

TUSB1210

ZHCSKM0I-NOVEMBER 2009-REVISED DECEMBER 2019

TUSB1210 独立 USB 收发器硅芯片

1 特性

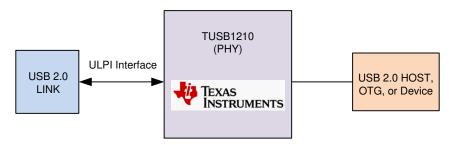
- USB2.0 PHY 收发器芯片,可通过 ULPI 接口连接 USB 控制器,完全符合:
 - 通用串行总线规范 2.0 版
 - USB 2.0 规范移动附录 1.3 版
 - UTMI+ 低引脚接口 (ULPI) 规范 1.1 版
 - ULPI 12 引脚 SDR 接口
- DP/DM 线路外部组件补偿(专利号 US7965100 B1)
- 具有连接主机、外设和 OTG 器件内核的接口; 针对便携式器件或具有内置 USB OTG 器件内核的系统 ASIC 进行了优化
- 完整的 USB OTG 物理前端,支持主机协商协议 (HNP) 和会话请求协议 (SRP)
- V_{BUS} 过压保护电路系统可在 –2V 至 20V 的电压范 围内保护 V_{BUS} 引脚
- 内部 5V 短路保护功能,可防止 DP、DM 和 ID 引 脚通过电缆短接至 V_{BUS} 引脚
- ULPI接口:
 - 针对无端接 50Ω 线路阻抗进行优化的 I/O 接口 (1.8V)
 - ULPI 时钟引脚 (60 MHz) 可同时支持输入和输出时钟配置
 - 符合 ULPI 标准的完全可编程寄存器集
- -40°C 至 85°C 的完整工业级工作温度范围
- 采用 32 引脚四方扁平无引线 [QFN (RHB)] 封装

2 应用

- 手机
- 便携式计算机
- 平板电脑器件
- 视频游戏机
- 台式计算机
- 便携式音乐播放器

3 说明

TUSB1210 是一款 USB2.0 收发器芯片,可通过 ULPI 接口连接到 USB 控制器。该器件支持所有 USB2.0 数据速率(高速 480Mbps、全速 12Mbps 以及低速 1.5Mbps),且兼容主机和外设模式。该器件还支持 UART 模式和传统的 ULPI 串行模式。TUSB1210 还支持 USB2.0 规范的 OTG(1.3 版)可选附录,包括 HNP 和 SRP。


发送器中的 DP/DM 外部组件补偿可对串联阻抗中的变化进行补偿,以匹配数据线路阻抗和接收器输入端阻抗,限制数据反射,从而改善眼图。

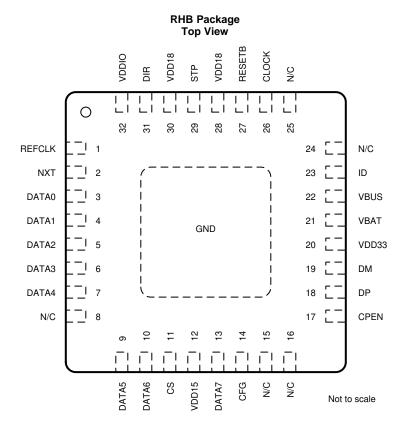
器件信息⁽¹⁾

器件型号	封装	封装尺寸 (标称值)
TUSB1210	超薄四方扁平无引线 (VQFN) (32)	5.00mm x 5.00mm

(1) 如需了解所有可用封装,请见数据表末尾的可订购产品附录。

图

_	\rightarrow
ш	
ш	N


4	that help	4	7.4 Device Functional Modes	10
1	特性			
2	应用		- 9 1	
3	说明	1 8	Application and Implementation	
4	修订历史记录	2	8.1 Application Information	
5	Pin Configuration and Functions	3	8.2 Typical Application	
6	Specifications		8.3 External Components	. 53
•	6.1 Absolute Maximum Ratings	^	Power Supply Recommendations	54
	6.2 ESD Ratings		9.1 TUSB1210 Power Supply	. 54
	6.3 Recommended Operating Conditions		9.2 Ground	. 54
	6.4 Thermal Information		9.3 Power Providers	. 54
	6.5 Analog I/O Electrical Characteristics		9.4 Power Modules	. 54
	3		9.5 Power Consumption	. 55
	6.6 Digital I/O Electrical Characteristics	40	Layout	
	6.8 PHY Electrical Characteristics	. 6	10.1 TUSB121x USB2.0 Product Family Board Layout Recommendations	t
	6.9 Pullup/Pulldown Resistors		10.2 Layout Guidelines	
	6.10 OTG Electrical Characteristics		10.3 Layout Example	
	6.11 OTG ID Electrical	11		
	6.12 Power Characteristics	10	11.1 器件支持	
	6.13 Switching Characteristics	10	11.2 文档支持	
	6.14 Timing Requirements	11		
	6.15 Typical Characteristics	13		
7	Detailed Description	14	11.4 支持资源	
	7.1 Overview	14	11.5 商标	
	7.2 Functional Block Diagram	14	11.6 静电放电警告	
	7.3 Feature Description	15	11.7 Glossary	
	·	12	机械、封装和可订购信息	59

4 修订历史记录

Changes from Revision H (June 2015) to Revision I	Page
• 将文档从数据手册格式更改成了 TI 数据表格式	1
• Changed RHB Package 32-Pin OFN To: RHB Package 32-Pin VQFN in Pin Configuration and Functions	3
Changed the HBM value From: ±2 V To: ±2000 V in the ESD Ratings	5
• Changed the t_{SC} , t_{SD} INPUT CLOCK value From: MAX = 3 ns To: MIN = 3 ns in the <i>Timing Requirements</i>	11
• Changed the t_{SC} , t_{SD} OUTPUT CLOCK value From: MAX = 6 ns To: MIN = 6 ns in the <i>Timing Requirements</i>	11
• 从机械、封装和可订购信息 部分中删除了"Via Channel"部分	59
Changes from Revision G (October 2014) to Revision H	Page
Move Storage Temperature From: ESD Ratings To: Absolute Maximum Ratings	5
Changed the Handling Ratings table To: ESD Ratings	5
Changes from Revision F (July 2013) to Revision G	Page

5 Pin Configuration and Functions

Pin Functions

PIN		A/D TYPE LEVEL		15/5	DESCRIPTION		
NAME	NO.	A/D	TYPE	LEVEL	DESCRIPTION		
CFG	14	D	I	V _{DDIO}	REFCLK clock frequency configuration pin. Two frequencies are supported: 19.2 MHz when 0, or 26 MHz when 1.		
					ULPI 60 MHz clock on which ULPI data is synchronized.		
					Two modes are possible:		
CLOCK	26	D	0	V_{DDIO}	Input Mode: CLOCK defaults as an input.		
					Output Mode: When an input clock is detected on REFCLK pin (after 4 rising edges) then CLOCK will change to an output.		
CPEN	17	D	0	V _{DD33}	CMOS active-high digital output control of external 5V VBUS supply		
CS	11	D	I	V _{DDIO}	$V_{DDIO} \qquad \text{Active-high chip select pin. When low the IC is in power down and ULPI bus is stated. When high normal operation. Tie to V_{DDIO} if unused.}$		
DATA0	3	D	I/O	V_{DDIO}	ULPI DATA input/output signal 0 synchronized to CLOCK		
DATA1	4	D	I/O	V_{DDIO}	ULPI DATA input/output signal 1 synchronized to CLOCK		
DATA2	5	D	I/O	V_{DDIO}	ULPI DATA input/output signal 2 synchronized to CLOCK		
DATA3	6	D	I/O	V_{DDIO}	ULPI DATA input/output signal 3 synchronized to CLOCK		
DATA4	7	D	I/O	V_{DDIO}	ULPI DATA input/output signal 4 synchronized to CLOCK		
DATA5	9	D	I/O	V_{DDIO}	ULPI DATA input/output signal 5 synchronized to CLOCK		
DATA6	10	D	I/O	V_{DDIO}	ULPI DATA input/output signal 6 synchronized to CLOCK		
DATA7	13	D	I/O	V_{DDIO}	ULPI DATA input/output signal 7 synchronized to CLOCK		
DIR	31	D	0	V_{DDIO}	ULPI DIR output signal		
DM	19	Α	I/O	V _{DD33}	DM pin of the USB connector		
DP	18	Α	I/O	V _{DD33}	DP pin of the USB connector		
ID	23	Α	I/O	V _{DD33}	Identification (ID) pin of the USB connector		
N/C	8, 15,16, 24, 25	-	_	_	No connect		

Pin Functions (continued)

