

TLV9151-Q1, TLV9152-Q1, TLV9154-Q1 SBOSA23C - MAY 2020 - REVISED MAY 2021

TLV915x-Q1 4.5-MHz, Rail-to-Rail Input/Output, Low Offset Voltage, Low Noise **Automotive Op Amp**

1 Features

AEC-Q100 qualified for automotive applications

Temperature grade 1: –40°C to +125°C, T_A

- Device HBM ESD classification level 3A

Device CDM ESD classification level C6

Low offset voltage: ±125 μV

Low offset voltage drift: ±0.3 µV/°C

Low noise: 10.8 nV/√Hz at 1 kHz

High common-mode rejection: 120 dB

Low bias current: ±10 pA

Rail-to-rail input and output

Wide bandwidth: 4.5-MHz GBW

High slew rate: 21 V/µs

Low quiescent current: 560 µA per amplifier

Wide supply: ±1.35 V to ±8 V, 2.7 V to 16 V

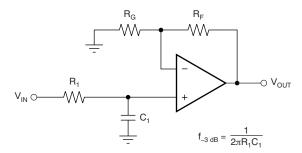
Robust EMIRR performance: EMI/RFI filters on input pins

2 Applications

- Optimized for AEC-Q100 grade 1 applications
- Infotainment and cluster
- Passive safety
- Body electronics and lighting
- HEV/EV inverter and motor control
- On-board (OBC) and wireless charger
- Powertrain current sensor
- Advanced driver assistance systems (ADAS)
- High-side and low-side current sensing

3 Description

The TLV915x-Q1 family (TLV9151-Q1, TLV9152-Q1, and TLV9154-Q1) is a family of 16-V, general purpose automotive operational amplifiers. These devices offer exceptional DC precision and AC performance, including rail-to-rail output, low offset (±125 µV, typ), low offset drift (±0.3 µV/°C, typ), and 4.5-MHz bandwidth.


Convenient features such as wide differential inputvoltage range, high output current (±75 mA), high slew rate (21 V/ μ s), and low noise (10.8 nV/ $\sqrt{\text{Hz}}$) make the TLV915x-Q1 a robust, low-noise operational amplifier for automotive applications.

The TLV915x-Q1 family of op amps is available in standard packages and is specified from -40°C to 125°C.

Device Information

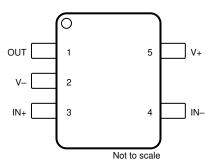
PART NUMBER ⁽¹⁾	PACKAGE	BODY SIZE (NOM)			
TLV9151-Q1	SOT-23 (5) ⁽²⁾	2.90 mm × 1.60 mm			
TLV9152-Q1	SOIC (8) ⁽²⁾	4.90 mm × 3.90 mm			
1LV9152-Q1	VSSOP (8)	3.00 mm × 3.00 mm			
	SOIC (14) ⁽²⁾	8.65 mm × 3.90 mm			
TLV9154-Q1	SOT-23 (14) ⁽²⁾	4.20 mm × 1.90 mm			
	TSSOP (14)	5.00 mm × 4.40 mm			

- For all available packages, see the orderable addendum at the end of the data sheet.
- This package is preview only.

$$\frac{V_{OUT}}{V_{IN}} = \left(1 + \frac{R_F}{R_G}\right) \left(\frac{1}{1 + sR_1C_1}\right)$$

TLV915x-Q1 in a Single-Pole, Low-Pass Filter

Table of Contents


1 Features1	7.4 Device Functional Modes26
2 Applications1	8 Application and Implementation27
3 Description1	8.1 Application Information27
4 Revision History2	8.2 Typical Applications27
5 Pin Configuration and Functions3	9 Power Supply Recommendations29
6 Specifications6	10 Layout30
6.1 Absolute Maximum Ratings6	10.1 Layout Guidelines30
6.2 ESD Ratings6	10.2 Layout Example31
6.3 Recommended Operating Conditions6	11 Device and Documentation Support32
6.4 Thermal Information for Single Channel6	11.1 Device Support32
6.5 Thermal Information for Dual Channel7	11.2 Documentation Support32
6.6 Thermal Information for Quad Channel	11.3 Receiving Notification of Documentation Updates 32
6.7 Electrical Characteristics8	11.4 Support Resources32
6.8 Typical Characteristics10	11.5 Electrostatic Discharge Caution33
7 Detailed Description17	11.6 Glossary33
7.1 Overview	12 Mechanical, Packaging, and Orderable
7.2 Functional Block Diagram17	Information34
7.3 Feature Description18	

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision B (March 2021) to Revision C (May 2021)	Page
Deleted preview note from TSSOP (14) package in <i>Device Information</i> table	1
• Deleted preview note from TSSOP (14) package in Pin Configuration and Functions section	3
• Deleted preview note from PW package in Thermal Information for Quad Channel table	
Changes from Revision A (January 2021) to Revision B (March 2021)	Page
Changed device status from Advance Information to Production Data	1

5 Pin Configuration and Functions

A. Package is preview only.

Figure 5-1. TLV9151-Q1 DBV Package^(A) 5-Pin SOT-23 Top View

Table 5-1. Pin Functions: TLV9151-Q1

PIN		I/O	DESCRIPTION	
NAME	NO.	1/0	DESCRIPTION	
IN+	3	I	Noninverting input	
IN-	4	I	Inverting input	
OUT	1	0	Output	
V+	5	_	Positive (highest) power supply	
V-	2	_	Negative (lowest) power supply	

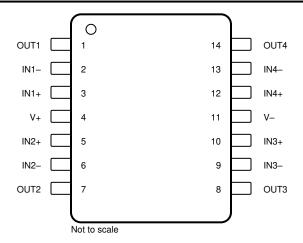

A. D package is preview only.

Figure 5-2. TLV9152-Q1 D and DGK Package^(A) 8-Pin SOIC and VSSOP Top View

Table 5-2. Pin Functions: TLV9152-Q1

ı	PIN		DESCRIPTION	
NAME	NO.	- I/O	DESCRIPTION	
IN1+	3	I	Noninverting input, channel 1	
IN2+	5	I	Noninverting input, channel 2	
IN1-	2	1	Inverting input, channel 1	
IN2-	6	1	Inverting input, channel 2	
OUT1	1	0	Output, channel 1	
OUT2	7	0	Output, channel 2	
V+	8	_	Positive (highest) power supply	
V-	4	_	Negative (lowest) power supply	

A. D and DYY packages are preview only.

Figure 5-3. TLV9154-Q1 D, DYY, and PW Package^(A)
14-Pin SOIC, SOT-23, and TSSOP
Top View

Table 5-3. Pin Functions: TLV9154-Q1

PIN		I/O	DESCRIPTION	
NAME	NO.	1/0	DESCRIPTION	
IN1+	3	I	Noninverting input, channel 1	
IN1-	2	I	Inverting input, channel 1	
IN2+	5	I	Noninverting input, channel 2	
IN2-	6	I	Inverting input, channel 2	
IN3+	10	I	Noninverting input, channel 3	
IN3-	9	I	Inverting input, channel 3	
IN4+	12	I	Noninverting input, channel 4	
IN4-	13	I	Inverting input, channel 4	
OUT1	1	0	Output, channel 1	
OUT2	7	0	Output, channel 2	
OUT3	8	0	Output, channel 3	
OUT4	14	0	Output, channel 4	
V+	4	_	Positive (highest) power supply	
V-	11	_	Negative (lowest) power supply	

6 Specifications

6.1 Absolute Maximum Ratings

over operating ambient temperature range (unless otherwise noted) (1)

		MIN	MAX	UNIT
Supply voltage, V _S = (V+)	$e, V_S = (V+) - (V-)$ 0 20		V	
	Common-mode voltage (3)	(V-) - 0.5	(V+) + 0.5	V
Signal input pins	Differential voltage (3)		V _S + 0.2	V
	Current (3)	-10	10	mA
Output short-circuit (2)		Continuo	ous	
Operating ambient temperature, T _A		-55	150	°C
Junction temperature, T _J			150	°C
Storage temperature, T _{stg}		-65	150	°C

⁽¹⁾ Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.

