0
31	Detected Parity Error	RW1C	Set to 1b whenever the primary side of the port in a Switch receives a Poisoned TLP.	No/Yes	0

## 8.5.5 REVISION ID REGISTER – OFFSET 08h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
7:0	Revision	RO	Indicates revision number of device.	No/Yes	00h

## 8.5.6 CLASS CODE REGISTER - OFFSET 08h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
15:8	Programming Interface	RO	Read as 00h.	No	00h
23:16	Sub-Class Code	RO	Read as 80h.	No	80h
31:24	Base Class Code	RO	Read as 08h to indicate device is other system peripheral.	No	06h

## 8.5.7 CACHE LINE REGISTER - OFFSET 0Ch

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
7:0	Cache Line Size	RW	The cache line size register is set by the system firmware and the operating system cache line size. This field is implemented by PCI Express devices as a RW field for legacy compatibility, but it has no impact on any PCI Express device functionality.	No/Yes	00h

## 8.5.8 PRIMARY LATENCY TIMER REGISTER - OFFSET 0Ch

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
15:8	Primary Latency Timer	RsvdP	Not Support.	No	00h

## 8.5.9 HEADER TYPE REGISTER - OFFSET 0Ch

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
23:16	Header Type	RO	Read as 00h to indicate that the register layout conforms to Type 0 Configuration Header for the NT Port.	No	00h

## 8.5.10 BAR 0 REGISTER - OFFSET 10h

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
8:0	Base Address 0	RO	Reset to 000h.	No	0-0h
31:9	Base Address 0	RW	Use this Memory base address to map DMA engine registers.	No/Yes	0-0h





## 8.5.11 SUBSYSTEM VENDOR ID REGISTER – OFFSET 2Ch

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
15:0	SSVID	RO	It indicates the sub-system vendor id.	No/Yes	12D8h

## 8.5.12 SUBSYSTEM ID REGISTER – OFFSET 2Ch

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
31:16	SSID	RO	It indicates the sub-system device id.	No/Yes	8619h

### 8.5.13 CAPABILITY POINTER REGISTER - OFFSET 34h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
7:0	Capability Pointer	RO	Indicates next capability pointer.	Yes	40h

#### 8.5.14 INTERRUPT LINE REGISTER – OFFSET 3Ch

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
7:0	Interrupt Line	RW	Interrupt Line.	No/Yes	00h

## 8.5.15 INTERRUPT PIN REGISTER – OFFSET 3Ch

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
15:8	Interrupt Pin	RO	The Switch implements INTA virtual wire interrupt signal. Only 00h or 01h is valid.	Yes	01h

## 8.5.16 POWER MANAGEMENT CAPABILITIES REGISTER – OFFSET 40h

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
7:0	Enhanced Capabilities ID	RO	Read as 01h to indicate that these are power management enhanced capability registers.	No	01h
15:8	Next Item Pointer	RO	Indicates next capability pointer.	Yes	48h
18:16	Power Management Revision	RO	Read as 011b to indicate the device is compliant to Revision 1.2 of <i>PCI Power Management Interface Specifications</i> .	No	011b
19	PME# Clock	RsvdP	Not Support.	No	0
20	Reserved	RsvdP	Not Support.	No	0
21	Device Specific Initialization	RO	Read as 0b to indicate Switch does not have device specific initialization requirements.	Yes	0
24:22	AUX Current	RO	Reset to 000b.	Yes	000b
25	D1 Power State Support	RO	Read as 0b to indicate Switch does not support the D1 power management state.	Yes	0
26	D2 Power State Support	RO	Read as 0b to indicate Switch does not support the D2 power management state.	Yes	0
31:27	PME# Support	RO	Read as 19h to indicate Switch supports the forwarding of PME# message in D0, D3 and D4 states.	Yes	19h





## 8.5.17 POWER MANAGEMENT DATA REGISTER – OFFSET 44h

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
			Indicates the current power state of the Switch. Writing a value of D0 when the previous state was D3 cause a hot reset without asserting DWNRST_L.		
1:0	Power State	RW	00b: D0 state	No/Yes	00b
			01b: D1 state		
			10b: D2 state		
			11b: D3 hot state		
2	Reserved	RsvdP	Not Support.	No	0
3	No_Soft_Reset	RO	When set, this bit indicates that device transitioning from D3hot to D0 does not perform an internal reset. When clear, an internal reset is performed when power state transits from D3hot to D0.	Yes	1
7:4	Reserved	RsvdP	Not Support.	No	0h
8	PME# Enable	RW	When asserted, the Switch will generate the PME# message.	No/Yes	0
12:9	Data Select	RO	Select data registers.	No/Yes	0h
14:13	Data Scale	RO	Reset to 00b.	No	00b
15	PME Status	RO	Read as 0 as the PME# message is not implemented.	No	0

## 8.5.18 PPB SUPPORT EXTENSIONS - OFFSET 44h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
21:16	Reserved	RsvdP	Not Support.	No	00_0000b
22	B2_B3 Support for D3 _{HOT}	RO	Does not apply to PCI Express. Must be hardwired to 1'b0.	No	0
23	Bus Power / Clock Control Enable	RO	Does not apply to PCI Express. Must be hardwired to 1'b0.	No	0

## 8.5.19 DATA REGISTER - OFFSET 44h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
31:24	Data Register	RO	Data Register.	Yes	00h

## 8.5.20 MSI CAPABILITIES REGISTER - OFFSET 48h

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
7:0	Enhanced Capabilities ID	RO	Read as 05h to indicate that this is message signal interrupt capability register.	No	05h
15:8	Next Item Pointer	RO	Indicates next capability pointer.	Yes	68h
16	MSI Enable	RW	0b: The function is prohibited from using MSI to request service 1b: The function is permitted to use MSI to request service and is prohibited from using its INTx # pin	No/Yes	0
19:17	Multiple Message Capable	RO	Do not support multiple messages.	No	000b
22:20	Multiple Message Enable	RW	Reset to 000b.	No/Yes	000b
23	64-bit address capable	RO	<ul><li>0b: The function is not capable of generating a 64-bit message address</li><li>1b: The function is capable of generating a 64-bit message address</li></ul>	No	1b
31:24	Reserved	RsvdP	Not Support.	No	00h





## 8.5.21 MESSAGE ADDRESS REGISTER – OFFSET 4Ch

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
1:0	Reserved	RsvdP	Not Support.	No	00b
31:2	Message Address	RW	If the message enable bit is set, the contents of this register specify the DWORD aligned address for MSI memory write transaction.	No/Yes	0-0h

## 8.5.22 MESSAGE UPPER ADDRESS REGISTER - OFFSET 50h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
31:0	Message Upper Address	RW	This register is only effective if the device supports a 64-bit message address is set.	No/Yes	0000_0000h

### 8.5.23 MESSAGE DATA REGISTER - OFFSET 54h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
15:0	Message Data	RW	Message data.	No/Yes	0000h
31:16	Reserved	RsvdP	Not Support.	No	0000h

## 8.5.24 PCI EXPRESS CAPABILITIES REGISTER - OFFSET 68h

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
7:0	Enhanced Capabilities ID	RO	Read as 10h to indicate that these are PCI express enhanced capability registers.	No	10h
15:8	Next Item Pointer	RO	Indicates next capability pointer.	Yes	A4h
19:16	Capability Version	RO	Read as 2 to indicate the device is compliant to Revision .2.0 of <i>PCI Express Base Specifications</i> .	No	2h
23:20	Device/Port Type	RO	Indicates the type of PCI Express logical device.	No	0h
24	Slot Implemented	RO	Reset to 0b.	No	0
29:25	Interrupt Message Number	RO	Read as 0. No MSI messages are generated in the transparent mode.	No	00_000b
31:30	Reserved	RsvdP	Not Support.	No	00b