PIN		4/5	TVDE	LEVEL	DEGGENETION		
NAME	NO.	A/D	TYPE	LEVEL	DESCRIPTION		
NXT	2	D	0	V_{DDIO}	ULPI NXT output signal		
REFCLK	1	А	I	3.3 V	V _{DD33} Reference clock input (square-wave only). Tie to GND when pin 26 (CLOCK) is required to be Input mode. Connect to square-wave reference clock of amplitude in the range of 3 V to 3.6 V when Pin 26 (CLOCK) is required to be Output mode. See pin 14 (CFG) description for REFCLK input frequency settings.		
RESETB	27	D	I	V _{DDIO}	When low, all digital logic (except 32 kHz logic required for power up sequencing) including registers are reset to their default values, and ULPI bus is tri-stated. When high, normal USB operation.		
STP	29	D	I	V_{DDIO}	ULPI STP input signal		
V_{BAT}	21	Α	power	V_{BAT}	Input supply voltage or battery source		
V _{BUS}	22	Α	power	V _{BUS}	V _{BUS} pin of the USB connector		
V _{DD15}	12	Α	power		1.5-V internal LDO output. Connect to external filtering capacitor.		
V _{DD18}	28, 30	Α	power	V _{DD18}	External 1.8-V supply input. Connect to external filtering capacitor.		
V_{DD33}	20	Α	power	V _{DD33}	3.3-V internal LDO output. Connect to external filtering capacitor.		
V _{DDIO}	32	Α	I	V _{DDIO}	External 1.8V supply input for digital I/Os. Connect to external filtering capacitor.		
GND	Thermal Pad	Α	power		Reference Ground		

6 Specifications

6.1 Absolute Maximum Ratings

	stating free air temperature range (air	,	MIN	MAX	UNIT
V _{CC}	Main battery supply voltage (2)		0	5	V
	Voltage on any input ⁽³⁾	Where supply represents the voltage applied to the power supply pin associated with the input	-0.3	1 × V _{CC} +0.3	V
	V _{BUS} input		-2	20	V
	ID, DP, DM inputs	Stress condition guaranteed 24h	-0.3	5.25	V
V_{DDIO}	IO supply voltage	Continuous		1.98	V
T _A	Ambient temperature range		-40	85	°C
+	Analis at to an austrum una sia	Absolute maximum rating	-40	150	°C
T_{J}	Ambient temperature range	For parametric compliance	-40	125	30
	Ambient temperature for parametric compliance	With max 125°C as junction temperature	-40	85	°C
	DP, DM, ID high voltage short circuit	DP, DM or ID pins short circuited to V _{BUS} supply, in any mode of TUSB1210 operation, continuously for 24 hours		5.25	V
	DP, DM, ID low voltage short circuit	DP, DM or ID pins short circuited to GND in any mode of TUSB1210 operation, continuously for 24 hours	0		V
T _{stg}	Storage temperature range		– 55	125	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

⁽²⁾ The product will have negligible reliability impact if voltage spikes of 5.5 V occur for a total (cumulative over lifetime) duration of 5 milliseconds.

⁽³⁾ Except V_{BAT} input, V_{BUS} , ID, DP, and DM pads

6.2 ESD Ratings

			VALUE	UNIT
	Floatrootatic discharge (FCD)	Human body model (HBM), per ANSI/ESDA/JEDEC JS001 (1)	±2000	
V _(ESD)	Electrostatic discharge (ESD) performance:	Charged device model (CDM), per JESD22-C101 or ANSI/ESDA/JEDEC JS-002 ⁽²⁾	±500	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

			MIN	NOM	MAX	UNIT
V_{BAT}	Battery supply voltage		2.7	3.6	4.8	V
V_{BAT}	Battery supply voltage for USB 2.0 compliancy	When V _{DD33} is supplied internally	3.15			\/
CERT	(USB 2.0 certification)	When V _{DD33} is shorted to V _{BAT} externally	3.05			v
V_{DDIO}	Digital IO pin supply		1.71		1.98	V
T _A	Ambient temperature range		-40		85	°C

6.4 Thermal Information

	THERMAL METRIC ⁽¹⁾	RHB (16 Pins) 34.72 37.3 10.3	LINUT
	THERMAL METRIC**	(16 Pins)	UNIT
$R_{\theta JA}$	Junction-to-ambient thermal resistance	34.72	°C/W
$R_{\theta JC(top)}$	Junction-to-case(top) thermal resistance	37.3	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	10.3	°C/W
ΨЈТ	Junction-to-top characterization parameter	0.5	°C/W
ΨЈВ	Junction-to-board characterization parameter	10.5	°C/W
$R_{\theta JC(bottom)}$	Junction-to-case(bottom) thermal resistance	3.6	°C/W

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

6.5 Analog I/O Electrical Characteristics

over operating free-air temperature range (unless otherwise noted)

PARAMETER		CONDITIONS	MIN	TYP	MAX	UNIT
CPEN C	Dutput Pin					
V_{OL}	CPEN low-level output voltage	I _{OL} = 3 mA			0.3	V
V_{OH}	CPEN high-level output voltage	$I_{OH} = -3 \text{ mA}$	$V_{DD33} - 0.3$			V

6.6 Digital I/O Electrical Characteristics

PARAMETER		TEST CONDITIONS	MIN	TYP MAX	UNIT		
CLOCK							
V _{OL}	Low-level output voltage	Fraguency 60 MHz Lood 10 pF		0.45	V		
V _{OH}	High-level output voltage	Frequency = 60 MHz, Load = 10 pF	V _{DDIO} - 0.45		V		
STP, DIR, NXT, DATA0 to DATA7							
V _{OL}	Low-level output voltage	Frequency 20 MHz Lood 10 pF		0.45	V		
V _{OH}	High-level output voltage	Frequency = 30 MHz, Load = 10 pF	V _{DDIO} - 0.45		V		

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.7 Digital IO Pins (Non-ULPI)

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
CS, CFG,	RESETB Input Pins					
V _{IL}	Maximum low-level input voltage				0.35 x V _{DDIO}	V
V _{IH}	Minimum high-level input voltage		0.65 x V _{DDIO}			V
RESETB I	Input Pin Timing Spec					
t _{w(POR)}	Internal power-on reset pulse width		0.2			μS
t _{w(RESET)}	External RESETB pulse width	Applied to external RESETB pin when CLOCK is toggling.	8			CLOCK cycles

6.8 PHY Electrical Characteristics

	PARAMETER		COMMENTS	MIN	TYP MAX	UNIT
LS/FS Single	e-Ended Receivers					
	USB single-ended receivers					
SK _{WVP_VM}	Skew between VP and VM		Driver outputs unloaded	-2	0 2	ns
V _{SE_HYS}	Single-ended hysteresis			50		mV
V _{IH}	High (driven)			2		V
V _{IL}	Low				0.8	V
V_{TH}	Switching threshold			0.8	2	V
LS/FS Differ	ential Receiver					
V_{DI}	Differential input sensitivity		Ref. USB2.0	200		mV
V_{CM}	Differential Common mode range		Ref. USB2.0	0.8	2.5	V
LS Transmit	ter					
V_{OL}	Low		Ref. USB2.0	0	300	mV
V_{OH}	High (driven)		Ref. USB2.0	2.8	3.6	V
V _{CRS}	Output signal crossover voltage		Ref. USB2.0, covered by eye diagram	1.3	2	V
t _r	Rise time		Ref. USB2.0, covered by eye diagram	75	300	ns
t _f	Fall time			75	300	ns
t _{FRFM}	Differential rise and fall time matching			80%	125%	
t _{FDRATE}	Low-speed data rate		Ref. USB2.0, covered by eye diagram	1.4775	1.5225	Mb/s
t _{DJ1}	Source jitter total (including frequency	To next transition	Ref. USB2.0, covered by eye	-25	25	
t _{DJ2}	tolerance)	For paired transitions	diagram	-10	10	ns
t _{FEOPT}	Source SE0 interval of EOP	•	Ref. USB2.0, covered by eye diagram	1.25	1.5	μs
	Downstream eye diagram		Ref. USB2.0, covered by eye diagram			
V _{CM}	Differential common mode range		Ref. USB2.0	0.8	2.5	V
FS Transmit	ter					
V _{OL}	Low		Ref. USB2.0	0	300	mV
V _{OH}	High (driven)		Ref. USB2.0	2.8	3.6	V
VCRS	Output signal crossover voltage		Ref. USB2.0, covered by eye diagram	1.3	2	V
t _{FR}	Rise time		Ref. USB2.0	4	20	ns
t _{FF}	Fall time		Ref. USB2.0	4	20	ns
t _{FRFM}	Differential rise and fall time matching		Ref. USB2.0, covered by eye diagram	90%	111.11%	
Z _{DRV}	Driver output resistance		Ref. USB2.0	28	44	Ω
TFDRATE	Full-speed data rate		Ref. USB2.0, covered by eye diagram	11.97	12.03	Mb/s

PHY Electrical Characteristics (continued)