6.2 ESD Ratings

			VALUE	UNIT
V Floatroatatia disabarga	Human body model (HBM), per AEC Q100-002 ⁽¹⁾	±2000	V	
V _(ESD) Electrostatic discharge		Charged device model (CDM), per AEC Q100-011	±1000	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

⁽¹⁾ AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

6.3 Recommended Operating Conditions

over operating ambient temperature range (unless otherwise noted)

		MIN	MAX	UNIT
Vs	Supply voltage, (V+) – (V–)	2.7	16	V
VI	Input voltage range	(V-) - 0.1	(V+) + 0.1	V
T _A	Specified ambient temperature	-40	125	°C

6.4 Thermal Information for Single Channel

		TLV9151-Q1	
	THERMAL METRIC (1)	DBV ⁽²⁾ (SOT-23)	UNIT
		5 PINS	
R _{θJA}	Junction-to-ambient thermal resistance	TBD	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	TBD	°C/W
R _{θJB}	Junction-to-board thermal resistance	TBD	°C/W
Ψιτ	Junction-to-top characterization parameter	TBD	°C/W
ΨЈВ	Junction-to-board characterization parameter	TBD	°C/W
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	TBD	°C/W

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

⁽²⁾ Short-circuit to ground, one amplifier per package.

⁽³⁾ Input pins are diode-clamped to the power-supply rails. Input signals that may swing more than 0.5 V beyond the supply rails must be current limited to 10 mA or less.

⁽²⁾ This package option is preview for TLV9151-Q1.

6.5 Thermal Information for Dual Channel

THERMAL METRIC (1)		TLV91		
		D ⁽²⁾ (SOIC)	DGK (VSSOP)	Unit
		8 PINS	8 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	TBD	176.5	°C/W
R _{θJC(top)}	Junction-to-case (top) thermal resistance	TBD	68.1	°C/W
R _{θJB}	Junction-to-board thermal resistance	TBD	98.2	°C/W
Ψлт	Junction-to-top characterization parameter	TBD	12.0	°C/W
ΨЈВ	Junction-to-board characterization parameter	TBD	96.7	°C/W
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	TBD	N/A	°C/W

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

6.6 Thermal Information for Quad Channel

THERMAL METRIC (1)			TLV9154-Q1		
		D ⁽²⁾ (SOIC)	DYY ⁽²⁾ (SOT-23)	PW (TSSOP)	UNIT
		14 PINS	14 PINS	14 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	TBD	110.7	118.0	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	TBD	55.9	47.6	°C/W
R _{0JB}	Junction-to-board thermal resistance	TBD	35.3	60.9	°C/W
ΨЈТ	Junction-to-top characterization parameter	TBD	2.3	6.0	°C/W
ΨЈВ	Junction-to-board characterization parameter	TBD	35.1	60.4	°C/W
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	TBD	N/A	N/A	°C/W

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

⁽²⁾ This package option is preview for TLV9152-Q1.

⁽²⁾ This package option is preview for TLV9154-Q1.

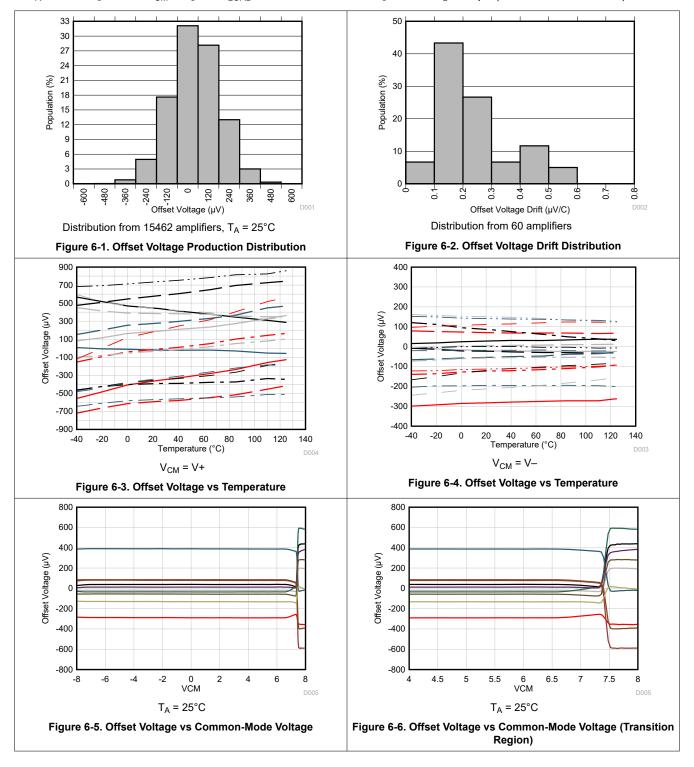
6.7 Electrical Characteristics

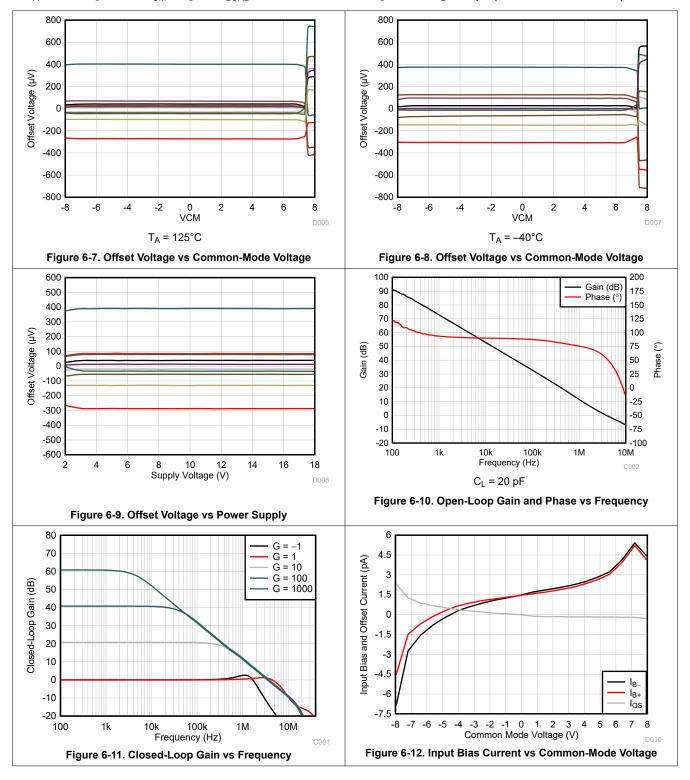
For V_S = (V+) – (V–) = 2.7 V to 16 V (±1.35 V to ±8 V) at T_A = 25°C, R_L = 10 k Ω connected to V_S / 2, V_{CM} = V_S / 2, and V_{OUT} = V_S / 2, unless otherwise noted.

	PARAMETER	TEST CONDIT	TIONS	MIN	TYP	MAX	UNIT	
OFFSET \	/OLTAGE							
.,					±125	±895		
V _{OS}	Input offset voltage	V _{CM} = V-	$T_A = -40^{\circ}C \text{ to } 125^{\circ}C$			±925	μV	
dV _{OS} /dT	Input offset voltage drift		$T_A = -40^{\circ}\text{C to } 125^{\circ}\text{C}$		±0.3		μV/°C	
PSRR	Input offset voltage	V _{CM} = V-, V _S = 4 V to 16 V	T - 40°0 t- 405°0		±0.3	±1.5	μV/V	
	versus power supply	$V_{CM} = V-, V_S = 2.7 \text{ V to } 16 \text{ V}^{(2)}$	$T_A = -40^{\circ}\text{C to } 125^{\circ}\text{C}$		±1	±8		
	Channel separation	f = 0 Hz	1		5		μV/V	
INPUT BIA	AS CURRENT							
	Input bigg ourrent				±10		pА	
I _B	Input bias current		$T_A = -40^{\circ}\text{C to } 125^{\circ}\text{C}^{(2)}$			±1	nA	
	Input offset current				±10		pA	
Ios	input onset current		$T_A = -40^{\circ}\text{C to } 125^{\circ}\text{C}^{(2)}$			±1	nA	
NOISE								
E _N	Input voltage noise	f = 0.1 Hz to 10 Hz			1.8		μV_{PP}	
	Input voltage noise	1 - 0.1112 10 10112			0.3		μV_{RMS}	
e _N	Input voltage noise	f = 1 kHz			10.8		nV/√ Hz	
	density	f = 10 kHz			1177 1112			
i _N	Input current noise	f = 1 kHz			2		fA/√ Hz	
INPUT VO	LTAGE RANGE							
V_{CM}	Common-mode voltage range			(V-) - 0.1		(V+) + 0.1	V	
		V _S = 16 V, (V–) – 0.1 V < V _{CM} < (V+) – 2 V (Main input pair)		100	130		dB	
CMRR	Common-mode rejection ratio	$V_S = 4 \text{ V}, (V-) - 0.1 \text{ V} < V_{CM} < (V+) - 2 \text{ V} \text{ (Main input pair)}$	$T_A = -40^{\circ}\text{C to } 125^{\circ}\text{C}$	82	100			
		V _S = 2.7 V, (V-) - 0.1 V < V _{CM} < (V+) - 2 V (Main input pair) ⁽²⁾		75	95			
		V _S = 2.7 V to 16 V, (V+) – 1 V < V _{CM} < (V+) + 0.1 V (Aux input pair)			85			
INPUT CA	PACITANCE							
Z _{ID}	Differential				100 9		MΩ pF	
Z _{ICM}	Common-mode				6 1		TΩ pF	
OPEN-LO	OP GAIN							
		$V_S = 16 \text{ V}, V_{CM} = V - (V -) + 0.1 \text{ V} < V_O < (V +) - 0.1 \text{ V}$		120	145			
	Open-loop voltage gain	$(V-) + 0.1 V < V_0 < (V+) - 0.1 V$	T _A = -40°C to 125°C		142			
Δ		V _S = 4 V, V _{CM} = V-		104	130		dB	
A _{OL}		$(V-) + 0.1 V < V_0 < (V+) - 0.1 V$	T _A = -40°C to 125°C		125		uБ	
		$V_S = 2.7 \text{ V}, V_{CM} = V_{-}$ $(V_{-}) + 0.1 \text{ V} < V_{O} < (V_{+}) - 0.1 \text{ V}^{(2)}$		101	120			
		$(V-) + 0.1 V < V_0 < (V+) - 0.1 V^{(2)}$	$T_A = -40^{\circ}$ C to 125°C		118			