## 8.5.25 DEVICE CAPABILITIES REGISTER - OFFSET 6Ch

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
2:0	Max_Payload_Size Supported	RO	Indicates the maximum payload size that the device can support for TLPs. Each port of the Switch supports 256 bytes max payload size.	Yes	001b
4:3	Phantom Functions Supported	RO	Indicates the support for use of unclaimed function numbers as Phantom functions. Read as 00b, since the Switch does not act as a requester.	No	00b
5	Extended Tag Field Supported	RO	Indicates the maximum supported size of Tag field as a Requester. Read as 0, since the Switch does not act as a requester.	No	0
8:6	Endpoint L0s Acceptable Latency	RO	Acceptable total latency that an Endpoint can withstand due to the transition from L0s state to the L0 state. For Switch, the ASPM software would not check this value.	No	111b
11:9	Endpoint L1 Acceptable Latency	RO	Acceptable total latency that an Endpoint can withstand due to the transition from L1 state to the L0 state. For Switch, the ASPM software would not check this value.	No	111b
14:12	Reserved	RsvdP	Not Support.	No	000b

Page 174 of 198 www.diodes.com





PI7C9X2G1616PR

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
15	Role_Based Error Reporting	RO	When set, indicates that the device implements the functionality originally defined in the Error Reporting ECN.	Yes	1
17:16	Reserved	RsvdP	Not Support.	No	00b
25:18	Captured Slot Power Limit Value	RO	These bits are hardwired to 0.	No	00h
27:26	Captured Slot Power Limit Scale	RO	These bits are hardwired to 0.	No	00b
31:28	Reserved	RsvdP	Not Support.	No	0h

## 8.5.26 DEVICE CONTROL REGISTER - OFFSET 70h

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
0	Correctable Error Reporting Enable	RW	0b: Disable Correctable Error Reporting 1b: Enable Correctable Error Reporting	No/Yes	0
1	Non-Fatal Error Reporting Enable	RW	0b: Disable Non-Fatal Error Reporting 1b: Enable Non-Fatal Error Reporting	No/Yes	0
2	Fatal Error Reporting Enable	RW	0b: Disable Fatal Error Reporting 1b: Enable Fatal Error Reporting	No/Yes	0
3	Unsupported Request Reporting Enable	RW	0b: Disable Unsupported Request Reporting 1b: Enable Unsupported Request Reporting	No/Yes	0
4	Enable Relaxed Ordering	RO	When set, it permits the device to set the Relaxed Ordering bit in the attribute field of transaction. Since the Switch can not either act as a requester or alter the content of packet it forwards, this bit always returns '0' when read.	No	0
7:5	Max_Payload_Size	RW	This field sets maximum TLP payload size for the device. Permissible values that can be programmed are indicated by the Max_Payload_Size Supported in the Device Capabilities register. Any value exceeding the Max_Payload_Size Supported written to this register results into clamping to the Max_Payload_Size Supported value.	No/Yes	000Ь
8	Extended Tag Field Enable	RsvdP	Not Supported.	No	0
9	Phantom Function Enable	RsvdP	Not Supported.	No	0
10	Auxiliary (AUX) Power PM Enable	RsvdP	Not Supported.	No	0
11	Enable No Snoop	RsvdP	Not Supported.	No	0
14:12	Max_Read_ Request_Size	RO	This field sets the maximum Read Request size for the device as a Requester. Since the Switch does not generate read request by itself, these bits are hardwired to 0.	No	000b
15	Reserved	RsvdP	Not Support.	No/No	0

## 8.5.27 DEVICE STATUS REGISTER - OFFSET 70h

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
16	Correctable Error Detected	RW1C	Asserted when correctable error is detected. Errors are logged in this register regardless of whether error reporting is enabled or not in the Device Control register.	No/Yes	0
17	Non-Fatal Error Detected	RW1C	Asserted when non-fatal error is detected. Errors are logged in this register regardless of whether error reporting is enabled or not in the Device Control register.	No/Yes	0
18	Fatal Error Detected	RW1C	Asserted when fatal error is detected. Errors are logged in this register regardless of whether error reporting is enabled or not in the Device Control register.	No/Yes	0
19	Unsupported Request Detected	RW1C	Asserted when unsupported request is detected. Errors are logged in this register regardless of whether error reporting is enabled or not in the Device Control register.	No/Yes	0

Page 175 of 198 www.diodes.com





PI7C9X2G1616PR

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
20	AUX Power Detected	RO	Asserted when the AUX power is detected by the Switch	No	0
21	Transactions Pending	RO	Each port of Switch does not issue Non-posted Requests on its own behalf, so this bit is hardwired to 0.	No	0
31:22	Reserved	RsvdP	Not Support.	No	0-0h

## 8.5.28 LINK CAPABILITIES REGISTER - OFFSET 74h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
3:0	Maximum Link Speed	RO	Indicate the maximum speed of the Express link. 0001b: 2.5 Gb/s 0010b: 5.0 Gb/s	No	2h
9:4	Maximum Link Width	HWInt RO	Indicates the maximum width of the given PCIe Link. 00_0001b: x1 link 00_0010b: x2 link 00_0100b: x4 link 00_1000b: x8 link Others: Reserved	No	08h, 04h, 02h or 01h
11:10	Active State Power Management (ASPM) Support	RO	Indicates the level of ASPM supported on the given PCIe Link. Each port of Switch supports L0s and L1 entry.	Yes	01b
14:12	L0s Exit Latency	RO	Indicates the L0s exit latency for the given PCIe Link. The length of time this port requires to complete transition from L0s to L0 is in the range of 256ns to less than 512ns.	Yes	011b
17:15	L1 Exit Latency	RO	Indicates the L1 exit latency for the given PCIe Link. The length of time this port requires to complete transition from L1 to L0 is less than 1 us.	Yes	000b
18	Clock Power Management	RO	This bit must be hardwired to 0.	Yes	1
19	Surprise Down Capability Enable	RsvdP	Not Support.	No	0
20	Data Link Layer Active Reporting Capable	RsvdP	Not Support.	No	0
21	Link BW Notify Capability	RsvdP	Not Support.	No	0
23:20	Reserved	RsvdP	Not Support.	No	0-0h
31:24	Port Number	RO	Indicates the NT-Port Number.	Yes	00h port 0 01h port 1 

## 8.5.29 LINK CONTROL REGISTER - OFFSET 78h

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
1:0	Active State Power Management (ASPM) Control	RW	00b: ASPM is Disabled 01b: L0s Entry Enabled 10b: L1 Entry Enabled 11b: L0s and L1 Entry Enabled Note that the receiver must be capable of entering L0s even when the field is disabled	No/Yes	00b
2	Reserved	RsvdP	Not Support	No	0
3	Read Completion Boundary (RCB)	RO	Does not apply to PCI Express Switch. Returns '0' when read.	No	0
4	Link Disable	RsvdP	Not Supported.	No	0
5	Retrain Link	RsvdP	Not Supported.	No	0