	PARAMETER		COMMENTS	MIN	TYP MAX	UNIT
t _{DJ1}		To next transition	D (110D0 0 11	-2	2	
t _{DJ2}	Source jitter total (including frequency tolerance)	For paired transitions	Ref. USB2.0, covered by eye diagram	-1	1	ns
TFEOPT	Source SE0 interval of EOP		Ref. USB2.0, covered by eye diagram	160	175	ns
	Downstream eye diagram		Ref. USB2.0, covered by eye diagram			
	Upstream eye diagram					
HS Differentia	al Receiver					
VHSSQ	High-speed squelch detection threshold amplitude)	High-speed squelch detection threshold (differential signal amplitude)		100	150	mV
VHSDSC	ligh-speed disconnect detection threshold (differential signal mplitude)		Ref. USB2.0	525	625	mV
	High-speed differential input signaling le	High-speed differential input signaling levels				mV
VHSCM	High-speed data signaling common mo (guidelines for receiver)	de voltage range	Ref. USB2.0	-50	500	mV
	Receiver jitter tolerance		Ref. USB2.0, specified by eye pattern templates		150	ps
HS Transmitte	er					
V_{HSOI}	High-speed idle level		Ref. USB2.0	-10	10	mV
V _{HSOH}	High-speed data signaling high		Ref. USB2.0	360	440	mV
V_{HSOL}	High-speed data signaling low		Ref. USB2.0	-10	10	mV
VCHIRPJ	Chirp J level (differential voltage)		Ref. USB2.0	700	1100	mV
VCHIRPK	Chirp K level (differential voltage)		Ref. USB2.0	-900	-500	mV
t _r	Rise Time (10% - 90%)		Ref. USB2.0, covered by eye diagram	500		ps
t _f	Fall time (10% - 90%)		Ref. USB2.0, covered by eye diagram	500		ps
ZHSDRV	Driver output resistance (which also se termination)	rves as high-speed	Ref. USB2.0	40.5	49.5	Ω
THSDRAT	High-speed data range		Ref. USB2.0, covered by eye diagram	479.76	480.24	Mb/s
	Data source jitter		Ref. USB2.0, covered by eye diagram			
	Downstream eye diagram		Ref. USB2.0, covered by eye diagram			
	Upstream eye diagram		Ref. USB2.0, covered by eye diagram			
CEA-2011/UA	RT Transceiver					
	UART Transmitter CEA-2011					
t _{PH_UART_EDGE}	Phone UART edge rates		DP_PULLDOWN asserted		1	Ms
V _{OH_SER}	Serial interface output high		ISOURCE = 4 mA	2.4	3.3 3.6	V
V _{OL_SER}	Serial interface output low		ISINK = -4 mA	0	0.1 0.4	V
	UART Receiver CEA-2011					
VI _{H_SER}	Serial interface input high		DP_PULLDOWN asserted	2		V
V _{IL_SER}	Serial interface input low		DP_PULLDOWN asserted		8.0	V
V _{TH}	Switching threshold			0.8	2	V

6.9 Pullup/Pulldown Resistors

	PARAMETER	COMMENTS	MIN	TYP	MAX	UNIT
RPUI	Bus pullup resistor on upstream port (idle bus)	Bus idle	0.9	1.1	1.575	kΩ
RPUA	Bus pullup resistor on upstream port (receiving)	Bus driven/driver's outputs unloaded	1.425	2.2	3.09	
VIHZ	High (floating)	Pullups/pulldowns on both DP and DM lines	2.7		3.6	V
VPH_DP_UP	Phone D+ pullup voltage	Driver's outputs unloaded	3	3.3	3.6	V
	Pulldown resistors					
RPH_DP_DWN	Phone D+/- pulldown	Driver's outputs unloaded	14.25	18	24.8	kΩ
RPH_DM_DWN						
V _{IHZ}	High (floating)	Pullups/pulldowns on both DP and DM lines	2.7		3.6	V
	D+/- Data line					
C _{INUB}	Upstream facing port	[1.0]		22	75	pF
V _{OTG_DATA_LKG}	On-the-go device leakage	[2]			0.342	V
Z _{INP}	Input impedance exclusive of pullup/pulldown	Driver's outputs unloaded	300			kΩ

6.10 OTG Electrical Characteristics

over operating free-air temperature range (unless otherwise noted)

	PARAMETER	COMMENTS		MIN	TYP	MAX	UNIT	
OTG V _{BUS} Electrical								
V _{BUS} Comparator	s		•			•		
VA_SESS_VLD	A-device session valid			0.8	1.4	2.0	V	
VA_VBUS_VLD	A-device V _{BUS} valid			4.4	4.5	4.625	V	
VB_SESS_END	B-device session end			0.2	0.5	8.0	V	
VB_SESS_VLD	B-device session valid			2.1	2.4	2.7	V	
V _{BUS} Line	,	•	•					
RA_BUS_IN	A-device V _{BUS} input impedance to ground	SRP (V_{BUS} pulsing) cap V_{BUS}	able A-device not driving	40	70	100	kΩ	
RB_SRP_DWN	B-device V _{BUS} SRP pulldown	5.25 V / 8 mA, Pullup voltage = 3 V		0.656	10		kΩ	
RB_SRP_UP	B-device V _{BUS} SRP pullup	(5.25 V - 3 V) / 8 mA, Pullup voltage = 3 V		0.281	1	2	kΩ	
	B-device V _{BUS} SRP rise time		$RV_{BUS} = 0 \Omega$ and R1KSERIES = '0'			31.4	l	
		0 to 2.1 V with < 13 μF load	RV_{BUS} = 1000 Ω ±10% and R1KSERIES = '1'			57.8		
^t RISE_SRP_UP_MAX	maximum for OTG-A communication		RV_{BUS} = 1200 Ω ±10% and R1KSERIES = '1'			64	ms	
			RV_{BUS} = 1800 Ω ±10% and R1KSERIES = '1'			85.4	ı	
			$RV_{BUS} = 0 \Omega$ and R1KSERIES = '0'	46.2			l	
^t rise_srp_up_min	B-device V _{BUS} SRP rise time	0.8 to 2 V with > 97 μF	RV_{BUS} = 1000 Ω ±10% and R1KSERIES = '1'	96				
	minimum for standard host connection	load	RV_{BUS} = 1200 Ω ±10% and R1KSERIES = '1'	100			ms	
			RV_{BUS} = 1800 Ω ±10% and R1KSERIES = '1'	100			ı	

6.11 OTG ID Electrical

	PARAMETER	COMMENTS	MIN	TYP	MAX	UNIT
ID Comparators — ID External Resistors Specifications						
R _{ID_GND}	ID ground comparator	ID_GND interrupt	12	20	28	kΩ
R _{ID_FLOAT}	ID Float comparator	ID_FLOAT interrupt	200		500	$k\Omega$
	ID Line					
R _{PH_ID_UP}	Phone ID pullup to VPH_ID_UP	ID unloaded (V _{RUSB})	70	90	286	$k\Omega$
VP _{H_ID_UP}	Phone ID pullup voltage	Connected to V _{RUSB}	2.5		3.2	V
	ID line maximum voltage				5.25	V

6.12 Power Characteristics

over operating free-air temperature range (unless otherwise noted)

	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
V _{DD33} Inter	nal LDO Regulator Characte	ristics					
V _{INVDD33}	Input voltage	V _{BAT} USB		V _{VDD33} typ + 0.2	3.6	4.5	V
			VUSB3V3_VSEL = '000	2.4	2.5	2.6	
			VUSB3V3_VSEL = '001	2.65	2.75	2.85	
			VUSB3V3_VSEL = '010	2.9	3.0	3.1	
V		ON made	VUSB3V3_VSEL = '011 (default)	3.0	3.1	3.2	V
V _{VDD33} Output voltage	ON mode,	VUSB3V3_VSEL = '100	3.1	3.2	3.3	V	
			VUSB3V3_VSEL = '101	3.2	3.3	3.4	
			VUSB3V3_VSEL = '110	3.3	3.4	3.5	
			VUSB3V3_VSEL = '111	3.4	3.5	3.6	
	Date desident annual	V LICE	Active mode			15	^
I _{VDD33}	Rated output current	V _{BAT} USB	Suspend/reset mode			1	mA
V _{DD15} Inter	nal LDO Regulator Characte	ristics					
V _{IN VDD15}	Input voltage		On mode, V _{IN VDD15} = V _{BAT}	2.7	3.6	4.5	V
V _{VDD15}	Output voltage		V _{INVDD15 min} – V _{INVDD15 max}	1.45	1.56	1.65	V
I _{VDD15}	Rated output current		On mode			30	mA

6.13 Switching Characteristics

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Electrica	al Characteristics: Clock Input				'	
	Clock input duty cycle		40		60%	
f _{CLK}	Clock nominal frequency			60		MHz
	Clock input rise/fall time	In % of clock period t _{CLK} (= 1/f _{CLK})			10%	
	Clock input frequency accuracy				250	ppm
	Clock input integrated jitter				600	ps rms
Electrica	al Characteristics: REFCLK					
	REFCLK input duty cycle		40		60%	
,	DEFOLK and all formation	When CFG pin is tied to GND		19.2		N 41 1-
f _{REFCLK}	REFCLK nominal frequency	When CFG pin is tied to V _{DDIO}		26		MHz
	REFCLK input rise/fall time	In % of clock period t _{REFCLK} (= 1/f _{REFCLK})			20%	
	REFCLK input frequency accuracy				250	ppm
	REFCLK input integrated jitter				600	ps rms
	REFCLK HIZ Leakage current				3	^
	REFCLK HIZ Leakage current		-3			μΑ
Digital I	O Electrical Characteristics: CLOCK				<u>.</u>	
t _r	Rise time	Frequency = 60 MHz, Load = 10 pF			1	ns
t _f	Fall time	Frequency = 30 MHz, Load = 10 pF			1	ns
Digital I	O Electrical Characteristics: STP, DII	R, NXT, DATA0 to DATA7				
t _r	Rise time	Francisco 20 MHz Load 40 75			1	ns
t _f	Fall time	Frequency = 30 MHz, Load = 10 pF			1	ns

6.14 Timing Requirements

	PARAMETER		СК	OUTPUT CLOCK		UNIT
	PARAMETER	MIN	MAX	MIN	MAX	UNII
ULPI Interface	Timing	•				
t _{SC} , t _{SD}	Set-up time (control in, 8-bit data in)	3		6		ns
t _{SC} , t _{HD}	Hold time (control in, 8-bit data in)	1.5		0		ns
t _{DC} , t _{DD}	Output delay (control out, 8-bit data out)		6		9	ns
USB UART Int	erface Timing					
t _{PH_DP_CON}	Phone D+ connect time	100				ms
t _{PH_DISC_DET}	Phone D+ disconnect time	150				ms
f _{UART_DFLT}	Default UART signaling rate (typical rate)		9600			bps