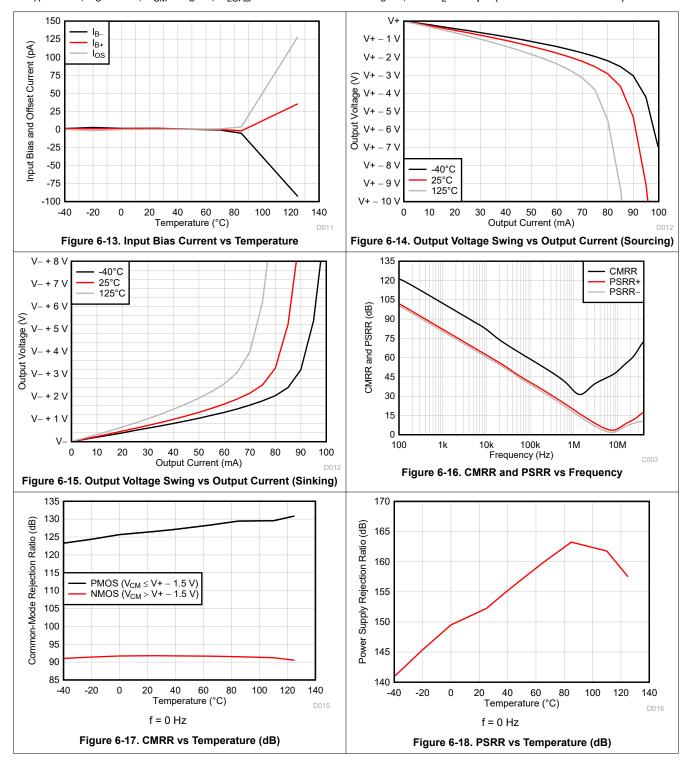
6.7 Electrical Characteristics (continued)

For V_S = (V+) – (V–) = 2.7 V to 16 V (±1.35 V to ±8 V) at T_A = 25°C, R_L = 10 k Ω connected to V_S / 2, V_{CM} = V_S / 2, and V_{OUT} = V_S / 2, unless otherwise noted.

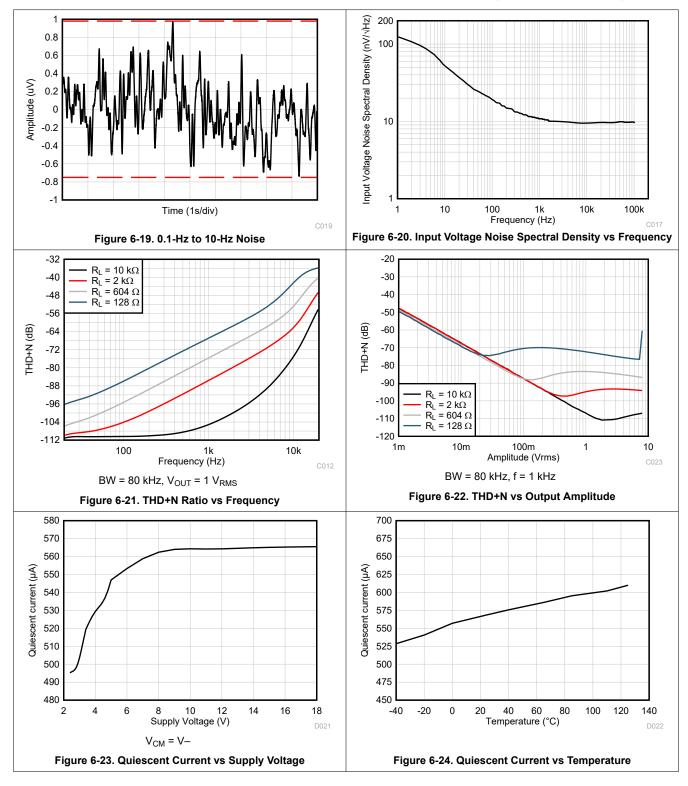

	PARAMETER	TEST C	ONDITIONS	MIN TYP	MAX	UNIT		
FREQUE	NCY RESPONSE							
GBW	Gain-bandwidth product			4.5		MHz		
SR	Slew rate	V _S = 16 V, G = +1, C _L = 20 pF		21		V/µs		
t _S		To 0.01%, V _S = 16 V, V _{STEP} = 1	0 V , G = +1, CL = 20 pF	2.5				
	0-44:	To 0.01%, V _S = 16 V, V _{STEP} = 2	V , G = +1, CL = 20 pF	1.5				
	Settling time	To 0.1%, V _S = 16 V, V _{STEP} = 10	V , G = +1, CL = 20 pF	2		μs		
		To 0.1%, V _S = 16 V, V _{STEP} = 2 V	/ , G = +1, CL = 20 pF	1				
	Phase margin	$G = +1$, $R_L = 10$ kΩ		60		۰		
	Overload recovery time	V _{IN} × gain > V _S		400		ns		
THD+N	Total harmonic distortion + noise (1)	V _S = 16 V, V _O = 3 V _{RMS} , G = 1,	f = 1 kHz	0.00021%				
ОИТРИТ		1						
		$V_S = 16 \text{ V}, R_I = \text{no load}$		5	10			
		V _S = 10 V, R _L = 110 10ad	$T_A = -40^{\circ}C \text{ to } 125^{\circ}C^{(2)}$		15			
		$V_S = 16 \text{ V}, R_1 = 10 \text{ k}\Omega$		50	55			
		V _S = 10 V, R _L = 10 KΩ	$T_A = -40^{\circ}C \text{ to } 125^{\circ}C^{(2)}$		75			
	Voltage output swing from rail (positive and negative)	$V_S = 16 \text{ V}, R_1 = 2 \text{ k}\Omega$		200	250			
		V _S = 10 V, R _L = 2 KΩ	$T_A = -40^{\circ}C \text{ to } 125^{\circ}C^{(2)}$		350	mV		
		V _S = 2.7 V, R _L = no load		1	6			
			$T_A = -40^{\circ}C \text{ to } 125^{\circ}C^{(2)}$		10			
		$V_S = 2.7 \text{ V}, R_I = 10 \text{ k}\Omega$		5	12			
		VS - 2.7 V, NL - 10 K12	$T_A = -40^{\circ}C \text{ to } 125^{\circ}C^{(2)}$		18			
		$V_S = 2.7 \text{ V}, R_1 = 2 \text{ k}\Omega$		25	25 40			
		VS - 2.7 V, NL - 2 KΩ	$T_A = -40^{\circ}C \text{ to } 125^{\circ}C^{(2)}$		60			
I _{SC}	Short-circuit current			±75		mA		
C _{LOAD}	Capacitive load drive			1000		pF		
z _o	Open-loop output impedance	f = 1 MHz, I _O = 0 A		525		Ω		
POWER S	SUPPLY							
l_	Quiescent current per	I _O = 0 A		560	685	μA		
IQ	amplifier	10 - 0 A	T _A = -40°C to 125°C		750	μA		

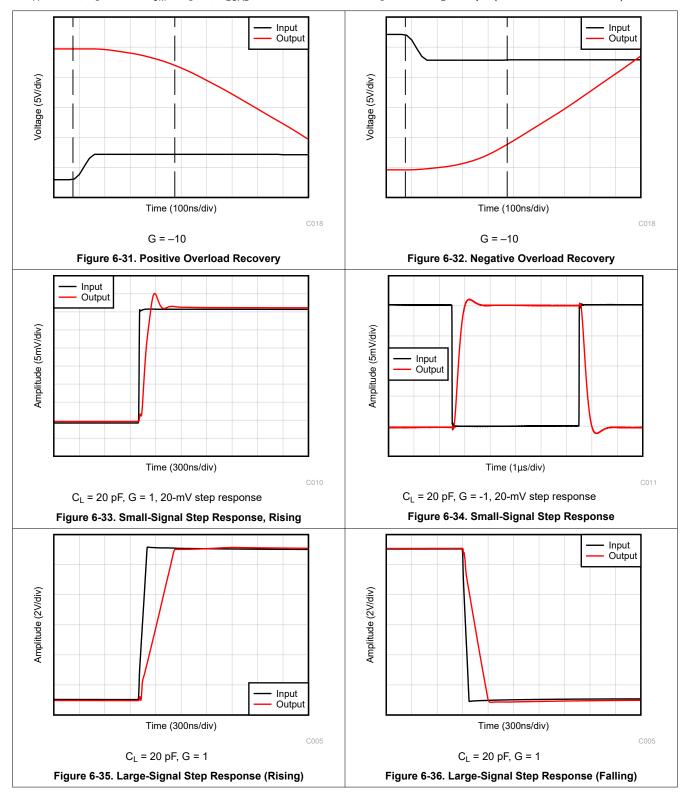

⁽¹⁾ Third-order filter; bandwidth = 80 kHz at -3 dB.