Page 176 of 198 www.diodes.com





PI7C9X2G1616PR

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
6	Common Clock Configuration	RW	<ul><li>0b: The components at both ends of a link are operating with synchronous reference clock.</li><li>1b: The components at both ends of a link are operating with a distributed common reference clock</li></ul>	No/Yes	0
7	Extended Synch	RW	When set, it transmits 4096 FTS ordered sets in the L0s state for entering L0 state and transmits 1024 TS1 ordered sets in the L1 state for entering L0 state.	No/Yes	0
8	Enable Clock Power Management	RsvdP	Not Support.	No/Yes	0
9	HW Autonomous Width Disable	RW	Reset to 0b.	No/Yes	0
10	Link Bandwidth Management Interrupt Enable	RW	Reset to 0b.	No/Yes	0
11	Link Autonomous Bandwidth Interrupt Enable	RW	Reset to 0b.	No/Yes	0
15:12	Reserved	RsvdP	Not Support.	No	00h

## 8.5.30 LINK STATUS REGISTER – OFFSET 78h

BIT	FUNCTION	ТҮРЕ	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
19:16	Link Speed	RO	Indicate the negotiated speed of the Express link. 0001b: 2.5 Gb/s. 0010b: 5.0 Gb/s	No	1h
25:20	Negotiated Link Width	RO	Indicates the negotiated width of the given PCIe link.	No	00_0001b
26	Training Error	RsvdP	Not Supported.	No	0
27	Link Training	RsvdP	Not Supported.	No	0
28	Slot Clock Configuration	RO	<ul> <li>0b: the Switch uses an independent clock correspective of the presence of a reference on the connector</li> <li>1b: the Switch uses the same reference clock that the platform provides on the connector</li> </ul>	Yes	1
29	Data Link Layer Link Active	RsvdP	Not Support.	No	0
30	Link Bandwidth Management Status	RO	Reset to 0b.	No	0
31	Link Autonomous Bandwidth Status	RO	Reset to 0b.	No	0

## 8.5.31 LINK CONTROL REGISTER 2 - OFFSET 98h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
3:0	Target Link Speed	RW	Test used only.	No/Yes	2h
4	Enter Compliance	RW	Test used only.	No/Yes	0
5	Hardware Autonomous Speed Disable	RW	Not Supported.	No/Yes	0
6	Selectable De-Emphasis	RsvdP	Not Supported.	No	0
9:7	Tran_Margin	RW	Test used only.	No/Yes	000b
10	Enter Modify Compliance	RW	Test used only.	No/Yes	0
11	Compliance SOS	RW	Test used only.	No/Yes	0
12	Compliance_Deemp	RW	Test used only.	No/Yes	0
15:13	Reserved	RsvdP	Not Support.	No	000b

Page 177 of 198 www.diodes.com





## 8.5.32 LINK STATUS REGISTER 2 - OFFSET 98h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
16	Current De-emphasis level	RO	0b: -6dB 1b: -3.5dB	No	0
31:17	Link status 2	RO	Not Support.	No	0-0h

## 8.5.33 SSID/SSVID CAPABILITIES REGISTER - OFFSET A4h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
7:0	SSID/SSVID Capabilities ID	RO	Read as 0Dh to indicate that these are SSID/SSVID capability registers.	No	0Dh
15:8	Next Item Pointer	RO	Indicates next capability pointer.	Yes	C8h
31:16	Reserved	RsvdP	Not Support.	No	0000h

#### 8.5.34 SUBSYSTEM VENDOR ID REGISTER – OFFSET A8h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
15:0	SSVID	RO	It indicates the sub-system vendor id.	Yes	12D8h

#### 8.5.35 SUBSYSTEM ID REGISTER – OFFSET A8h

BIT	FUNCTION	TYPE	DESCRIPTION	EEPROM/ I2C-SMBUS	DEFAULT
31:10	5 SSID	RO	It indicates the sub-system device id.	Yes	8619h





## 8.6 DMA ENGINE INTERFACE REGISTERS

To enable DMA function, the packet switch defines a set of interface registers for software to control the DMA engine and monitor the status of DMA transfer. There are two DMA engines (DMA_UP and DMA_NT) facing different CPU domains respectively, so it exists an independent interface for software to access its own registers in each CPU domain. The interface registers contain one global control DMA register, descriptor ownership registers shared by channels and per-channel control/status registers etc.

The interface registers are mapped to a dedicated 256-byte register block in Memory mode. The register block can be accessed by the DMA Memory Base Address, which is obtained by DMA Base Address Register 0 (Func1, CFG offset 10h).

#### Table 8-14 DMA Base Address in Memory Mode when NT function is enabled

DMA Engine	DMA Memory Base Address
DMA_UP for channel 0/1	BAR0 in the Virtual IF + 0000h
DMA_NT for channel 0/1	BAR0 in the Link IF + 0000h

#### Table 8-15 DMA Base Address in Memory Mode when NT function is disabled

DMA Engine	DMA Memory Base Address
DMA_UP for channel 0/1	BAR0 + 0000h
DMA_UP for channel 2/3	BAR0 + 0100h

Following is a summary of addressing map for interface registers. Please note that the max. length for read/write register only supports 4 bytes.

31 –24	23 - 16	15 - 8	7 –0	BYTE OFFSET
Global DI	MA Status	Global DM	IA Control	00h
	Descriptor (	Ownership 0		04h
	Descriptor (	Ownership 1		08h
	Descriptor (	Ownership 2		0Ch
	Descriptor (	Ownership 3		10h
	Rese	erved		$14h \sim 20h$
	Channel 0 Descriptor Ring	Base Pointer (Low 32-bit)		24h
		Base Pointer (High 32-bit)		28h
(	Channel 0 Descriptor Current P	ointer (offset from Base Pointe	r)	2Ch
	Channel 0 Transfer Count Statu	as of Descriptor Current Pointe	r	30h
Channel 0 Prefe	etch Upper Limit	Channel 0 Desc	riptor Ring Size	34h
Channel 0 I	DMA Status	Channel 0 D	MA Control	38h
	Channel 1 Descriptor Ring	Base Pointer (Low 32-bit)		3Ch
	Channel 1 Descriptor Ring	Base Pointer (High 32-bit)		40h
(	Channel 1 Descriptor Current P	ointer (offset from Base Pointe	r)	44h
	Channel 1 Transfer Count Statu	as of Descriptor Current Pointe	r	48h
Channel 1 Prefe	etch Upper Limit	Channel 1 Desc	riptor Ring Size	4Ch
Channel 1 I	DMA Status	Channel 1 D	MA Control	50h

## 8.6.1 GLOBAL DMA CONTROL AND STATUS REGISTER - OFFSET 00h

BIT	FUNCTION	TYPE	DESCRIPTION	DEFAULT
			Configuration of No Snooping.	
0	No Snooping Mode	RW	0b: Disable no snooping	0
			1b: Enable no snooping	