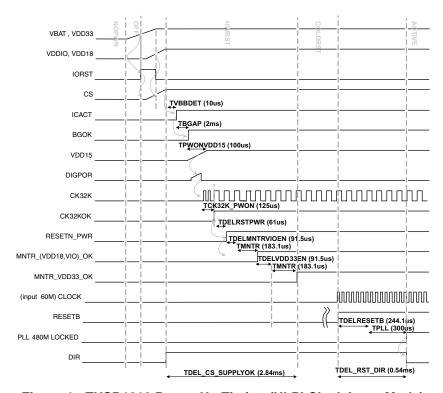


Figure 1. TUSB1210 Power-Up Timing (ULPI Clock Input Mode)

Table 1. Timers and Debounce

	PARAMETER	COMMENTS	MIN	TYP	MAX	UNIT
t _{DEL_CS_SUPPLYOK}	Chip-select-to-supplies OK delay			2.84	4.10	ms
t _{DEL_RST_DIR}	RESETB to PHY PLL locked and DIR falling- edge delay			0.54	0.647	ms
t _{VBBDET}	V _{BAT} detection delay			10		μs
t _{BGAP}	Bandgap power-on delay			2		ms
t _{PWONVDD15}	V _{DD15} power-on delay			100		μs
t _{PWONCK32K}	32-KHz RC-OSC power-on delay			125		μs
t _{DELRSTPWR}	Power control reset delay			61		μs
t _{DELMNTRVIOEN}	Monitor enable delay			91.5		μs
t _{MNTR}	Supply monitoring debounce			183.1		μs
t _{DELVDD33EN}	V _{DD33} LDO enable delay			93.75		μs
t _{DELRESETB}	RESETB internal delay			244.1		μs
t _{PLL}	PLL lock time			300		μs

6.14.1 Timing Parameter Definitions

The timing parameter symbols used in the timing requirement and switching characteristic tables are created in accordance with JEDEC Standard 100. To shorten the symbols, some pin names and other related terminologies have been abbreviated as shown in Table 2.

Table 2. Timing Parameter Definitions

	LOWERCASE SUBSCRIPTS
SYMBOL	PARAMETER
С	Cycle time (period)
D	Delay time
Dis	Disable time
En	Enable time
Н	Hold time
Su	Setup time
START	Start bit
Т	Transition time
V	Valid time
W	Pulse duration (width)
X	Unknown, changing, or don't care level
Н	High
L	Low
V	Valid
IV	Invalid
AE	Active edge
FE	First edge
LE	Last edge
Z	High impedance

6.14.2 Interface Target Frequencies

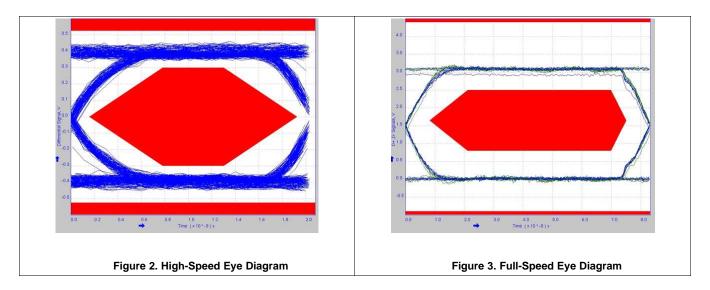

Table 3 assumes testing over the recommended operating conditions.

Table 3. TUSB1210 Interface Target Frequencies

IO INTERFACE	INTERFACE DESIGNATION		TARGET FREQUENCY 1.5 V
		High speed	480 Mbits/s
USB	Universal serial bus	Full speed	12 Mbits/s
		Low speed	1.5 Mbits/s

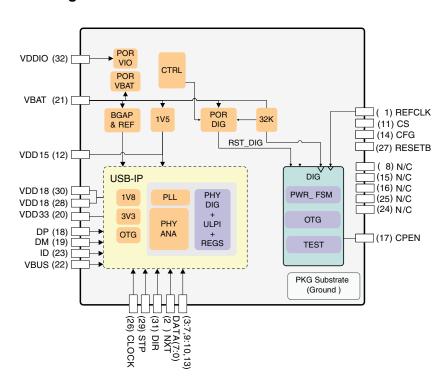
6.15 Typical Characteristics

7 Detailed Description

7.1 Overview

The TUSB1210 is a USB2.0 transceiver chip, designed to interface with a USB controller via a ULPI interface. It supports all USB2.0 data rates High-Speed, Full-Speed, and Low-Speed. Compliant to both Host and Peripheral (OTG) modes. It additionally supports a UART mode and legacy ULPI serial modes. TUSB1210 Integrates a 3.3-V LDO, which makes it flexible to work with either battery operated systems or pure 3.3 V supplied systems. Also, it has an integrated PLL Supporting 2 Clock Frequencies 19.2 MHz/26 MHz. The ULPI clock pin (60 MHz) supports both input and output clock configurations. TUSB1210 has low power consumption, optimized for portable devices, and complete USB OTG Physical Front-End that supports Host Negotiation Protocol (HNP) and Session Request Protocol (SRP).

TUSB1210 is optimized to be interfaced through a 12-pin SDR UTMI Low Pin Interface (ULPI), supporting both input clock and output clock modes, with 1.8 V interface supply voltage.


TUSB1210 integrates a 3.3 V LDO, which makes it flexible to work with either battery operated systems or pure 3.3 V supplied systems. Both the main supply and the 3.3 V power domain can be supplied through an external switched-mode converter for optimized power efficiency.

TUSB1210 includes a POR circuit to detect supply presence on V_{BAT} and V_{DDIO} pins. TUSB1210 can be disabled or configured in low power mode for energy saving.

TUSB1210 is protected against accidental shorts to 5 V or ground on its exposed interface (DP/DM/ID). It is also protected against up to 20 V surges on V_{BUS}.

TUSB1210 integrates a high-performance low-jitter 480 MHz PLL and supports two clock configurations. Depending on the required link configuration, TUSB1210 supports both ULPI input and output clock mode: input clock mode, in which case a square-wave 60 MHz clock is provided to TUSB1210-Q1 at the ULPI interface CLOCK pin; and output clock mode in which case TUSB1210 can accept a square-wave reference clock at REFCLK of either 19.2 MHz, 26 MHz. Frequency is indicated to TUSB1210 via the configuration pin CFG. This can be useful if a reference clock is already available in the system.

7.2 Functional Block Diagram

7.3 Feature Description

7.3.1 Processor Subsystem

7.3.1.1 Clock Specifications

7.3.1.1.1 USB PLL Reference Clock

The USB PLL block generates the clocks used to synchronize:

- the ULPI interface (60 MHz clock)
- the USB interface (depending on the USB data rate, 480 Mbps, 12 Mbps or 1.5 Mbps)

TUSB1210 requires an external reference clock which is used as an input to the 480 MHz USB PLL block. Depending on the clock configuration, this reference clock can be provided either at REFCLK pin or at CLOCK pin. By default CLK pin is configured as an input.

Two clock configurations are possible:

- Input clock configuration (see ULPI Input Clock Configuration)
- Output clock configuration (see ULPI Output Clock Configuration)

7.3.1.1.2 ULPI Input Clock Configuration

In this mode, REFCLK must be externally tied to GND. CLOCK remains configured as an input.

When the ULPI interface is used in input clock configuration, that is, the 60 MHz ULPI clock is provided to TUSB1210 on Clock pin, then this is used as the reference clock for the 480 MHz USB PLL block. See *Switching Characteristics*.

7.3.1.1.3 ULPI Output Clock Configuration

In this mode, a reference clock must be externally provided on REFCLK pin When an input clock is detected on REFCLK pin then CLK is automatically changed to an output, i.e., 60 MHz ULPI clock is output by TUSB1210 on CLK pin.

Two reference clock input frequencies are supported. REFCLK input frequency is communicated to TUSB1210 via a configuration pin, CFG, see f_{REFCLK} in Table 10 for frequency correspondence. TUSB1210 supports square-wave reference clock input only. Reference clock input must be square-wave of amplitude in the range 3 V to 3.6 V. See *Switching Characteristics*.

7.3.1.1.4 Clock 32 kHz

An internal clock generator running at 32 kHz has been implemented to provide a low-speed, low-power clock to the system See *Clock 32 kHz*

7.3.1.1.5 Reset

All logic is reset if CS = 0 or V_{BAT} are not present.

All logic (except 32 kHz logic) is reset if V_{DDIO} is not present.

PHY logic is reset when any supplies are not present (V_{DDIO} , V_{DD15} , V_{DD18} , V_{DD33}) or if RESETB pin is low.

TUSB1210 may be reset manually by toggling the RESETB pin to GND for at lease 200 ns.

If manual reset via RESETB is not required then RESETB pin may be tied to V_{DDIO} permanently.

7.3.1.2 USB Transceiver

The TUSB1210 device includes a universal serial bus (USB) on-the-go (OTG) transceiver that supports USB 480 Mb/s high-speed (HS), 12 Mb/s full-speed (FS), and USB 1.5 Mb/s low-speed (LS) through a 12-pin UTMI+ low pin interface (ULPI).