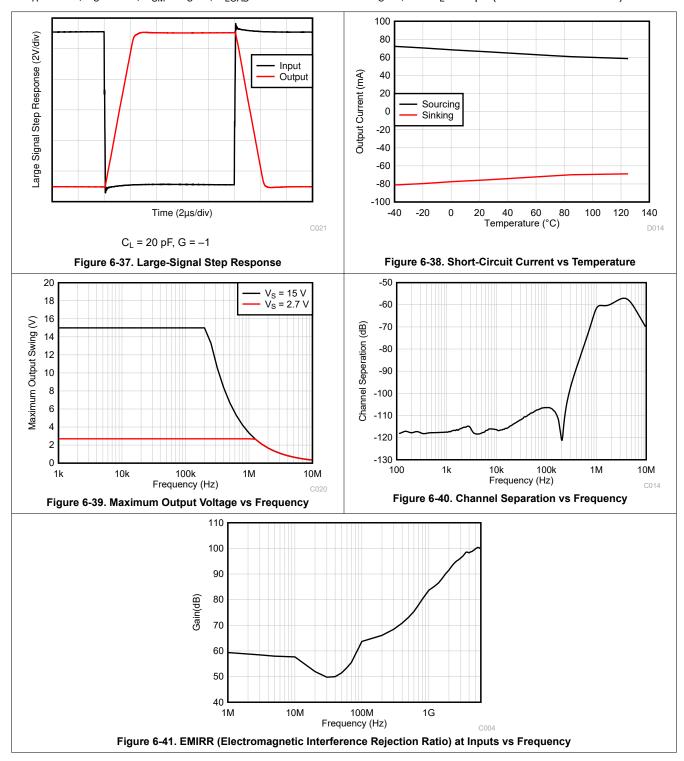
⁽²⁾ Specified by characterization only.



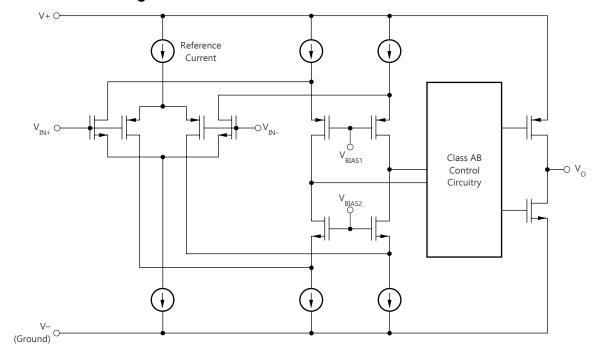
6.8 Typical Characteristics







7 Detailed Description


7.1 Overview

The TLV915x-Q1 family (TLV9151-Q1, TLV9152-Q1, and TLV9154-Q1) is a family of 16-V general purpose operational amplifiers.

These devices offer excellent DC precision and AC performance, including rail-to-rail input/output, low offset $(\pm 125 \,\mu\text{V}, \,\text{typ})$, low offset drift $(\pm 0.3 \,\mu\text{V}/^{\circ}\text{C}, \,\text{typ})$, and 4.5-MHz bandwidth.

Wide differential and common-mode input-voltage range, high output current (± 75 mA), high slew rate (21 V/ μ s), and low power operation (560 μ A, typ) make the TLV915x-Q1 a robust, high-speed, high-performance operational amplifier for industrial applications.

7.2 Functional Block Diagram

7.3 Feature Description

7.3.1 EMI Rejection

The TLV915x-Q1 uses integrated electromagnetic interference (EMI) filtering to reduce the effects of EMI from sources such as wireless communications and densely-populated boards with a mix of analog signal chain and digital components. EMI immunity can be improved with circuit design techniques; the TLV915x-Q1 benefits from these design improvements. Texas Instruments has developed the ability to accurately measure and quantify the immunity of an operational amplifier over a broad frequency spectrum extending from 10 MHz to 6 GHz. Figure 7-1 shows the results of this testing on the TLV915x-Q1. Table 7-1 shows the EMIRR IN+ values for the TLV915x-Q1 at particular frequencies commonly encountered in real-world applications. The *EMI Rejection Ratio of Operational Amplifiers* application report contains detailed information on the topic of EMIRR performance as it relates to op amps and is available for download from www.ti.com.

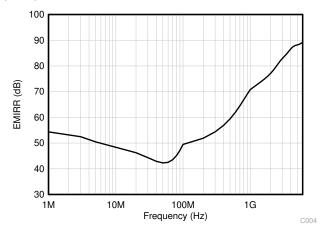


Figure 7-1. EMIRR Testing

Table 7-1. TLV915x-Q1 EMIRR IN+ for Frequencies of Interest

FREQUENCY	APPLICATION OR ALLOCATION	EMIRR IN+
400 MHz	Mobile radio, mobile satellite, space operation, weather, radar, ultra-high frequency (UHF) applications	59.5 dB
900 MHz	Global system for mobile communications (GSM) applications, radio communication, navigation, GPS (to 1.6 GHz), GSM, aeronautical mobile, UHF applications	68.9 dB
1.8 GHz	GSM applications, mobile personal communications, broadband, satellite, L-band (1 GHz to 2 GHz)	77.8 dB
2.4 GHz	802.11b, 802.11g, 802.11n, Bluetooth®, mobile personal communications, industrial, scientific and medical (ISM) radio band, amateur radio and satellite, S-band (2 GHz to 4 GHz)	78.0 dB
3.6 GHz	Radiolocation, aero communication and navigation, satellite, mobile, S-band	88.8 dB
5 GHz	802.11a, 802.11n, aero communication and navigation, mobile communication, space and satellite operation, C-band (4 GHz to 8 GHz)	87.6 dB

7.3.2 Thermal Protection

The internal power dissipation of any amplifier causes its internal (junction) temperature to rise. This phenomenon is called *self heating*. The absolute maximum junction temperature of the TLV915x-Q1 is 150°C. Exceeding this temperature causes damage to the device. The TLV915x-Q1 has a thermal protection feature that reduces damage from self heating. The protection works by monitoring the temperature of the device and turning off the op amp output drive for temperatures above 170°C. Figure 7-2 shows an application example for the TLV9151-Q1 that has significant self heating because of its power dissipation (0.81 W). Thermal calculations indicate that for an ambient temperature of 65°C, the device junction temperature will reach 177°C. The actual device, however, turns off the output drive to recover towards a safe junction temperature. Figure 7-2 shows how the circuit behaves during thermal protection. During normal operation, the device acts as a buffer so the output is 3 V. When self heating causes the device junction temperature to increase above the internal limit, the thermal protection forces the output to a high-impedance state and the output is pulled to ground through resistor R_L. If the condition that caused excessive power dissipation is not removed, the amplifier will oscillate between a shutdown and enabled state until the output fault is corrected.