BIT	FUNCTION	TYPE	DESCRIPTION	DEFAULT
		DW	Indicate the addressing system a DMA engine is riding on.	0
1	Address Format	RW	0b: 32-bit addressing system 1b: 64-bit addressing system	0
			Mapping the channel number of another DMA engine to the channel 0 of current DMA engine. This field has to be programmed for inter-processor domain data transfer model.	
3:2	DMA Channel 0 Mapping	RW	<ul> <li>00b: No Mapping (For DMA_UP, it means data transfer just occurring in Upstream port CPU domain. But for DMA_NT, it represents a test mode.)</li> <li>01b: Mapping to remote channel 0</li> <li>10b: Mapping to remote channel 1</li> <li>11b: Reserved.</li> </ul>	00Ь
			When mapping value is not zero the other DMA shall be relative Mapping the channel number of another DMA engine to the channel 1 of current DMA engine. This field has to be programmed for inter-processor domain data transfer model.	
5:4	DMA Channel 1 Mapping	RW	<ul> <li>00b: No Mapping (For DMA_UP, it means data transfer just occurring in Upstream port CPU domain. But for DMA_NT, it represents a test mode.)</li> <li>01b: Mapping to remote channel 0</li> <li>10b: Mapping to remote channel 1</li> </ul>	00b
			11b: Reserved.         When mapping value is not zero the other DMA shall be relative         Assignment of descriptor ownership registers located from offset 04H to 10H for         either channel 0 or channel 1.	
9:6	Descriptor Channel Ownership	RW	1b: the ownership register is assigned to channel 1 0b: the ownership register is assigned to channel 0	Ch
			Descriptor Channel Ownership register [3:0] is corresponding to descriptor ownership registers from #3 to #0.	
10	Remote Channel 0 DMA Stop Interrupt Enable	RW	Enable Interrupt when Remote DMA engine is stopped.	0
11	Remote Channel 0 DMA Pause Interrupt Enable	RW	Enable Interrupt when Remote DMA engine is paused.	0
12	Remote Channel 0 DMA Abort Interrupt Enable	RW	Enable Interrupt when Remote DMA engine is aborted.	0
13	Remote Channel 1 DMA Stop Interrupt Enable	RW	Enable Interrupt when Remote DMA engine is stopped.	0
14	Remote Channel 1 DMA Pause Interrupt Enable	RW	Enable Interrupt when Remote DMA engine is paused.	0
15	Remote Channel 1 DMA Abort Interrupt Enable	RW	Enable Interrupt when Remote DMA engine is aborted.	0
16	ECRC Check Enable	RW	If configuration of ECRC check is enable the value is available.	0
17	ECRC Generate Enable	RW	If configuration of ECRC generate is enable the value is available	0
22:18	Reserved	RsvdP	Not Support.	0_0000b
23	Packet Error	RW1C	Internal packer error indicates non-complete packet.	0

Page 180 of 198 www.diodes.com




BIT	FUNCTION	TYPE	DESCRIPTION	DEFAULT
24	Remote Channel 0 DMA Run Status	RO	Indicates the Remote DMA engine running status. 1b: the Remote DMA engine is started and running the dea Bernete DMA is in "starger d" and diving	0
25	Remote Channel 0 DMA Pause Done Status	RO	0b: the Remote DMA is in "stopped" condition         Indicates the Remote DMA engine is in "Paused" condition.	0
26	Remote Channel 0 DMA Abort Done Status	RO	Indicates the Remote DMA engine is in "Aborted" condition.	0
27	Remote Channel 1 DMA Run Status	RO	Indicates the Remote DMA engine running status. 1b: the Remote DMA engine is started and running 0b: the Remote DMA is in "stopped" condition	0
28	Remote Channel 1 DMA Pause Done Status	RO	Indicates the Remote DMA engine is in "Paused" condition.	0
29	Remote Channel 1 DMA Abort Done Status	RO	Indicates the Remote DMA engine is in "Aborted" condition.	0
30	ECRC Error	RW1C	Indicates ECRC is error.	0
31	CPLD Abort	RW1C	Completion abort asserted.	0

## 8.6.2 DESCRIPTOR OWNERSHIP REGISTER 0/1/2/3 - OFFSET 04h/08h/0Ch/10h

BIT FUNCT	TION	TYPE	DESCRIPTION	DEFAULT
31:0 Descrip Owners		RW	Indicate the ownership of descriptor. That means the owner can access the buffer pointed by the address field of descriptor. 1b: the DMA engine owns the descriptor 0b: the DMA driver owns the descriptor After the buffer prepared by DMA driver, it will write "1" to the corresponding descriptor ownership bit. After the descriptor is done, the DMA engine will clear the corresponding bit to "0".	0000_000h

## 8.6.3 CHANNEL 0/1 DESCRIPTOR RING BASE POINTER (LOW 32-bit) REGISTER – OFFSET 24h/3Ch

BIT	FUNCTION	TYPE	DESCRIPTION	DEFAULT
5:0	Reserved	RsvdP	Not Support.	00_0000b
31:6	Descriptor Ring Base Pointer (Low 32-bit)	RW	Lower 32-bit of Base Pointer referring to the 1 st entry of descriptor ring. It tells	

## 8.6.4 CHANNEL 0/1 DESCRIPTOR RING BASE POINTER (HIGH 32-bit) REGISTER – OFFSET 28h/40h

BIT	FUNCTION	TYPE	DESCRIPTION	DEFAULT
5:0	Reserved	RsvdP	Not Support.	00_0000b

Page 181 of 198 www.diodes.com





BIT	FUNCTION	TYPE	DESCRIPTION	DEFAULT
31:6	Descriptor Ring Base Pointer (High 32-bit)	RW	Upper 32-bit of Base Pointer referring to the 1st entry of descriptor ring if 64-bit addressing system is used. It tells DMA engine where the descriptor is starting at.	000_0000h

# 8.6.5 CHANNEL 0/1 DESCRIPTOR CURRENT POINTER REGISTER – OFFSET 2Ch/44h

BIT	FUNCTION	TYPE	DESCRIPTION	DEFAULT
11:0	Descriptor Current Pointer (Offset from Base Pointer)	RO	Indicating the current pointer (Offset from Base Pointer) referring to the descriptor that is under processing by DMA Engine. A maximum of 128 pointers are allowed.	000h
31:12	Reserved	RsvdP	Not Support.	0_000h

# 8.6.6 CHANNEL 0/1 TRANSFER COUNT STATUS of DESCRIPTOR CURRENT POINTER REGISTER – OFFSET 30h/48h

BIT	FUNCTION	TYPE	DESCRIPTION	DEFAULT
23:0	Transfer Count Status	RO	Indicating how many byte counts have been not transferred for the current descriptor pointer.	0000_00h
31:24	Reserved	RsvdP	Not Support.	00h

# 8.6.7 CHANNEL 0/1 DESCRIPTOR RING SIZE AND PREFETCH UPPER LIMIT REGISTER – OFFSET 34h/4Ch

BIT	FUNCTION	TYPE	DESCRIPTION	DEFAULT
7:0	Descriptor Ring Size	RW	It represents the quantity of descriptors in the ring. The size of ring must be greater than an apple to Profit the United Limit	02h
7.0	Descriptor King Size	IC VV	than or equal to Prefetch Upper Limit. The sum of two channels of descriptor ring size cannot be larger than 128.	0211
11:8	Prefetch Upper Limit	RW	It represents the maximum number of prefetch-able descriptors for this channel. Only the value with a multiple of 4 or 1 can be set into this register. Any value other than these will be rounded to the nearest of multiple of 4 or 1. When the programmed limit is reached, the descriptor prefetching is stopped, and restarted again after the value drops below the limit. For a value of 1, only one descriptor is prefetched (Note: When that one descriptor is active, a second descriptor is prefetched). For a value of 4N, four descriptors are prefetched (Note: When the 4 th descriptor is active, another four descriptors are prefetched). Due to different descriptor length stored in the same queue, the maximum allowable prefetch upper limit is various among different addressing system or DMA engines. For DMA_UP in 32-bit address, the prefetch upper limit is 13. For DMA_NT in 32-bit address, the prefetch upper limit is 13. For DMA_NT in 64-bit address, the prefetch upper limit is 8.	1h
15:12	Reserved	RsvdP	Not Support.	0h
31:16	Fetch Data Gap Time Control	RW	16bits – per 4ns.	0000h