Feature Description (continued)

NOTE

LS device mode is not allowed by a USB2.0 HS capable PHY, therefore it is not supported by TUSB1210. This is stated in USB2.0 standard Chapter 7, page 119, second paragraph: "A high-speed capable upstream facing transceiver must not support low-speed signaling mode.." There is also some related commentary in Chapter 7.1.2.3.

7.3.1.2.1 PHY Electrical Characteristics

The PHY is the physical signaling layer of the USB 2.0. It essentially contains all the drivers and receivers required for physical data and protocol signaling on the DP and DM lines.

The PHY interfaces to the USB controller through a standard 12-pin digital interface called UTMI+ low pin interface (ULPI).

The transmitters and receivers inside the PHY are classified into two main classes.

- The full-speed (FS) and low-speed (LS) transceivers. These are the legacy USB1.x transceivers.
- The HS (HS) transceivers

In order to bias the transistors and run the logic, the PHY also contains reference generation circuitry which consists of:

- A DPLL which does a frequency multiplication to achieve the 480-MHz low-jitter lock necessary for USB and also the clock required for the switched capacitor resistance block.
- A switched capacitor resistance block which is used to replicate an external resistor on chip.

Built-in pullup and pulldown resistors are used as part of the protocol signaling.

Apart from this, the PHY also contains circuitry which protects it from accidental 5-V short on the DP and DM lines.

7.3.1.2.1.1 LS/FS Single-Ended Receivers

In addition to the differential receiver, there is a single-ended receiver (SE-, SE+) for each of the two data lines D+/-. The main purpose of the single-ended receivers is to qualify the D+ and D- signals in the full-speed/low-speed modes of operation. See *PHY Electrical Characteristics*.

7.3.1.2.1.2 LS/FS Differential Receiver

A differential input receiver (Rx) retrieves the LS/FS differential data signaling. The differential voltage on the line is converted into digital data by a differential comparator on DP/DM. This data is then sent to a clock and data recovery circuit which recovers the clock from the data. An additional serial mode exists in which the differential data is directly output on the RXRCV pin. See *Switching Characteristics*.

7.3.1.2.1.3 LS/FS Transmitter

The USB transceiver (Tx) uses a differential output driver to drive the USB data signal D+/- onto the USB cable. The driver's outputs support 3-state operation to achieve bidirectional half-duplex transactions. See *Switching Characteristics*.

7.3.1.2.1.4 HS Differential Receiver

The HS receiver consists of the following blocks:

A differential input comparator to receive the serial data

- A squelch detector to qualify the received data
- An oversampler-based clock data recovery scheme followed by a NRZI decoder, bit unstuffing, and serial-to-parallel converter to generate the ULPI DATAOUT
 See Switching Characteristics.

Feature Description (continued)

7.3.1.2.1.5 HS Differential Transmitter

The HS transmitter is always operated via the ULPI parallel interface. The parallel data on the interface is serialized, bit stuffed, NRZI encoded, and transmitted as a dc output current on DP or DM depending on the data. Each line has an effective $22.5-\Omega$ load to ground, which generates the voltage levels for signaling.

A disconnect detector is also part of the HS transmitter. A disconnect on the far end of the cable causes the impedance seen by the transmitter to double thereby doubling the differential amplitude seen on the DP/DM lines of *Switching Characteristics*.

7.3.1.2.1.6 UART Transceiver

In this mode, the ULPI data bus is redefined as a 2-pin UART interface, which exchanges data through a direct access to the FS/LS analog transmitter and receiver. See *Switching Characteristics*.

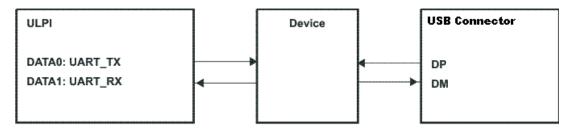


Figure 4. USB UART Data Flow

7.3.1.2.2 OTG Characteristics

The on-the-go (OTG) block integrates three main functions:

- The USB plug detection function on V_{BUS} and ID
- · The ID resistor detection
- The V_{BUS} level detection

See OTG Electrical Characteristics.

7.4 Device Functional Modes

7.4.1 TUSB1210 Modes vs ULPI Pin Status

Table 4, Table 5, and Table 6 show the status of each of the 12 ULPI pins including input/output direction and whether output pins are driven to '0' or to '1', or pulled up/pulled down via internal pullup/pulldown resistors.

Note that pullup/pulldown resistors are automatically replaced by driven '1'/'0' levels respectively once internal IORST is released, with the exception of the pullup on STP which is maintained in all modes.

Pin assignment changes in ULPI 3-pin serial mode, ULPI 6-pin serial mode, and UART mode. Unused pins are tied low in these modes as shown below.

Table 4. TUSB1210 Modes vs ULPI Pin Status:ULPI Synchronous Mode Power-Up

			ULPI SYNCHRONOUS MODE POWER-UP						
	UNTIL IORST RELEASE PLL OFF PLL ON		PLL OFF PLL ON + STP HIGH		STP HIGH	PLL ON + STP LC			
PIN NO.	PIN NAME	DIR	PU/PD	DIR	PU/PD	DIR	PU/PD	DIR	PU/PD
26	CLOCK	Hiz	PD	1	PD	Ю	-	Ю	-
31	DIR	Hiz	PU	O, ('1')	-	O, ('0')	-	0	-
2	NXT	Hiz	PD	O, ('0')	-	O, ('0')	-	0	-
29	STP	Hiz	PU	ı	PU	1	PU	I	PU
3	DATA0	Hiz	PD	O, ('0')	-	1	PD	Ю	-
4	DATA1	Hiz	PD	O, ('0')	-	I	PD	Ю	-
5	DATA2	Hiz	PD	O, ('0')	-	1	PD	Ю	-
6	DATA3	Hiz	PD	O, ('0')	-	1	PD	Ю	-
7	DATA4	Hiz	PD	O, ('0')	-	1	PD	Ю	-
9	DATA5	Hiz	PD	O, ('0')	-	I	PD	Ю	-
10	DATA6	Hiz	PD	O, ('0')	-	I	PD	Ю	-
13	DATA7	Hiz	PD	O, ('0')	-	I	PD	Ю	-

Table 5. TUSB1210 Modes vs ULPI Pin Status: USB Suspend Mode

		SUSPEN	SUSPEND MODE		MENDED SETTING DURING ID MODE
PIN NO.	PIN NAME	DIR	PU/PD	DIR	PU/PD
26	CLOCK	1	-	0	-
31	DIR	O, ('1')	-	Ţ	-
2	NXT	O, ('0')	-	1	-
29	STP	1	PU ⁽¹⁾	O, ('0')	-
3	DATA0	O, (LINESTATE0)	-	I	-
4	DATA1	O, (LINESTATE1)	-	1	-
5	DATA2	O, ('0')	-	I	-
6	DATA3	O, (INT)	-	1	-
7	DATA4	O, ('0')	-	Ţ	-
9	DATA5	O, ('0')	-	1	-
10	DATA6	O, ('0')	-	1	-
13	DATA7	O, ('0')	-	1	-

⁽¹⁾ Can be disabled by software before entering Suspend Mode to reduce current consumption

Table 6. TUSB1210 Modes vs ULPI Pin Status: ULPI 6-Pin Serial Mode and UART Mode

	ULPI 6-PII	N SERIAL	MODE	ULPI 3-PI	ULPI 3-PIN SERIAL MODE		U	ART MODE	
PIN NO.	PIN NAME	DIR	PU/PD	PIN NAME	DIR	PU/PD	PIN NAME	DIR	PU/PD
26	CLOCK (1)	Ю	-	CLOCK (1)	Ю	-	CLOCK (1)	Ю	-
31	DIR	0	-	DIR	0	-	DIR	0	-
2	NXT	0	-	NXT	0	-	NXT	0	-
29	STP	I	PU	STP	I	PU	STP	I	PU
3	TX_ENABLE	I	-	TX_ENABLE	I	-	TXD	I	-
4	TX_DAT	I	-	DAT	Ю	-	RXD	Ю	-
5	TX_SE0	I	-	SE0	Ю	-	tie low	0	-
6	INT	0	-	INT	0	-	INT	0	-
7	RX_DP	0	-	tie low	0	-	tie low	0	-
9	RX_DM	0	-	tie low	0	-	tie low	0	-
10	RX_RCV	0	-	tie low	0	-	tie low	0	-
13	tie low	0	-	tie low	0	-	tie low	0	-