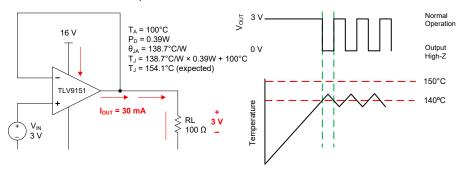
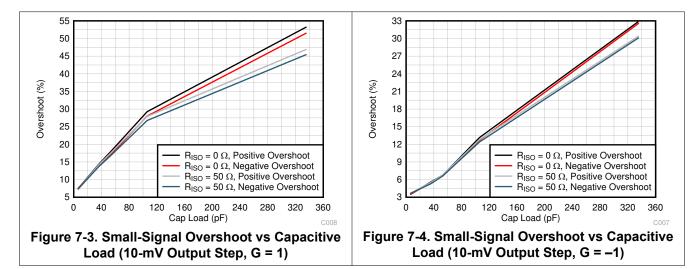



Figure 7-2. Thermal Protection

7.3.3 Capacitive Load and Stability

The TLV915x-Q1 features a resistive output stage capable of driving moderate capacitive loads, and by leveraging an isolation resistor, the device can easily be configured to drive large capacitive loads. Increasing the gain enhances the ability of the amplifier to drive greater capacitive loads; see Figure 7-3 and Figure 7-4. The particular op amp circuit configuration, layout, gain, and output loading are some of the factors to consider when establishing whether an amplifier will be stable in operation.

For additional drive capability in unity-gain configurations, improve capacitive load drive by inserting a small resistor, $R_{\rm ISO}$, in series with the output, as shown in Figure 7-5. This resistor significantly reduces ringing and maintains DC performance for purely capacitive loads. However, if a resistive load is in parallel with the

capacitive load, then a voltage divider is created, thus introducing a gain error at the output and slightly reducing the output swing. The error introduced is proportional to the ratio $R_{\rm ISO}$ / $R_{\rm L}$, and is generally negligible at low output levels. A high capacitive load drive makes the TLV915x-Q1 well suited for applications such as reference buffers, MOSFET gate drives, and cable-shield drives. The circuit shown in Figure 7-5 uses an isolation resistor, $R_{\rm ISO}$, to stabilize the output of an op amp. $R_{\rm ISO}$ modifies the open-loop gain of the system for increased phase margin.

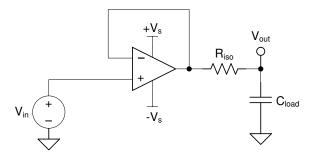


Figure 7-5. Extending Capacitive Load Drive With the TLV9151-Q1

7.3.4 Common-Mode Voltage Range

The TLV915x-Q1 is a 16-V, rail-to-rail input operational amplifier with an input common-mode range that extends 200 mV beyond either supply rail. This wide range is achieved with paralleled complementary N-channel and P-channel differential input pairs, as shown in Figure 7-6. The N-channel pair is active for input voltages close to the positive rail, typically (V+) - 1 V to 100 mV above the positive supply. The P-channel pair is active for inputs from 100 mV below the negative supply to approximately (V+) - 2 V. There is a small transition region, typically (V+) - 2 V to (V+) - 1 V in which both input pairs are on. This transition region can vary modestly with process variation, and within this region PSRR, CMRR, offset voltage, offset drift, noise, and THD performance may be degraded compared to operation outside this region.

Figure 6-5 shows this transition region for a typical device in terms of input voltage offset in more detail.

For more information on common-mode voltage range and PMOS/NMOS pair interaction, see *Op Amps With Complementary-Pair Input Stages* application note.

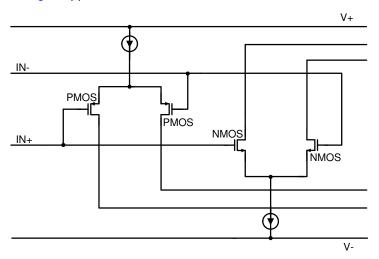


Figure 7-6. Rail-to-Rail Input Stage

7.3.5 Phase Reversal Protection

The TLV915x-Q1 family has internal phase-reversal protection. Many op amps exhibit a phase reversal when the input is driven beyond its linear common-mode range. This condition is most often encountered in non-inverting circuits when the input is driven beyond the specified common-mode voltage range, causing the output to reverse into the opposite rail. The TLV915x-Q1 is a rail-to-rail input op amp; therefore, the common-mode range can extend up to the rails. Input signals beyond the rails do not cause phase reversal; instead, the output limits into the appropriate rail. This performance is shown in Figure 7-7. For more information on phase reversal, see *Op Amps With Complementary-Pair Input Stages* application note.

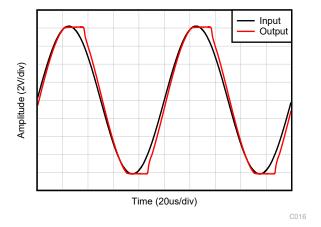


Figure 7-7. No Phase Reversal

7.3.6 Electrical Overstress

Designers often ask questions about the capability of an operational amplifier to withstand electrical overstress (EOS). These questions tend to focus on the device inputs, but may involve the supply voltage pins or even the output pin. Each of these different pin functions have electrical stress limits determined by the voltage breakdown characteristics of the particular semiconductor fabrication process and specific circuits connected to the pin. Additionally, internal electrostatic discharge (ESD) protection is built into these circuits to protect them from accidental ESD events both before and during product assembly.

Having a good understanding of this basic ESD circuitry and its relevance to an electrical overstress event is helpful. Figure 7-8 shows an illustration of the ESD circuits contained in the TLV915x-Q1 (indicated by the dashed line area). The ESD protection circuitry involves several current-steering diodes connected from the input and output pins and routed back to the internal power-supply lines, where the diodes meet at an absorption device or the power-supply ESD cell, internal to the operational amplifier. This protection circuitry is intended to remain inactive during normal circuit operation.

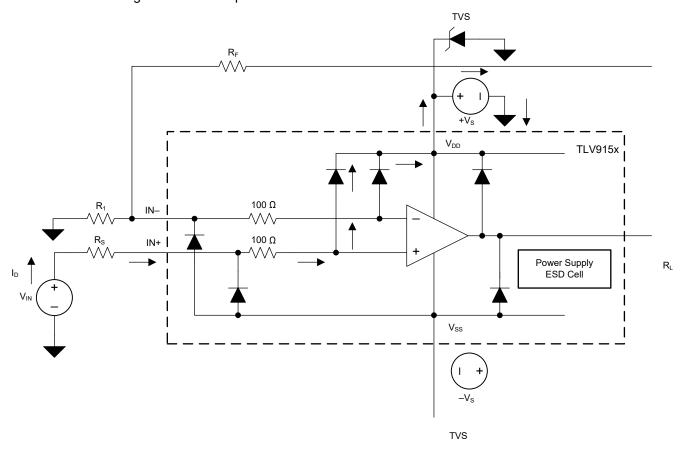


Figure 7-8. Equivalent Internal ESD Circuitry Relative to a Typical Circuit Application

An ESD event is very short in duration and very high voltage (for example; 1 kV, 100 ns), whereas an EOS event is long duration and lower voltage (for example; 50 V, 100 ms). The ESD diodes are designed for out-of-circuit ESD protection (that is, during assembly, test, and storage of the device before being soldered to the PCB). During an ESD event, the ESD signal is passed through the ESD steering diodes to an absorption circuit (labeled ESD power-supply circuit). The ESD absorption circuit clamps the supplies to a safe level.

Although this behavior is necessary for out-of-circuit protection, excessive current and damage is caused if activated in-circuit. A transient voltage suppressors (TVS) can be used to prevent against damage caused by turning on the ESD absorption circuit during an in-circuit ESD event. Using the appropriate current limiting resistors and TVS diodes allows for the use of device ESD diodes to protect against EOS events.

7.3.7 Overload Recovery

Overload recovery is defined as the time required for the op amp output to recover from a saturated state to a linear state. The output devices of the op amp enter a saturation region when the output voltage exceeds the rated operating voltage, either due to the high input voltage or the high gain. After the device enters the saturation region, the charge carriers in the output devices require time to return back to the linear state. After the charge carriers return back to the linear state, the device begins to slew at the specified slew rate. Thus, the propagation delay in case of an overload condition is the sum of the overload recovery time and the slew time. The overload recovery time for the TLV915x-Q1 is approximately 400 ns.

7.3.8 Typical Specifications and Distributions

Designers often have questions about a typical specification of an amplifier in order to design a more robust circuit. Due to natural variation in process technology and manufacturing procedures, every specification of an amplifier will exhibit some amount of deviation from the ideal value, like an amplifier's input offset voltage. These deviations often follow *Gaussian* ("bell curve"), or *normal* distributions, and circuit designers can leverage this information to guardband their system, even when there is not a minimum or maximum specification in Section 6.7.