## 8.6.8 CHANNEL 0/1 DMA CONTROL AND STATUS REGISTER - OFFSET 38h/50h

BIT	FUNCTION	TYPE	DESCRIPTION	DEFAULT
0	DMA Start	RW	<ul> <li>Start DMA Engine.</li> <li>1b: the DMA engine starts to fetch and process the descriptors except the DMA abort or pause status is on.</li> <li>0b: the current pointer will be moved to the descriptor ring base pointer and stop the DMA engine.</li> <li>It can only set stop when abort or ownership is empty.</li> </ul>	0
1	DMA Pause Control	RW	Pause DMA Engine. When set, the DMA engine is paused to the next active descriptor after completing the processing on current descriptor. It means that no more descriptors are processed and prefetched until the "Paused" condition is lifted. Remote end firstly shall stop or pause and run status (offset 0x00 bit 27 or bit 24) or pause done status (offset 0x00 bit 28 or bit 25) has been asserted if local pause set. If pause interrupt is enable and pause control is enable the interrupt is asserted until pause interrupt or control is disable	0
2	DMA Abort Control	RW	Abort DMA Engine. When set, the DMA engine drops the current active descriptor by flushing out all outstanding read commands and discarding all received completion data. The pointer does not move to the next active descriptor. No more descriptors are processed and prefetched until the "Aborted" condition is lifted. All receiving data will be discarded if DMA abort asserted. Removing abort condition can only use DMA start disable If abort interrupt is enable and abort control is enable the interrupt is asserted until abort interrupt or control is disable.	0
3	DMA Pause Interrupt Enable	RW	Enable Interrupt when DMA engine is paused.	0
4	DMA Ring Stop Mode	RW	Notify DMA Engine how to run through descriptor ring. 0b: it continues to run over the end of descriptor ring 1b: it stops at descriptor ring base pointer when the last descriptor of ring is done	0
5	Ownership Flash	RW	Clear ownership register.	0
6	DMA Abort Interrupt Enable	RW	Enable Interrupt when DMA engine is abort.	0
15:7	Reserved	RsvdP	Not Support.	000h
16	DMA Pause Done Status	RO	Indicates the DMA engine is in "Paused" condition. Removing pause done status can use DMA Pause control.	0
17	DMA Abort Done Status	RO	Indicates the DMA engine is in "Aborted" condition. Removing abort done status can only use stop.	0
18	Reserved	RsvdP	Not Support.	0
19	Completer Status Error	RW1C	Error condition: unsupported request, completer abort.	0
30:20	Reserved	RsvdP	Not Support.	000h
31	Interrupt Flag	RW1C	Indicates the interrupt asserted.	0





## 9 CLOCK SCHEME

The PI7C9X2G1616PR requires 100MHz differential clock inputs through REFCLKP and REFCLKN Pins as shown in the following table.

#### **Table 9-1 DC Electrical Characteristics**

Description	Symbol	Min	Тур	Max	Unit
Reference Clock Frequency*	fj		100		MHz
Accuracy	Aj	-300		+300	ppm
Duty Cycle	DCi	45		55	%
> 1.5 MHz to Nyquist RMS jitter	T _{REFCLK-HF-RMS}	-		3.1	ps RMS
after applying PCIe filter function					_
10 kHz - 1.5 MHz RMS jitter	T _{REFCLK-LF-RMS}	-		3.0	ps RMS
Spread Spectrum Clock frequency	SSC freq	30		33	kHz

* Does not include ±300ppm. Only certain clock frequencies will produce valid PCI Express data.





## **10 POWER MANAGEMENT**

The PI7C9X2G1616PR supports D0, D1, D2, D3-hot, and D3-cold Power States. The PCI Express Physical Link Layer of the PI7C9X2G1616PR device supports the PCI Express Link Power Management with L0, L0s, L1, L2/L3 ready and L3 Power States.

PI7C9X2G1616PR also supports ASPM (Active State Power Management) to facilitate the link power saving.





# **11 POWER SEQUENCE**

As long as PERST# is active, all PCI Express functions are held in reset. The main supplies ramp up to their specified levels (2.5V). Sometime during this stabilization time, the REFCLK starts and stabilizes. After there has been time (100 ms) for the power and clock to become stable, PERST# is deasserted high and the PCI Express functions can start up.

It is recommended to power up the I/O voltage (2.5V) first and then the core voltage (1.0V) or power up I/O voltage and core voltage simultaneously.



### Figure 11-1 Initial Power-Up Sequence

Power-down sequence is the reverse of power-up sequence.





# 12 IEEE 1149.1 COMPATIBLE JTAG CONTROLLER

An IEEE 1149.1 compatible Test Access Port (TAP) controller and associated TAP pins are provided to support boundary scan in PI7C9X2G1616PR for board-level continuity test and diagnostics. The TAP pins assigned are TCK, TDI, TDO, TMS and TRST_L. All digital input, output, input/output pins are tested except TAP pins.

## **12.1 INSTRUCTION REGISTER**

The IEEE 1149.1 Test Logic consists of a TAP controller, an instruction register, and a group of test data registers including Bypass and Boundary Scan registers. The TAP controller is a synchronous 16-state machine driven by the Test Clock (TCK) and the Test Mode Select (TMS) pins. An independent power on reset circuit is provided to ensure the machine is in TEST_LOGIC_RESET state at power-up.

PI7C9X2G1616PR implements a 5-bit Instruction register to control the operation of the JTAG logic. The defined instruction codes are shown in the following table. Those bit combinations that are not listed are equivalent to the BYPASS (1111) instruction.

Instruction	<b>Operation Code</b>	Register Selected	Operation
	(binary)		
EXTEST	00000	Boundary Scan	Drives / receives off-chip test data
SAMPLE	00001	Boundary Scan	Samples inputs / pre-loads outputs
HIGHZ	00101	Bypass	Tri-states output and I/O pins except TDO pin
CLAMP	00100	Bypass	Drives pins from boundary-scan register and selects Bypass
			register for shifts
IDCODE	01100	Device ID	Accesses the Device ID register, to read manufacturer ID, part
			number, and version number
BYPASS	11111	Bypass	Selected Bypass Register
INT_SCAN	00010	Internal Scan	Scan test
MEM_BIST	01010	Memory BIST	Memory BIST test

#### **Table 12-1 Instruction Register Codes**

## 12.2 BYPASS REGISTER

The required bypass register (one-bit shift register) provides the shortest path between TDI and TDO when a bypass instruction is in effect. This allows rapid movement of test data to and from other components on the board. This path can be selected when no test operation is being performed on the PI7C9X2G1616PR.

## 12.3 DEVICE ID REGISTER

This register identifies Pericom as the manufacturer of the device and details the part number and revision number for the device.

Bit	Туре	Value	Description
31-28	RO	0001	Version number
27-12	RO	0001011000010110	Last 4 digits (hex) of the die part number
11-1	RO	01000111111	Pericom identifier assigned by JEDEC
0	RO	1	Fixed bit equal to 1'b1

#### Table 12-2 JTAG Device ID Register





## 12.4 BOUNDARY SCAN REGISTER

The boundary scan register has a set of serial shift-register cells. A chain of boundary scan cells is formed by connected the internal signal of the PI7C9X2G1616PR package pins. The VDD, VSS, and JTAG pins are not in the boundary scan chain. The input to the shift register is TDI and the output from the shift register is TDO. There are 4 different types of boundary scan cells, based on the function of each signal pin.