7.5 Register Map

Table 7. USB Register Summary

REGISTER NAME	TYPE	REGISTER WIDTH (BITS)	PHYSICAL ADDRESS
VENDOR_ID_LO	R	8	0x00
VENDOR_ID_HI	R	8	0x01
PRODUCT_ID_LO	R	8	0x02
PRODUCT_ID_HI	R	8	0x03
FUNC_CTRL	RW	8	0x04
FUNC_CTRL_SET	RW	8	0x05
FUNC_CTRL_CLR	RW	8	0x06
IFC_CTRL	RW	8	0x07
IFC_CTRL_SET	RW	8	0x08
IFC_CTRL_CLR	RW	8	0x09
OTG_CTRL	RW	8	0x0A
OTG_CTRL_SET	RW	8	0x0B
OTG_CTRL_CLR	RW	8	0x0C
USB_INT_EN_RISE	RW	8	0x0D
USB_INT_EN_RISE_SET	RW	8	0x0E
USB_INT_EN_RISE_CLR	RW	8	0x0F
USB_INT_EN_FALL	RW	8	0x10
USB_INT_EN_FALL_SET	RW	8	0x11
USB_INT_EN_FALL_CLR	RW	8	0x12
USB_INT_STS	R	8	0x13
USB_INT_LATCH	R	8	0x14
DEBUG	R	8	0x15
SCRATCH_REG	RW	8	0x16
SCRATCH_REG_SET	RW	8	0x17
SCRATCH_REG_CLR	RW	8	0x18
Reserved	R	8	0x19 0x2E
ACCESS_EXT_REG_SET	RW	8	0x2F
Reserved	R	8	0x30 0x3C
VENDOR_SPECIFIC1	RW	8	0x3D
VENDOR_SPECIFIC1_SET	RW	8	0x3E
VENDOR_SPECIFIC1_CLR	RW	8	0x3F
VENDOR_SPECIFIC2	RW	8	0x80
VENDOR_SPECIFIC2_SET	RW	8	0x81
VENDOR_SPECIFIC2_CLR	RW	8	0x82
VENDOR_SPECIFIC1_STS	R	8	0x83
VENDOR_SPECIFIC1_LATCH	R	8	0x84
VENDOR_SPECIFIC3	RW	8	0x85
VENDOR_SPECIFIC3_SET	RW	8	0x86
VENDOR_SPECIFIC3_CLR	RW	8	0x87

7.5.1 VENDOR_ID_LO

ADDRESS OFF	SET	0x00	0x00					
PHYSICAL ADDRESS 0x00 INSTANCE USB_SCUSB								
DESCRIPTION		Lower byte of ve	ower byte of vendor ID supplied by USB-IF (TI Vendor ID = 0x0451)					
TYPE		R						
WRITE LATENCE	Y							
7	6	5 4 3 2 1 0						
	VENDOR ID							

BITS	FIELD NAME	DESCRIPTION	TYPE	RESET
7:00	VENDOR_ID		R	0x51

7.5.2 VENDOR_ID_HI

ADDRESS OFFSET	0x01				
PHYSICAL ADDRESS	0x01	INSTANCE	USB_SCUSB		
DESCRIPTION	Upper byte of vendor ID supplied by	Upper byte of vendor ID supplied by USB-IF (TI Vendor ID = 0x0451)			
TYPE	R				
WRITE LATENCY					

7	6	5	4	3	2	1	0
	VENDOR_ID						

BITS	FIELD NAME	DESCRIPTION	TYPE	RESET
7:00	VEN DOR_ID		R	0x04

7.5.3 PRODUCT_ID_LO

ADDRESS OFFSET	0x02				
PHYSICAL ADDRESS	0x02	INSTANCE	USB_SCUSB		
DESCRIPTION	Lower byte of Product ID supplied	Lower byte of Product ID supplied by Vendor (TUSB1210 Product ID is 0x1507).			
TYPE	R				
WRITE LATENCY					

7	6	5	4	3	2	1	0
	•	•	PRODU	JCT_ID	•	•	•

BITS	FIELD NAME	DESCRIPTION	TYPE	RESET
7:00	PRODU	PRODUCT_ID		0x07

7.5.4 PRODUCT_ID_HI

ADDRESS OFFS	SET	0x03)x03					
PHYSICAL ADDRESS 0x03 INSTANCE USB_SCUSB								
DESCRIPTION		Upper byte of Pro	oduct ID supplied	by Vendor (TUSE	1210 Product ID	is 0x1507).		
TYPE		R						
WRITE LATENCE	Υ							
7	7 6 5 4 3 2 1 0							
	PRODUCT_ID							

BITS	FIELD NAME	DESCRIPTION	TYPE	RESET
7:00	PRODU	JCT_ID	R	0x15

7.5.5 FUNC_CTRL

ADDRESS OFFSET	0x04		
PHYSICAL ADDRESS	0x04	INSTANCE	USB_SCUSB
DESCRIPTION	Controls UTMI function settings of the PHY		
TYPE	RW		
WRITE LATENCY			

7	6	5	4	3	2	1	0
Reserved	SUSPENDM	RESET	OPM	1ODE	TERMSELECT	XCVRS	SELECT

BITS	FIELD NAME	DESCRIPTION	TYPE	RESET
7	Reserved		R	0
6	SUSPENDM	Active low PHY suspend. Put PHY into Low Power Mode. In Low Power Mode the PHY power down all blocks except the full speed receiver, OTG comparators, and the ULPI interface pins. The PHY automatically set this bit to '1' when Low Power Mode is exited.	RW	1
5	RESET	Active high transceiver reset. Does not reset the ULPI interface or ULPI register set.	RW	0
		Once set, the PHY asserts the DIR signal and reset the UTMI core. When the reset is completed, the PHY de-asserts DIR and clears this bit. After deasserting DIR, the PHY re-assert DIR and send an RX command update.		
		Note: This bit is auto-cleared, this explain why it can't be read at '1'.		
4:03	OPMODE	Select the required bit encoding style during transmit	RW	0x0
		0x0: Normal operation		
		0x1: Non-driving		
		0x2: Disable bit-stuff and NRZI encoding		
		0x3: Reserved (No SYNC and EOP generation feature not supported)		
2	TERMSELECT	Controls the internal 1.5Kohms pull-up resistor and 45ohms HS terminations. Control over bus resistors changes depending on XcvrSelect, OpMode, DpPulldown and DmPulldown.	RW	0
1:00	XCVRSELECT	Select the required transceiver speed.	RW	0x1
		0x0: Enable HS transceiver		
		0x1: Enable FS transceiver		
		0x2: Enable LS transceiver		
		0x3: Enable FS transceiver for LS packets		
		(FS preamble is automatically pre-pended)		

7.5.6 FUNC_CTRL_SET

ADDRESS OFFS	SET	0x05	0x05					
PHYSICAL ADD	RESS	0x05 INSTANCE USB_SCUSB						
DESCRIPTION		This register doesn't physically exist.						
		It is the same as '0' has no-action)		ister with read/set	-only property (wr	ite '1' to set a part	ticular bit, a write	
TYPE		RW						
WRITE LATENC	Y							
7	6	5	4	3	2	1	0	
Reserved	SUSPENDM	RESET	OPM	1ODE	TERMSELECT	XCVRSELECT		

BITS	FIELD NAME	DESCRIPTION	TYPE	RESET
7	Reserved		R	0
6	SUSPENDM		RW	1
5	RESET		RW	0
4:03	OPMODE		RW	0x0
2	TERMSELECT		RW	0
1:00	XCVRSELECT		RW	0x1

7.5.7 FUNC_CTRL_CLR

ADDRESS OFFSET	0x06						
PHYSICAL ADDRESS	0x06	INSTANCE	USB_SCUSB				
DESCRIPTION	This register doesn't physically exi	This register doesn't physically exist.					
	It is the same as the func_ctrl reg write '0' has no-action).	ister with read/clear-only property	(write '1' to clear a particular bit, a				
TYPE	RW						
WRITE LATENCY							

7	6	5	4	3	2	1	0
Reserved	SUSPENDM	RESET		ODE	TERMSELECT	XCVRS	SELECT

BITS	FIELD NAME	DESCRIPTION	TYPE	RESET
7	Reserved		R	0
6	SUSPENDM		RW	1
5	RESET		RW	0
4:03	OPMODE		RW	0x0
2	TERMSELECT		RW	0
1:00	XCVRSELECT		RW	0x1

7.5.8 IFC_CTRL

ADDRESS OFFS	SET	0x07	0x07				
PHYSICAL ADDRESS 0x07 INSTANCE					USB_SCUSB		
DESCRIPTION		Enables alternative interfaces and PHY features.					
TYPE RW							
WRITE LATENC	Υ						
7	6	5	4	3	2	1	0
INTERFACE_P ROTECT_DISA BLE	INDICATORPA SSTHRU	INDICATORCO MPLEMENT	AUTORESUME	CLOCKSUSPE NDM	CARKITMODE	FSLSSERIALM ODE_3PIN	FSLSSERIALM ODE_6PIN