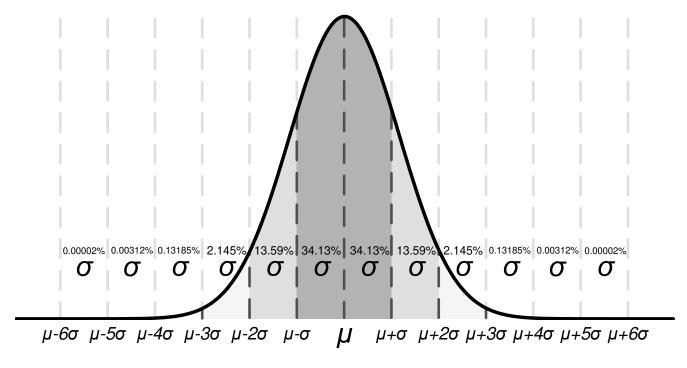


Figure 7-9. Ideal Gaussian Distribution

Figure 7-9 shows an example distribution, where μ , or mu, is the mean of the distribution, and where σ , or sigma, is the standard deviation of a system. For a specification that exhibits this kind of distribution, approximately two-thirds (68.26%) of all units can be expected to have a value within one standard deviation, or one sigma, of the mean (from $\mu - \sigma$ to $\mu + \sigma$).

Depending on the specification, values listed in the *typical* column of Section 6.7 are represented in different ways. As a general rule of thumb, if a specification naturally has a nonzero mean (for example, like gain bandwidth), then the typical value is equal to the mean (μ). However, if a specification naturally has a mean near zero (like input offset voltage), then the typical value is equal to the mean plus one standard deviation (μ + σ) in order to most accurately represent the typical value.

You can use this chart to calculate approximate probability of a specification in a unit; for example, for TLV915x-Q1 , the typical input voltage offset is 125 μ V, so 68.2% of all TLV915x-Q1 devices are expected to have an offset from -125 μ V to 125 μ V. At 4 σ (±500 μ V), 99.9937% of the distribution has an offset voltage less than

 $\pm 500~\mu V$, which means 0.0063% of the population is outside of these limits, which corresponds to about 1 in 15.873 units.

Specifications with a value in the minimum or maximum column are assured by TI, and units outside these limits will be removed from production material. For example, the TLV915x-Q1 family has a maximum offset voltage of 675 μ V at 25°C, and even though this corresponds to about 5 σ (\approx 1 in 1.7 million units), which is extremely unlikely, TI assures that any unit with larger offset than 895 μ V will be removed from production material.

For specifications with no value in the minimum or maximum column, consider selecting a sigma value of sufficient guardband for your application, and design worst-case conditions using this value. For example, the 6- σ value corresponds to about 1 in 500 million units, which is an extremely unlikely chance, and could be an option as a wide guardband to design a system around. In this case, the TLV915x-Q1 family does not have a maximum or minimum for offset voltage drift, but based on Figure 6-2 and the typical value of 0.3 μ V/°C in Section 6.7, it can be calculated that the 6- σ value for offset voltage drift is about 1.8 μ V/°C. When designing for worst-case system conditions, this value can be used to estimate the worst possible offset across temperature without having an actual minimum or maximum value.

However, process variation and adjustments over time can shift typical means and standard deviations, and unless there is a value in the minimum or maximum specification column, TI cannot assure the performance of a device. This information should be used only to estimate the performance of a device.

7.3.9 Packages With an Exposed Thermal Pad

The TLV915x-Q1 family is available in packages such as the WSON-8 (DSG) and WQFN-16 (RTE) which feature an exposed thermal pad. Inside the package, the die is attached to this thermal pad using an electrically conductive compound. For this reason, when using a package with an exposed thermal pad, the thermal pad must either be connected to V— or left floating. Attaching the thermal pad to a potential other than V— is not allowed, and performance of the device is not assured when doing so.

7.4 Device Functional Modes

The TLV915x-Q1 has a single functional mode and is operational when the power-supply voltage is greater than $2.7 \text{ V} (\pm 1.35 \text{ V})$. The maximum power supply voltage for the TLV915x-Q1 is $16 \text{ V} (\pm 8 \text{ V})$.

The TLV915x-Q1 S devices feature a shutdown pin, which can be used to place the op amp into a low-power mode.

8 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The TLV915x-Q1 family offers excellent DC precision and DC performance. These devices operate up to 16-V supply rails and offer true rail-to-rail input/output, low offset voltage and offset voltage drift, as well as 4.5-MHz bandwidth and high output drive. These features make the TLV915x-Q1 a robust, high-performance operational amplifier for high-voltage industrial applications.

8.2 Typical Applications

8.2.1 Low-Side Current Measurement

Figure 8-1 shows the TLV9151-Q1 configured in a low-side current sensing application. For a full analysis of the circuit shown in Figure 8-1 including theory, calculations, simulations, and measured data, see TI Precision Design TIPD129, *0-A to 1-A Single-Supply Low-Side Current-Sensing Solution*.

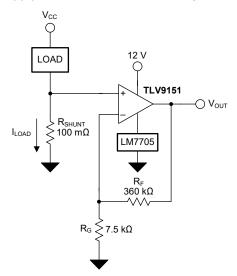


Figure 8-1. TLV9151-Q1 in a Low-Side, Current-Sensing Application

8.2.1.1 Design Requirements

The design requirements for this design are:

Load current: 0 A to 1 AOutput voltage: 4.9 V

Maximum shunt voltage: 100 mV

8.2.1.2 Detailed Design Procedure

The transfer function of the circuit in Figure 8-1 is given in Equation 1.

$$V_{OUT} = I_{LOAD} \times R_{SHUNT} \times Gain$$
 (1)

The load current (I_{LOAD}) produces a voltage drop across the shunt resistor (R_{SHUNT}). The load current is set from 0 A to 1 A. To keep the shunt voltage below 100 mV at maximum load current, the largest shunt resistor is defined using Equation 2.

$$R_{SHUNT} = \frac{V_{SHUNT_MAX}}{I_{LOAD_MAX}} = \frac{100mV}{1A} = 100m\Omega$$
 (2)

Using Equation 2, R_{SHUNT} is calculated to be 100 m Ω . The voltage drop produced by I_{LOAD} and R_{SHUNT} is amplified by the TLV9151-Q1 to produce an output voltage of 0 V to 4.9 V. The gain needed by the TLV9151-Q1 to produce the necessary output voltage is calculated using Equation 3.

$$Gain = \frac{\left(V_{OUT_MAX} - V_{OUT_MIN}\right)}{\left(V_{IN_MAX} - V_{IN_MIN}\right)}$$
(3)

Using Equation 3, the required gain is calculated to be 49 V/V, which is set with resistors R_F and R_G . Equation 4 is used to size the resistors, R_F and R_G , to set the gain of the TLV9151-Q1 to 49 V/V.

$$Gain = 1 + \frac{(R_F)}{(R_G)}$$
(4)

Choosing R_F as 360 k Ω , R_G is calculated to be 7.5 k Ω . R_F and R_G were chosen as 360 k Ω and 7.5 k Ω because they are standard value resistors that create a 49:1 ratio. Other resistors that create a 49:1 ratio can also be used. Figure 8-2 shows the measured transfer function of the circuit shown in Figure 8-1.

8.2.1.3 Application Curves

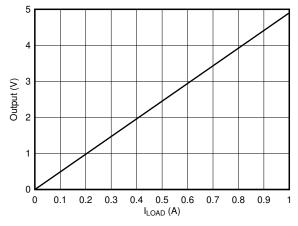


Figure 8-2. Low-Side, Current-Sense, Transfer Function

9 Power Supply Recommendations

The TLV915x-Q1 is specified for operation from 2.7 V to 16 V (±1.35 V to ±8 V); many specifications apply from –40°C to 125°C. Parameters that can exhibit significant variance with regard to operating voltage or temperature are presented in Section 6.8.

CAUTION

Supply voltages larger than 16 V can permanently damage the device; see Section 6.1.

Place 0.1-µF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or high-impedance power supplies. For more detailed information on bypass capacitor placement, refer to Section 10.

10 Layout

10.1 Layout Guidelines

For best operational performance of the device, use good PCB layout practices, including:

- Noise can propagate into analog circuitry through the power pins of the circuit as a whole and op amp itself.
 Bypass capacitors are used to reduce the coupled noise by providing low-impedance power sources local to the analog circuitry.
 - Connect low-ESR, 0.1-μF ceramic bypass capacitors between each supply pin and ground, placed as close to the device as possible. A single bypass capacitor from V+ to ground is applicable for singlesupply applications.
- Separate grounding for analog and digital portions of circuitry is one of the simplest and most-effective
 methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to ground planes.
 A ground plane helps distribute heat and reduces EMI noise pickup. Make sure to physically separate digital
 and analog grounds paying attention to the flow of the ground current.
- In order to reduce parasitic coupling, run the input traces as far away from the supply or output traces as
 possible. If these traces cannot be kept separate, crossing the sensitive trace perpendicular is much better as
 opposed to in parallel with the noisy trace.
- Place the external components as close to the device as possible. As illustrated in Figure 10-2, keeping RF and RG close to the inverting input minimizes parasitic capacitance.
- Keep the length of input traces as short as possible. Always remember that the input traces are the most sensitive part of the circuit.
- Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly reduce leakage currents from nearby traces that are at different potentials.
- · Cleaning the PCB following board assembly is recommended for best performance.
- Any precision integrated circuit may experience performance shifts due to moisture ingress into the plastic
 package. Following any aqueous PCB cleaning process, baking the PCB assembly is recommended to
 remove moisture introduced into the device packaging during the cleaning process. A low temperature, post
 cleaning bake at 85°C for 30 minutes is sufficient for most circumstances.