The boundary scan register cells are dedicated logic and do not have any system function. Data may be loaded into the boundary scan register master cells from the device input pins and output pin-drivers in parallel by the mandatory SAMPLE and EXTEST instructions. Parallel loading takes place on the rising edge of TCK.

## 12.5 JTAG BOUNDARY SCAN REGISTER ORDER

Boundary Scan Register Number	Pin Name	Ball Location	Туре	Tri-state Control Cell	
0	Thirtanic	Dan Elocation	Internal	III-state Control Cen	
1			Internal		
2	+		Internal		
3	+		Internal		
4	GPIO[25]	B14	Birdir	5	
5	0F10[25]	B14	Control	5	
6			Internal		
7			Internal		
8	LNKSTS[10]	E13	Output3	9	
9	LINKSIS[10]	E13		9	
10	DODTOFCIAL	012	Control		
	PORTCFG[3]	C13	Input		
11		D12	Internal	12	
12	FATAL_ERR_L	B13	Output3	13	
13			Control		
14	LNKSTS[9]	A13	Output3	15	
15			Control		
16	PORTCFG[0]	A5	Input		
17			Internal		
18	PORTCFG[1]	A4	Input		
19			Internal		
20	GPIO[28]	B5	Birdir	21	
21			Control		
22			Internal		
23			Internal		
24	GPIO[27]	C5	Birdir	25	
25			Control		
26			Internal		
27			Internal		
28	GPIO[30]	D5	Birdir	29	
29			Control		
30			Internal		
31	LNKSTS[11]	E5	Output3	32	
32			Control		
33	GPIO[29]	B4	Birdir	34	
34			Control		
35	SERDES MODE EN L	C4	Input		
36		~ .	Internal		
37	GPIO[31]	D4	Birdir	38	
38	0110[01]	2.	Control		
39	LNKSTS[8]	B3	Output3	40	
40	LINKSIS[0]	15	Control	40	
40	GPIO[26]	C3	Birdir	42	
41 42	0110[20]	03	Control	42	
42	PORTCFG[2]	B2	Input		

#### Table 12-3 JTAG Boundary Scan Register Definition

PI7C9X2G1616PR Document Number DS40340 Rev 7-2 Page 188 of 198 www.diodes.com





Boundary Scan				
Register Number	Pin Name	Ball Location	Туре	Tri-state Control Cel
44 45	FAST MODE L	C2	Internal	
43	FAST_MODE_L	02	Input Internal	
40			Internal	
48			Internal	
49			Internal	
50			Internal	
51	GPIO[4]	D1	Birdir	52
52			Control	
53	GPIO[3]	D2	Birdir	54
54			Control	
55	GPIO[1]	D3	Birdir	56
56			Control	
57	UPS_PORTSEL[3]	E1	Input	
58		7.0	Internal	
59	UPS_PORTSEL[0]	E2	Input	
60	CDIO[0]	F2	Internal	(2
61	GPIO[2]	E3	Birdir	62
62	CBIO[0]	Ε4	Control Birdir	64
63 64	GPIO[0]	E4	Control	64
65	UPS PORTSEL[2]	F2	Input	
66	ers_reariset[2]	12	Internal	
67	UPS PORTSEL[1]	F3	Input	
68			Internal	
69	GPIO[5]	F4	Birdir	70
70			Control	
71	NTPORT_SEL[0]	P1	Input	
72			Internal	
73			Internal	
74			Internal	
75	NTPORT_SEL[1]	P2	Input	
76			Internal	
77			Internal	
78		72	Internal	
79	LNKSTS[13]	P3	Output3	80
80 81			Control Internal	
81			Internal	
82	GPIO[8]	P4	Birdir	84
84	0110[8]	14	Control	04
85	GPIO[9]	Р5	Birdir	86
86	orrepj	10	Control	00
87	NTPORT_SEL[2]	P2	Input	
88	_ เว		Internal	
89			Internal	
90			Internal	
91	LNKSTS[12]	R2	Output3	92
92			Control	
93			Internal	
94	ODIO	<b>D</b> 2	Internal	01
95	GPIO[7]	R3	Birdir	96
96 07			Control	
97	I NIZ STOLI 41	T1	Internal Output3	99
98 99	LNKSTS[14]	T1	Control	99
100			Internal	
100			Internal	
101	LNKSTS[15]	Т2	Output3	103
102	2	12	Control	105
105			Internal	
105			Internal	
106	GPIO[6]	T3	Birdir	107
107			Control	

PI7C9X2G1616PR Document Number DS40340 Rev 7-2

Page 189 of 198 www.diodes.com





Boundary Scan	D' N		T	
Register Number 108	Pin Name	Ball Location	Type Internal	Tri-state Control Cell
108			Internal	
110	GPIO[10]	U2	Birdir	111
111	0110[10]	02	Control	
112			Internal	
113			Internal	
114	DEBUG_SEL[1]	Τ4	Input	
115			Internal	
116	TEST	U3	Input	
117	ODIOLIAI		Internal	110
118	GPIO[13]	V4	Birdir	119
<u>119</u> 120	SMBUS EN L	U4	Control	
120	SMBUS_EN_L	04	Input Internal	
121			Internal	
122			Internal	
123	GPIO[14]	V5	Birdir	125
125			Control	
126	CFG_TIMER_EN_L	U5	Input	
127			Internal	
128	NT_P2P_EN_L	R5	Input	
129			Internal	
130	GPIO[15]	V6	Birdir	131
131			Control	
132			Internal	
133	GPIO[11]	U6	Birdir	134
134			Control	
135 136	CBIO[12]	R6	Internal Birdir	137
130	GPIO[12]	KO	Control	137
137			Internal	
139	NTPORT_SEL[3]	P6	Input	
140		10	Internal	
141	TESTMODE[0]	V14	Input	
142			Internal	
143	TESTMODE[1]	V15	Input	
144			Internal	
145	TESTMODE[2]	V16	Input	
146			Internal	
147	TESTMODE[3]	U17	Input	
148		1114	Internal	150
149	LNKSTS[0]	U14	Output3 Control	150
<u>150</u> 151	LNKSTS[1]	T14	Output3	152
151	LINKSIS[I]	114	Control	132
152			Internal	
155			Internal	
155	GPIO[19]	R14	Birdir	156
156		•	Control	
157			Internal	
158			Internal	
159	GPIO[16]	P14	Birdir	160
160			Control	
161			Internal	
162			Internal	
163	LNKSTS[3]	U15	Output3	164
164			Control	
165			Internal	
166	CDIO[10]	T15	Internal	170
167 168	GPIO[18]	113	Birdir Control	168
168			Internal	
170			Internal	
170	LNKSTS[2]	U16	Output3	172