BITS	FIELD NAME	DESCRIPTION	TYPE	RESET
7	INTERFACE_PROTECT_DISA BLE	Controls circuitry built into the PHY for protecting the ULPI interface when the link tri- states stp and data.	RW	0
		0b: Enables the interface protect circuit		
		1b: Disables the interface protect circuit		
6	INDICATORPASSTHRU	Controls whether the complement output is qualified with the internal vbusvalid comparator before being used in the VBUS State in the RXCMD.	RW	0
		0b: Complement output signal is qualified with the internal VBUSVALID comparator.		
		1b: Complement output signal is not qualified with the internal VBUSVALID comparator.		
5	INDICATORCOMPLEMENT	Tells the PHY to invert EXTERNALVBUSINDICATOR input signal, generating the complement output.	RW	0
		0b: PHY will not invert signal EXTERNALVBUSINDICATOR (default)		
		1b: PHY will invert signal EXTERNALVBUSINDICATOR		
4	AUTORESUME	Enables the PHY to automatically transmit resume signaling.	RW	1
		Refer to USB specification 7.1.7.7 and 7.9 for more details.		
		0 = AutoResume disabled		
		1 = AutoResume enabled (default)		
3	CLOCKSUSPENDM	Active low clock suspend. Valid only in Serial Modes. Powers down the internal clock circuitry only. Valid only when SuspendM = 1b. The PHY must ignore ClockSuspend when SuspendM = 0b. By default, the clock will not be powered in Serial and Carkit Modes.	RW	0
		0b : Clock will not be powered in Serial and UART Modes.		
		1b : Clock will be powered in Serial and UART Modes.		
2	CARKITMODE	Changes the ULPI interface to UART interface. The PHY automatically clear this field when UART mode is exited.	RW	0
		0b: UART disabled.		
		1b: Enable serial UART mode.		
1	FSLSSERIALMODE_3PIN	Changes the ULPI interface to 3-pin Serial.	RW	0
		The PHY must automatically clear this field when serial mode is exited.		
		0b: FS/LS packets are sent using parallel interface		
		1b: FS/LS packets are sent using 4-pin serial interface		
0	FSLSSERIALMODE_6PIN	Changes the ULPI interface to 6-pin Serial.	RW	0
		The PHY must automatically clear this field when serial mode is exited.		
		0b: FS/LS packets are sent using parallel interface		
		1b: FS/LS packets are sent using 6-pin serial interface		

7.5.9 IFC_CTRL_SET

ADDRESS OFFSET	0x08							
PHYSICAL ADDRESS	0x08	INSTANCE	USB_SCUSB					
DESCRIPTION	This register doesn't physically exist.							
	It is the same as the ifc_ctrl registe has no-action).	It is the same as the ifc_ctrl register with read/set-only property (write '1' to set a particular bit, a write '0' has no-action).						
TYPE	RW							

www.ti.com.cn

WRITE LATENC	Υ						
7	6	5	4	3	2	1	0
INTERFACE_P ROTECT_DISA BLE	INDICATORPA SSTHRU	INDICATORCO MPLEMENT	AUTORESUME	CLOCKSUSPE NDM	CARKITMODE	FSLSSERIALM ODE_3PIN	FSLSSERIALM ODE_6PIN

BITS	FIELD NAME	DESCRIPTION	TYPE	RESET
7	INTERFACE_PROTECT_DISABLE		RW	0
6	INDICATORPASSTHRU		RW	0
5	INDICATORCOMPLEMENT		RW	0
4	AUTORESUME		RW	1
3	CLOCKSUSPENDM		RW	0
2	CARKITMODE		RW	0
1	FSLSSERIALMODE_3PIN		RW	0
0	FSLSSERIALMODE_6PIN		R	0

7.5.10 IFC_CTRL_CLR

ADDRESS OFFS	SET	0x09					
PHYSICAL ADD	RESS	0x09 INSTANCE USB_SCUSB					
DESCRIPTION		This register doesn't physically exist.					
		It is the same as the ifc_ctrl register with read/clear-only property (write '1' to clear a particular bi write '0' has no-action).				a particular bit, a	
TYPE		RW					
WRITE LATENCE	Y						
7	6	5	4	3	2	1	0
INTERFACE_P ROTECT_DISA BLE STHRU		INDICATORCO MPLEMENT	AUTORESUME	CLOCKSUSPE NDM	CARKITMODE	FSLSSERIALM ODE_3PIN	FSLSSERIALM ODE_6PIN

BITS	FIELD NAME	DESCRIPTION	TYPE	RESET
7	INTERFACE_PROTECT_DISABLE		RW	0
6	INDICATORPASSTHRU		RW	0
5	INDICATORCOMPLEMENT		RW	0
4	AUTORESUME		RW	1
3	CLOCKSUSPENDM		RW	0
2	CARKITMODE		RW	0
1	FSLSSERIALMODE_3PIN		RW	0
0	FSLSSERIALMODE_6PIN		R	0

7.5.11 OTG_CTRL

ADDRESS OFF	RESS OFFSET 0x0A						
PHYSICAL ADDRESS 0x0A			INSTANCE USB_SCUSB				
DESCRIPTION		Controls UTMI+ OTG functions of the PHY.					
TYPE		RW					
WRITE LATENC	Υ						
7	6	5	4	3	2	1	0
USEEXTERNA DRVVBUSEXT LVBUSINDICA ERNAL TOR		DRVVBUS	CHRGVBUS	DISCHRGVBU S	DMPULLDOW N	DPPULLDOWN	IDPULLUP

BITS	FIELD NAME	DESCRIPTION	TYPE	RESET
7	USEEXTERNALVBUSINDICATO	Tells the PHY to use an external VBUS over-current indicator.	RW	0
	R	0b: Use the internal OTG comparator (VA_VBUS_VLD) or internal VBUS valid indicator (default)		
		1b: Use external VBUS valid indicator signal.		
6	DRVVBUSEXTERNAL	Selects between the internal and the external 5 V VBUS supply.	RW	0
		0b: Pin17 (CPEN) is disabled (output GND level). TUSB1210 does not support internal VBUS supply.		
		1b: Pin17 (CPEN) is set to '1' (output VDD33 voltage level) if DRVVBUS bit is '1', else Pin17 (CPEN) is disabled (output GND level) if DRVVBUS bit is '0'		
5	DRVVBUS	VBUS output control bit	RW	0
		0b : do not drive VBUS		
		1b : drive 5V on VBUS		
		Note: Both DRVVBUS and DRVVBUSEXTERNAL bits must be set to 1 in order to to set Pin17 (CPEN). CPEN pin can be used to enable an external VBUS supply		
4	CHRGVBUS	Charge VBUS through a resistor. Used for VBUS pulsing SRP. The Link must first check that VBUS has been discharged (see DischrgVbus register bit), and that both D+ and D- data lines have been low (SE0) for 2ms.	RW	0
		0b : do not charge VBUS		
		1b : charge VBUS		
3	DISCHRGVBUS	Discharge VBUS through a resistor. If the Link sets this bit to 1, it waits for an RX CMD indicating SessEnd has transitioned from 0 to 1, and then resets this bit to 0 to stop the discharge.	RW	0
		0b : do not discharge VBUS		
		1b : discharge VBUS		
2	DMPULLDOWN	Enables the 15k Ohm pull-down resistor on D	RW	1
		0b : Pull-down resistor not connected to D		
		1b : Pull-down resistor connected to D		
1	DPPULLDOWN	Enables the 15k Ohm pull-down resistor on D+.	RW	1
		0b : Pull-down resistor not connected to D+.		
		1b : Pull-down resistor connected to D+.		
0	IDPULLUP	Connects a pull-up to the ID line and enables sampling of the signal level.	RW	0
		0b : Disable sampling of ID line.		
		1b : Enable sampling of ID line.		

7.5.12 OTG_CTRL_SET

ADDRESS OFFSET	0x0B							
PHYSICAL ADDRESS	0x0B INSTANCE USB_SCUSB							
DESCRIPTION	This register doesn't physically exist.							
	It is the same as the otg_ctrl regis '0' has no-action).	It is the same as the otg_ctrl register with read/set-only property (write '1' to set a particular bit, a write '0' has no-action).						
TYPE	RW							

WRITE LATENC	Υ						
7	6	5	4	3	2	1	0
USEEXTERNA LVBUSINDICA TOR	DRVVBUSEXT ERNAL	DRVVBUS	CHRGVBUS	DISCHRGVBU S	DMPULLDOW N	DPPULLDOWN	IDPULLUP

BITS	FIELD NAME	DESCRIPTION	TYPE	RESET
7	USEEXTERNALVBUSINDICATOR		RW	0
6	DRVVBUSEXTERNAL		RW	0
5	DRVVBUS		RW	0
4	CHRGVBUS		RW	0
3	DISCHRGVBUS		RW	0
2	DMPULLDOWN		RW	1
1	DPPULLDOWN		RW	1
0	IDPULLUP		RW	0

7.5.13 OTG_CTRL_CLR

ADDRESS OFFS	SET	0x0C					
PHYSICAL ADDRESS 0x0C INSTANCE USB			USB_SCUSB	USB_SCUSB			
DESCRIPTION		This register doe	sn't physically exi	st.			
It is the same as the otg_ctrl register with read/Clear-only property (write '1' to clear a parti write '0' has no-action).				a particular bit, a			
TYPE		RW					
WRITE LATENCE	Υ						
7	6	5	4	3	2	1	0
USEEXTERNA LVBUSINDICA TOR	DRVVBUSEXT ERNAL	DRVVBUS	CHRGVBUS	DISCHRGVBU S	DMPULLDOW N	DPPULLDOWN	IDPULLUP

BITS	FIELD NAME	DESCRIPTION	TYPE	RESET
7	USEEXTERNALVBUSINDICATOR		RW	0
6	DRVVBUSEXTERNAL		RW	0
5	DRVVBUS		RW	0
4	CHRGVBUS		RW	0
3	DISCHRGVBUS		RW	0
2	DMPULLDOWN		RW	1
1	DPPULLDOWN		RW	1
0	IDPULLUP		RW	0

7.5.14 USB_INT_EN_RISE

ADDRESS OFFS	SET	0x0D	0x0D						
PHYSICAL ADD	RESS	0x0D	0x0D INSTANCE USB_SCUSB						
DESCRIPTION If set, the bits in this register cause an interrupt event notification to be generated when the corresponding PHY signal changes from low to high. By default, all transitions are enabled.									
TYPE		RW							
WRITE LATENC	Υ								
7	6	5 4 3 2 1 0					0		
Reserved Reserved		Reserved	IDGND_RISE	SESSEND_RIS E	SESSVALID_RI SE	VBUSVALID_R ISE	HOSTDISCON NECT_RISE		