10.2 Layout Example

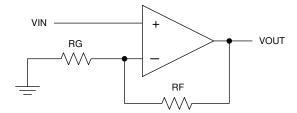


Figure 10-1. Schematic Representation

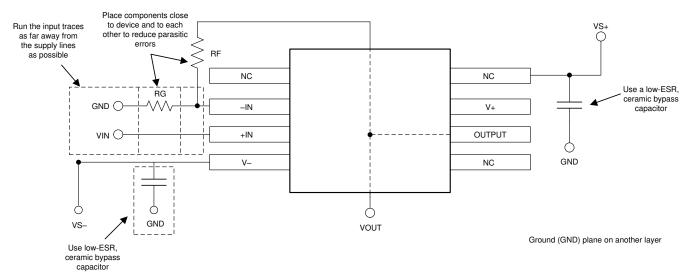


Figure 10-2. Operational Amplifier Board Layout for Noninverting Configuration

11 Device and Documentation Support

11.1 Device Support

11.1.1 Development Support

11.1.1.1 TINA-TI™ (Free Software Download)

TINA™ is a simple, powerful, and easy-to-use circuit simulation program based on a SPICE engine. TINA-TI is a free, fully-functional version of the TINA software, preloaded with a library of macro models in addition to a range of both passive and active models. TINA-TI provides all the conventional dc, transient, and frequency domain analysis of SPICE, as well as additional design capabilities.

Available as a free download from the Analog eLab Design Center, TINA-TI offers extensive post-processing capability that allows users to format results in a variety of ways. Virtual instruments offer the ability to select input waveforms and probe circuit nodes, voltages, and waveforms, creating a dynamic quick-start tool.

Note

These files require that either the TINA software (from DesignSoft[™]) or TINA-TI software be installed. Download the free TINA-TI software from the TINA-TI folder.

11.1.1.2 TI Precision Designs

The TLV915x-Q1 is featured in several TI Precision Designs, available online at http://www.ti.com/ww/en/analog/precision-designs/. TI Precision Designs are analog solutions created by TI's precision analog applications experts and offer the theory of operation, component selection, simulation, complete PCB schematic and layout, bill of materials, and measured performance of many useful circuits.

11.2 Documentation Support

11.2.1 Related Documentation

Texas Instruments, Analog Engineer's Circuit Cookbook: Amplifiers

Texas Instruments, AN31 amplifier circuit collection

Texas Instruments, 0-A to 1-A Single-Supply Low-Side Current-Sensing Solution TI Precision Design

Texas Instruments, The EMI Rejection Ratio of Operational Amplifiers application report

Texas Instruments, Op Amps With Complementary-Pair Input Stages application note

11.3 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Subscribe to updates* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

11.4 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

Trademarks

TINA-TI[™] are trademarks of Texas Instruments, Inc and DesignSoft, Inc.

TINA[™] and DesignSoft[™] are trademarks of DesignSoft, Inc.

TI E2E[™] is a trademark of Texas Instruments.

Bluetooth® is a registered trademark of Bluetooth SIG, Inc.

All trademarks are the property of their respective owners.

11.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

11.6 Glossary

TI Glossary

This glossary lists and explains terms, acronyms, and definitions.

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

www.ti.com 23-Jun-2021

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
PTLV9151QDBVRQ1	ACTIVE	SOT-23	DBV	5	3000	Non-RoHS & Non-Green	Call TI	Call TI	-40 to 125		Samples
PTLV9152QDRQ1	ACTIVE	SOIC	D	8	3000	Non-RoHS & Non-Green	Call TI	Call TI	-40 to 125		Samples
TLV9152QDGKRQ1	ACTIVE	VSSOP	DGK	8	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	27XT	Samples
TLV9154QPWRQ1	ACTIVE	TSSOP	PW	14	3000	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	-40 to 125	T9154Q	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and

PACKAGE OPTION ADDENDUM

www.ti.com 23-Jun-2021

continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF TLV9151-Q1, TLV9152-Q1, TLV9154-Q1:

• Catalog: TLV9151, TLV9152, TLV9154

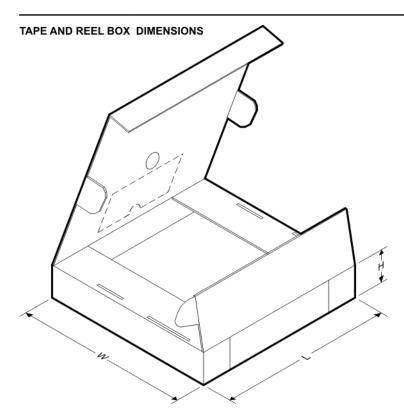
NOTE: Qualified Version Definitions:

• Catalog - TI's standard catalog product

www.ti.com 7-Jun-2021

TAPE AND REEL INFORMATION

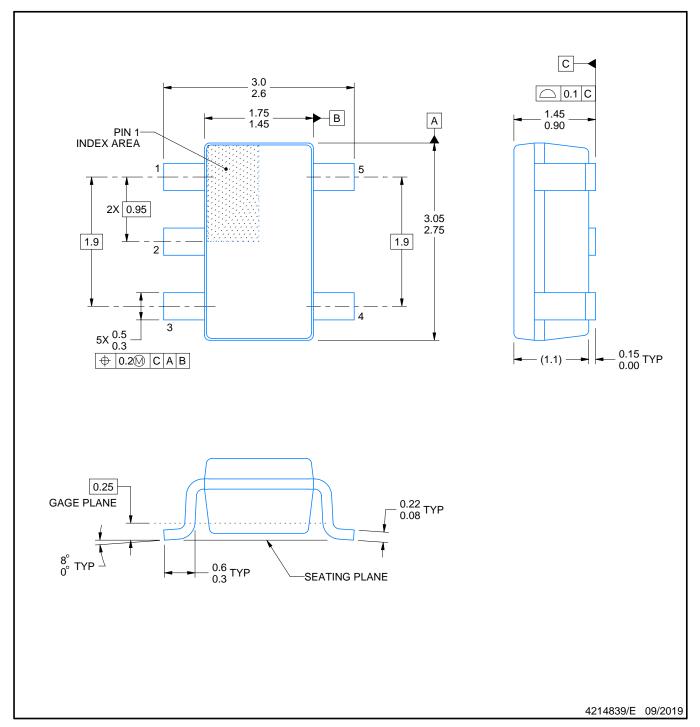
	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TLV9152QDGKRQ1	VSSOP	DGK	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
TLV9154QPWRQ1	TSSOP	PW	14	3000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

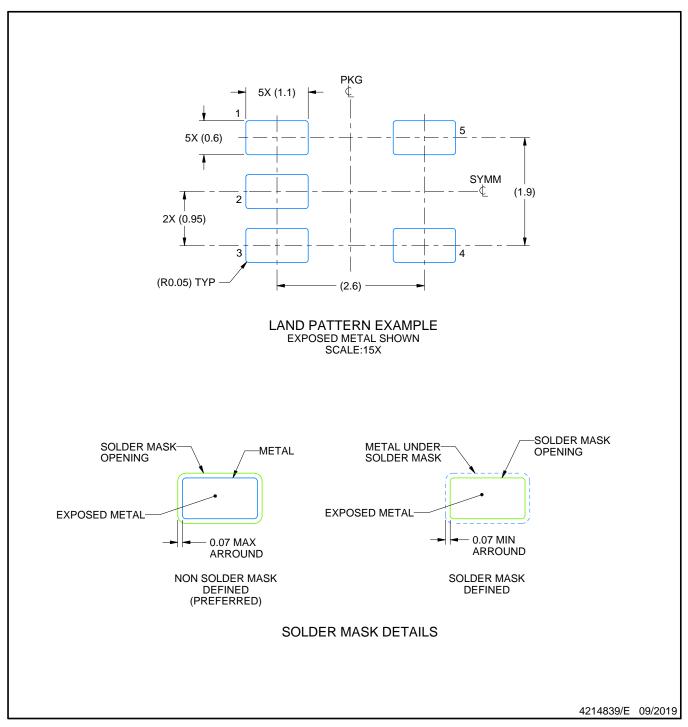
www.ti.com 7-Jun-2021



*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
TLV9152QDGKRQ1	VSSOP	DGK	8	2500	366.0	364.0	50.0	
TLV9154QPWRQ1	TSSOP	PW	14	3000	853.0	449.0	35.0	