PI7C9X2G1616PR Document Number DS40340 Rev 7-2 Page 190 of 198 www.diodes.com





Boundary Scan				
Register Number 172	Pin Name	Ball Location	Type	Tri-state Control Ce
172			Control Internal	
173			Internal	
174	GPIO[17]	T16	Birdir	176
175	0110[17]	110	Control	170
177			Internal	
178			Internal	
179	GPIO[22]	T18	Birdir	180
180			Control	
181			Internal	
182			Internal	
183	PROBE_MODE_L	T17	Input	
184			Internal	
185			Internal	
186			Internal	
187			Internal	
188			Internal	
189			Internal	
190			Internal	
191			Internal	
192 193	FECK	<b>D</b> 10	Internal Birdir	194
193	EECK	R18	Control	194
194	EECS L	R17	Output3	196
195	EECS_L	K17	Control	190
190	GPIO[20]	R16	Birdir	198
197	0110[20]	Rio	Control	150
199	PLL BYPASS L	R15	Input	
200		iti b	Internal	
201	INTA_L	P18	Output3	202
202			Control	
203	PERST L	P17	Input	
204			Internal	
205			Internal	
206	NT RESET L	P16	Output3	207
207			Control	
208	GPIO[21]	P15	Birdir	209
209			Control	
210	NT_EN_L	N18	Input	
211			Internal	
212	DEBUG_SEL[0]	N17	Input	
213			Internal	
214	EEDO	N16	Input	
215		211.5	Internal	
216	EEDI	N15	Birdir	217
217		F10	Control	
218	I2C_ADDR[2]	E18	Input	
219 220	I2C_ADDR[1]	E17	Internal Input	
220	I2C_ADDR[1]	E1/	Internal	
221	LNKSTS[7]	E16	Output3	223
223	LINKS15[7]	210	Control	223
223	GPIO[24]	E15	Birdir	225
225	0110[27]	L17	Control	223
226			Internal	
227			Internal	
228	LNKSTS[5]	D18	Output3	229
229		-	Control	
230	LNKSTS[6]	D17	Output3	231
231			Control	
232	GPIO[23]	D16	Birdir	233
233	• •		Control	
234			Internal	
235			Internal	

PI7C9X2G1616PR Document Number DS40340 Rev 7-2 Page 191 of 198 www.diodes.com





Boundary Scan Register Number	Pin Name	Ball Location	Туре	Tri-state Control Cell
236	I2C_ADDR[0]	C18	Input	
237			Internal	
238	SCL I2C	C17	Output3	239
239			Control	
240			Internal	
241			Internal	
242	SHDA I2C	C16	Output3	243
243			Control	
244	LNKSTS[4]	B17	Output3	245
245			Control	
246			Internal	
247			Internal	
248	SHCL_I2C	B16	Output3	249
249			Control	
250	SDA_I2C	A17	Output3	251
251			Control	
252	SHPCINT_L	A16	Input	
253			Internal	
254			Internal	
255			Internal	
256			Internal	
257			Internal	
258			Internal	
259			Internal	
260			Internal	
261			Internal	
262			Internal	





# **13 ELECTRICAL AND TIMING SPECIFICATIONS**

## 13.1 ABSOLUTE MAXIMUM RATINGS

#### **Table 13-1 Absolute Maximum Ratings**

(Above which the useful life may be impaired. For user guidelines, not tested.)

Item	Absolute Max. Rating
Storage Temperature	-65°C to 150°C
Junction Temperature, Tj	125 °C
Digital core and analog supply voltage to ground potential (VDDC and AVDD)	-0.3v to 1.2v
Digital I/O and analog high supply voltage to ground potential (VDDR and AVDDH)	-0.3v to 3.8v
DC input voltage for Digital I/O signals	-0.3v to 3.8v

Note:

Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.

## 13.2 DC SPECIFICATIONS

#### **Table 13-2 DC Electrical Characteristics**

Symbol	Description	Min.	Тур.	Max.	Unit
VDDC	Digital Core Power	1.0		1.1	V
VDDR	Digital I/O Power	2.25	2.5	2.75	
AVDD	PCI Express Analog Power	1.0		1.1	
AVDDH	PCI Express Analog High Voltage Power	2.25	2.5	2.75	
VIH	Input High Voltage	2.0		3.6	
V _{IL}	Input Low Voltage	-0.3		0.8	
V _{OH}	Output High Voltage	2.4	-	-	
V _{OL}	Output Low Voltage	-	-	0.4	
R _{PU}	Pull-up Resistor	63K	92K	142K	Ω
R _{PD}	Pull-down Resistor	57K	91K	159K	22
RST# _{Slew} ¹	PERST_L Slew Rate	50			mV/ns

Note:

1. The min. value for PERST_L Slew Rate is 50 mV/ns, which translates to the requirement that the time for PERST_L from 0V to 2.5V should be less than 50 ns.

## **13.3 AC SPECIFICATIONS**

Parameter	Symbol	Min	Тур	Max	Unit
Unit Interval	UI	199.94	200.0	200.06	ps
Differential p-p TX voltage swing	V _{TX-DIFF-P-P}	800	-	-	mV ppd
Low power differential p-p TX voltage	V _{TX-DIFF-P-P-LOW}	400	-	-	mV ppd
swing					
TX de-emphasis level ratio	V _{TX-DE-RATIO-3.5dB}	-3.0	-	-4.0	dB
TX de-emphasis level ratio	V _{TX-DE-RATIO-6dB}	-5.5		-6.5	dB
Transmitter Eye including all jitter sources	T _{TX-EYE}	0.75	-	-	UI
TX deterministic jitter > 1.5 MHz	T _{TX-HF-DJ-DD}	-	-	0.15	UI
TX RMS jitter < 1.5 MHz	T _{TX-LF-RMS}	-	-	3.0	Ps
					RMS
Transmitter rise and fall time	T _{TX-RISE-FALL}	0.15	-	-	UI

PI7C9X2G1616PR Document Number DS40340 Rev 7-2 Page 193 of 198 www.diodes.com





PI7C9X2G1616PR

Parameter	Symbol	Min	Тур	Max	Unit
TX rise/fall mismatch	T _{RF-MISMATCH}	-	-	0.1	UI
Maximum TX PLL Bandwidth	BW _{TX-PLL}	-	-	16	MHz
Minimum TX PLL BW for 3dB peaking	BW _{TX-PLL-LO-3DB}	8	-	-	MHz
TX PLL peaking with 8 MHz min BW	PKG _{TX-PLL1}	-	-	3.0	dB
DC Differential TX Impedance	Z _{TX-DIFF-DC}	80	-	120	Ω
Transmitter Short-Circuit Current Limit	I _{TX-SHORT}	-	-	90	mA
TX DC Common Mode Voltage	V _{TX-DC-CM}	0	-	3.6	V
Absolute Delta of DC Common Mode	V _{TX-CM-DC-ACTIVE-IDLE-}	0	-	100	mV
Voltage During L0 and Electrical Idle	DELTA				
Absolute Delta of DC Common Mode	V _{TX-CM-DC-LINE-DELTA}	0	-	25	mV
Voltage between D+ and D-					
Electrical Idle Differential Peak Output	V _{TX-IDLE-DIFF-AC-p}	0	-	20	mV
Voltage					
DC Electrical Idle Differential Output	V _{TX-IDLE-DIFF-DC}	0	-	5	mV
Voltage					
The Amount of Voltage Change Allowed	V _{TX-RCV-DETECT}	-	-	600	mV
During Receiver Detection					
Lane-to-Lane Output Skew	L _{TX-SKEW}	-	-	500 ps	ps
				+ 4 ŪI	