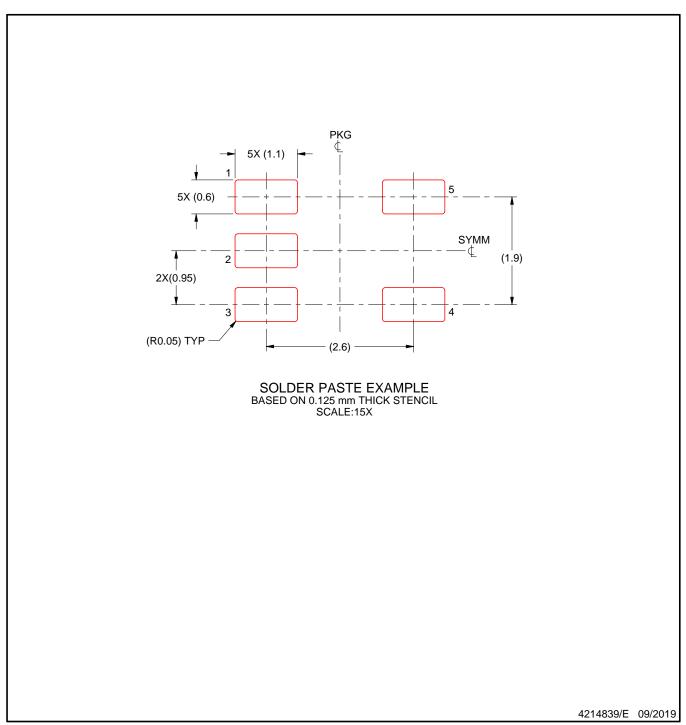
SMALL OUTLINE TRANSISTOR



- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 2. This drawing is subject to change without notice.
 3. Reference JEDEC MO-178.

- 4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.

SMALL OUTLINE TRANSISTOR

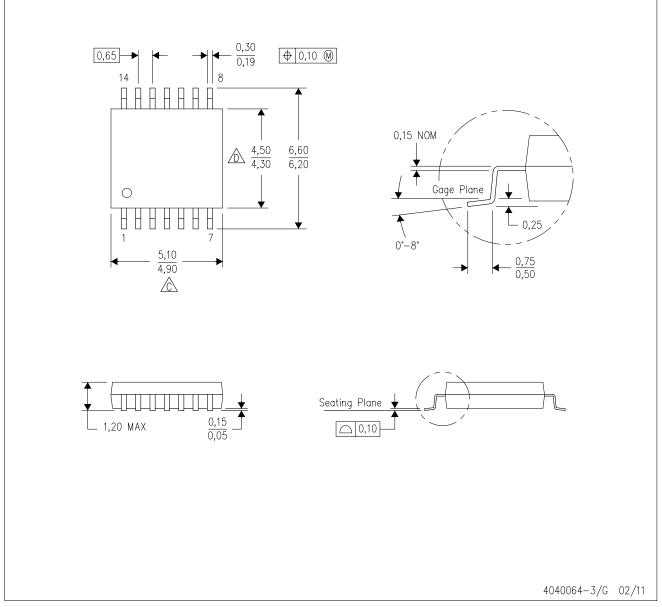

NOTES: (continued)

5. Publication IPC-7351 may have alternate designs.

6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

SMALL OUTLINE TRANSISTOR

NOTES: (continued)

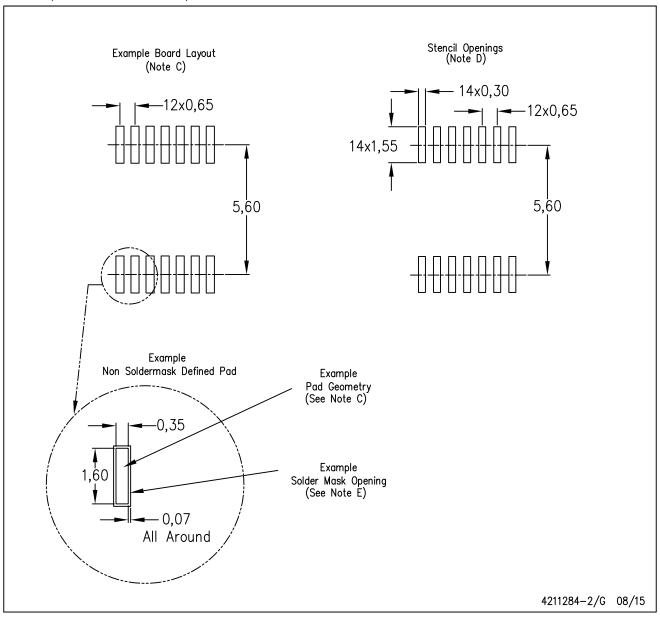


^{7.} Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

^{8.} Board assembly site may have different recommendations for stencil design.

PW (R-PDSO-G14)

PLASTIC SMALL OUTLINE



- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
- B. This drawing is subject to change without notice.
 - Sody length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
- E. Falls within JEDEC MO-153

PW (R-PDSO-G14)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

SMALL OUTLINE INTEGRATED CIRCUIT

- 1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15] per side.
- 4. This dimension does not include interlead flash.
- 5. Reference JEDEC registration MS-012, variation AA.

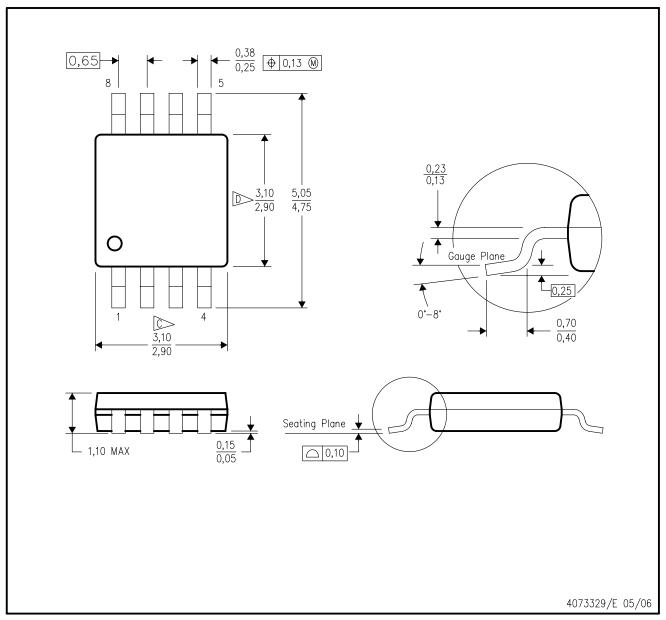
SMALL OUTLINE INTEGRATED CIRCUIT

NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.

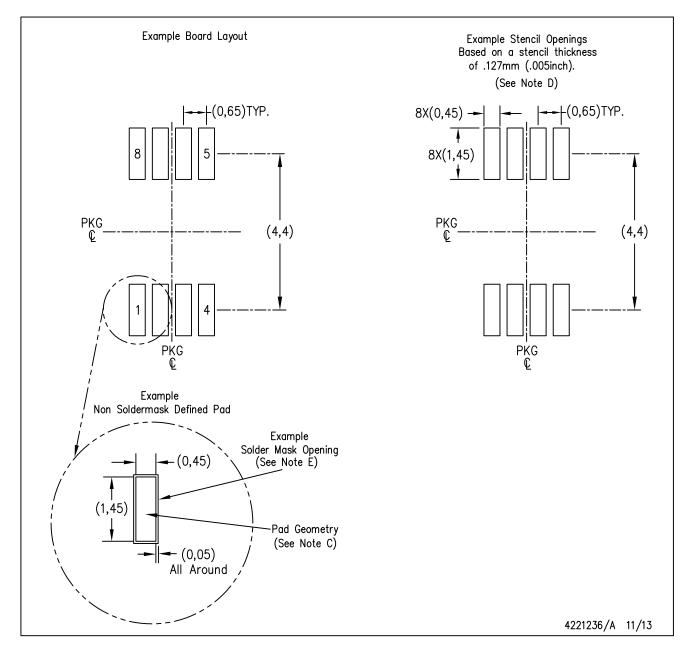
SMALL OUTLINE INTEGRATED CIRCUIT


NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.

DGK (S-PDSO-G8)

PLASTIC SMALL-OUTLINE PACKAGE



- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 per end.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.50 per side.
- E. Falls within JEDEC MO-187 variation AA, except interlead flash.

DGK (S-PDSO-G8)

PLASTIC SMALL OUTLINE PACKAGE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (https://www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2021, Texas Instruments Incorporated