### Table 13-4 PCI Express Interface - Differential Transmitter (TX) Output (2.5 Gbps) Characteristics

Parameter	Symbol	Min	Тур	Max	Unit
Unit Interval	UI	399.88	400.0	400.12	ps
Differential p-p TX voltage swing	V _{TX-DIFF-P-P}	800	-	-	mV ppd
Low power differential p-p TX voltage	V _{TX-DIFF-P-P-LOW}	400	-	-	mV ppd
swing					
TX de-emphasis level ratio	V _{TX-DE-RATIO}	-3.0	-	-4.0	dB
Minimum TX eye width	T _{TX-EYE}	0.75	-	-	UI
Maximum time between the jitter median	T _{TX-EYE-MEDIAN-to-MAX-}	-	-	0.125	UI
and max deviation from the median	JITTER				
Transmitter rise and fall time	T _{TX-RISE-FALL}	0.125	-	-	UI
Maximum TX PLL Bandwidth	BW _{TX-PLL}	-	-	22	MHz
Maximum TX PLL BW for 3dB peaking	BW _{TX-PLL-LO-3DB}	1.5	-	-	MHz
Absolute Delta of DC Common Mode	V _{TX-CM-DC-ACTIVE-IDLE-}	0	-	100	mV
Voltage During L0 and Electrical Idle	DELTA				
Absolute Delta of DC Common Mode	V _{TX-CM-DC-LINE-DELTA}	0	-	25	mV
Voltage between D+ and D-					
Electrical Idle Differential Peak Output	V _{TX-IDLE-DIFF-AC-p}	0	-	20	mV
Voltage					
The Amount of Voltage Change Allowed	V _{TX-RCV-DETECT}	-	-	600	mV
During Receiver Detection					
Transmitter DC Common Mode Voltage	V _{TX-DC-CM}	0	-	3.6	V
Transmitter Short-Circuit Current Limit	I _{TX-SHORT}	-	-	90	mA
DC Differential TX Impedance	Z _{TX-DIFF-DC}	80	100	120	Ω
Lane-to-Lane Output Skew	L _{TX-SKEW}	-	-	500 ps	ps
				+ 2 UI	

#### Table 13-5 PCI Express Interface - Differential Receiver (RX) Input (5.0 Gbps) Characteristics

Parameter	Symbol	Min	Тур	Max	Unit
Unit Interval	UI	199.94	200.0	200.06	ps
Differential RX Peak-to-Peak Voltage	V _{RX-DIFF-PP-CC}	120	-	1200	mV
Total jitter tolerance	TJ _{RX}	0.68	-	-	UI
Receiver DC common mode impedance	Z _{RX-DC}	40	-	60	Ω
RX AC Common Mode Voltage	V _{RX-CM-AC-P}	-	-	150	mV
Electrical Idle Detect Threshold	V _{RX-IDLE-DET-DIFFp-p}	65	-	175	mV

#### Table 13-6 PCI Express Interface - Differential Receiver (RX) Input (2.5 Gbps) Characteristics

Parameter	Symbol	Min	Тур	Max	Unit
Unit Interval	UI	399.88	400.0	400.12	ps
Differential RX Peak-to-Peak Voltage	V _{RX-DIFF-PP-CC}	175	-	1200	mV
Receiver eye time opening	T _{RX-EYE}	0.4	-	-	UI





Parameter	Symbol	Min	Тур	Max	Unit
Maximum time delta between median and	T _{RX-EYE-MEDIAN-to-MAX-}	-	-	0.3	UI
deviation from median	JITTER				
Receiver DC common mode impedance	Z _{RX-DC}	40	-	60	Ω
DC differential impedance	Z _{RX-DIFF-DC}	80	-	120	Ω
RX AC Common Mode Voltage	V _{RX-CM-AC-P}	-	-	150	mV
DC input CM input impedance during reset	Z _{RX-HIGH-IMP-DC}	200	-	-	kΩ
or power down					
Electrical Idle Detect Threshold	V _{RX-IDLE-DET-DIFFp-p}	65	-	175	mV
Lane to Lane skew	L _{RX-SKEW}	-	-	20	ns

## 13.4 OPERATING AMBIENT TEMPERATURE

#### **Table 13-7 Operating Ambient Temperature**

(The Operating Ambient Temperature be associated with Chapter 14.)

Item	Low	High	Unit
Ambient Temperature with power applied	-40	85	°C

Note: Exposure to high temperature conditions for extended periods of time may affect reliability.

## 13.5 POWER CONSUMPTION

#### **Table 13-8 Power Consumption**

Active Lane	1.0V	1.0VDDC 1.0VDDA 2.5AV		/DDH	DDH 2.5VDDR		Total		<b>T</b> T <b>1</b> /		
per Port	Тур	Max	Тур	Max	Тур	Max	Тур	Max	Тур	Max	Unit
16 x1	0.702	1.871	0.506	1.321	0.105	0.116	0.02	0.022	1.33	3.33	W
4 x4	0.603	1.410	0.562	1.278	0.105	0.118	0.035	0.039	1.30	2.85	W

**Test Conditions:** 

• Typical power measured under the conditions of 1.0V/2.5V power rail without device usage on all downstream ports.

• Maximum power measured under the conditions of 1.1V/ 2.75V with PCIe2 devices usage on all downstream ports

• Ambient Temperature at 25°C

· Power consumption in the table is a reference, be affected by various environment, bus traffic and power supply etc.





# **14 THERMAL DATA**

The information described in this section is provided for reference only.

#### **Table 14-1 Thermal Data**

Power (Watt)	Τ _a (℃)	JEDEC Board	Airflow (m/s)	θ _{JA} (°C/W)	T _i (℃)	θ _{JC} (℃/W)
		4 – Layer w/o HeatSink	0	15.7	132.57	
			1	13.8	126.81	
			2	12.6	123.18	
		4 – Layer	0	15.0	130.45	
	with	1	10.9	118.03		
3.03	05	HeatSink	2	9.6	114.09	5.3
5.05	.03 85	8 – Layer w/o HeatSink	0	13.6	126.21	5.5
			1	11.7	120.45	
	w/o neatSlik	2	10.6	117.12		
	8 – Layer	0	13.1	124.69		
		with	1	9.6	114.09	
		HeatSink	2	8.5	110.76	

Note: 1. Ta: Ambient Temperature

2. T_J: Junction Temperature

3. Maximum allowable junction temperature =  $125^{\circ}C$ 

4.  $\Theta_{JA}$ : Thermal Resistance, Junction-to-Ambient

 $\Theta_{JC}$ : Thermal Resistance, Junction-to-Case 5.

6. 7. Power measured under the conditions of 1.0V/ 2.5V with PCIe2 devices usage on all downstream ports in 1616 mode

The shaded fields provide a recommendation that allows PI7C9X2G1616PR to support Industrial Temperature Range.





# **15 PACKAGE INFORMATION**

The package of PI7C9X2G1616PR is a 19mm x 19mm HSBGA (324 Ball) package. The following are the package information and mechanical dimension:



### Figure 15-1 Package Outline Drawing



1st *: Part Rev 2nd *: Die Rev YY: Year WW: Workweek 1st X: Assembly Code 2nd X: Fab Code

#### Figure 15-2 Part Marking

PI7C9X2G1616PR Document Number DS40340 Rev 7-2 Page 197 of 198 www.diodes.com





## **16 ORDERING INFORMATION**

Part Number	<b>Operating Temperature</b>	Package Code	Package Description
PI7C9X2G1616PRBHSBE	-40° to 85°C	HSB	324-pin 19mmx19mm HSBGA
	(Industrial Temperature)		(ULA)

#### Notes:

1

3.

No purposely added lead. Fully EU Directive 2002/95/EC (RoHS), 2011/65/EU (RoHS 2) & 2015/863/EU (RoHS 3) compliant. See https://www.diodes.com/quality/lead-free/ for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, 2. "Green" and Lead-free.

Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.