BITS	FIELD NAME	DESCRIPTION	TYPE	RESET
7	Reserved		R	0
6	Reserved		R	0
5	Reserved		R	0
4	IDGND_RISE	Generate an interrupt event notification when IdGnd changes from low to high.	RW	1
		Event is automatically masked if IdPullup bit is clear to 0 and for 50ms after IdPullup is set to 1.		
3	SESSEND_RISE	Generate an interrupt event notification when SessEnd changes from low to high.	RW	1
2	SESSVALID_RISE	Generate an interrupt event notification when SessValid changes from low to high. SessValid is the same as UTMI+ AValid.	RW	1
1	VBUSVALID_RISE	Generate an interrupt event notification when VbusValid changes from low to high.	RW	1
0	HOSTDISCONNECT_RISE	Generate an interrupt event notification when Hostdisconnect changes from low to high. Applicable only in host mode (DpPulldown and DmPulldown both set to 1b).	RW	1

7.5.15 USB_INT_EN_RISE_SET

ADDRESS OFFS	SET	0x0E						
PHYSICAL ADDRESS 0x0E INSTANCE USB_SCUSB					3_SCUSB			
DESCRIPTION		This register doe	This register doesn't physically exist.					
It is the same as the usb_int_en_rise register with read/set-only property (write '1' to set a page a write '0' has no-action).					et a particular bit,			
TYPE		RW						
WRITE LATENC	Υ							
7 6 5 4 3 2 1					0			
Reserved Reserved		Reserved	IDGND_RISE	SESSEND_RIS E	SESSVALID_RI SE	VBUSVALID_R ISE	HOSTDISCON NECT_RISE	

BITS	FIELD NAME	DESCRIPTION	TYPE	RESET
7	Reserved		R	0
6	Reserved		R	0
5	Reserved		R	0
4	IDGND_RISE		RW	1
3	SESSEND_RISE		RW	1
2	SESSVALID_RISE		RW	1
1	VBUSVALID_RISE		RW	1
0	HOSTDISCONNECT_RIS E		RW	1

7.5.16 USB_INT_EN_RISE_CLR

ADDRESS OFF	SET	0x0F						
PHYSICAL ADD	SICAL ADDRESS 0x0F INSTANCE USB_SCUSB							
DESCRIPTION		This register doe	This register doesn't physically exist.					
It is the same as the usb_int_en_rise register with read/clear-only property (write '1' to clear a bit, a write '0' has no-action).					clear a particular			
TYPE		RW						
WRITE LATENC	Y							
7 6 5 4 3 2 1					0			
Reserved Reserved		Reserved	IDGND_RISE	SESSEN D RISE	SESSVALID_RI SE	VBUSVALID_R ISE	HOSTDISCON NECT RISE	

BITS	FIELD NAME	DESCRIPTION	TYPE	RESET
7	Reserved		R	0
6	Reserved		R	0
5	Reserved		R	0
4	IDGND_RISE		RW	1
3	SESSEND_RISE		RW	1
2	SESSVALID_RISE		RW	1
1	VBUSVALID_RISE		RW	1
0	HOSTDISCONNECT_RISE		RW	1

7.5.17 USB_INT_EN_FALL

ADDRESS OFF	SET	0x10	0x10						
PHYSICAL ADD	RESS	0x10	0x10 INSTANCE USB_SCUSB						
DESCRIPTION If set, the bits in this register cause an interrupt event notification to be generated when the corresponding PHY signal changes from low to high. By default, all transitions are enabled.									
TYPE		RW							
WRITE LATENC	Υ								
7	6	5 4 3 2 1 (0		
Reserved Reserved		Reserved	IDGND_FALL	SESSEND_FA LL	SESSVALID_F ALL	VBUSVALID_F ALL	HOSTDISCON NECT_FALL		

BITS	FIELD NAME	DESCRIPTION	TYPE	RESET
7	Reserved		R	0
6	Reserved		R	0
5	Reserved		R	0
4	IDGND_FALL	Generate an interrupt event notification when IdGnd changes from high to low.	RW	1
		Event is automatically masked if IdPullup bit is clear to 0 and for 50ms after IdPullup is set to 1.		
3	SESSEND_FALL	Generate an interrupt event notification when SessEnd changes from high to low.	RW	1
2	SESSVALID_FALL	Generate an interrupt event notification when SessValid changes from high to low. SessValid is the same as UTMI+ AValid.	RW	1
1	VBUSVALID_FALL	Generate an interrupt event notification when VbusValid changes from high to low.	RW	1
0	HOSTDISCONNECT_FALL	Generate an interrupt event notification when Hostdisconnect changes from high to low. Applicable only in host mode (DpPulldown and DmPulldown both set to 1b).	RW	1

7.5.18 USB_INT_EN_FALL_SET

ADDRESS OFFS	SET	0x11						
PHYSICAL ADDRESS 0x11 INSTANCE USB_SCUSB					USB_SCUSB			
DESCRIPTION		This register doe	This register doesn't physically exist.					
It is the same as the usb_int_en_fall register with read/set-only property (write '1' to set a property write '0' has no-action)				a particular bit, a				
TYPE		RW						
WRITE LATENCE	Υ							
7 6 5 4 3 2 1					0			
Reserved Reserved		Reserved	IDGND_FALL	SESSEND_FA LL	SESSVALID_F ALL	VBUSVALID_F ALL	HOSTDISCON NECT_FALL	

BITS	FIELD NAME	DESCRIPTION	TYPE	RESET
7	Reserved		R	0
6	Reserved		R	0
5	Reserved		R	0
4	IDGND_FALL		RW	1
3	SESSEND_FALL		RW	1
2	SESSVALID_FALL		RW	1
1	VBUSVALID_FALL		RW	1
0	HOSTDISCONNECT_FALL		RW	1

7.5.19 USB_INT_EN_FALL_CLR

ADDRESS OFFSET	0x12	x12					
PHYSICAL ADDRESS	0x12	INSTANCE	USB_SCUSB				
DESCRIPTION	This register doesn't physically exi	nis register doesn't physically exist.					
	It is the same as the usb_int_en_ bit, a write '0' has no-action).	fall register with	read/clear-only property (write '1' to clear a particular				
TYPE	RW						
WRITE LATENCY							

7	6	5	4	3	2	1	0
Reserved	Reserved	Reserved	IDGND_FALL	SESSEND_FA	SESSVALID_F ALL	VBUSVALID_F ALL	HOSTDISCON NECT FALL

BITS	FIELD NAME	DESCRIPTION	TYPE	RESET
7	Reserved		R	0
6	Reserved		R	0
5	Reserved		R	0
4	IDGND_FALL		RW	1
3	SESSEN D_FALL		RW	1
2	SESSVALID_FALL		RW	1
1	VBUSVALID_FALL		RW	1
0	HOSTDISCONNECT_FALL		RW	1

7.5.20 USB_INT_STS

ADDRESS OFF	SET	0x13						
PHYSICAL ADD	RESS	0x13		INSTANCE		USB_SCUSB		
DESCRIPTION		Indicates the current value of the interrupt source signal.						
TYPE		R						
WRITE LATENCY								
7	6	5	4	3	2	1	0	
Reserved	Reserved	Reserved	IDGND	SESSEND	SESSVALID	VBUSVALID	HOSTDISCON NECT	

BITS	FIELD NAME	DESCRIPTION	TYPE	RESET
7	Reserved		R	0
6	Reserved		R	0
5	Reserved		R	0
4	IDGND	Current value of UTMI+ IdGnd output.	R	0
		This bit is not updated if IdPullup bit is reset to 0 and for 50 ms after IdPullup is set to 1.		
3	SESSEND	Current value of UTMI+ SessEnd output.	R	0
2	SESSVALID	Current value of UTMI+ SessValid output. SessValid is the same as UTMI+ AValid.	R	0
1	VBUSVALID	Current value of UTMI+ VbusValid output.	R	0
0	HOSTDISCONNECT	Current value of UTMI+ Hostdisconnect output.	R	0
		Applicable only in host mode.		
		Automatically reset to 0 when Low Power Mode is entered.		
		NOTE: Reset value is '0' when host is connected.		
		Reset value is '1' when host is disconnected.		

7.5.21 USB_INT_LATCH

ADDRESS OFFS	SET	0x14					
PHYSICAL ADD	RESS	0x14		INSTANCE	USB_SCUSB		
DESCRIPTION		These bits are set by the PHY when an unmasked change occurs on the corresponding internal signal. The PHY will automatically clear all bits when the Link reads this register, or when Low Power Mode is entered. The PHY also clears this register when Serial Mode or Carkit Mode is entered regardless of the value of ClockSuspendM.					
		The PHY follows the rules defined in Table 26 of the ULPI spec for setting any latch register bit. It is important to note that if register read data is returned to the Link in the same cycle that a USB Interrupt Latch bit is to be set, the interrupt condition is given immediately in the register read data and the Latch bit is not set.					
		Note that it is optional for the Link to read the USB Interrupt Latch register in Synchronous Mode because the RX CMD byte already indicates the interrupt source directly					
TYPE		R					
WRITE LATENCY							
7	6	5	4	3	2	1	0
Reserved	Reserved	Reserved	IDGND_LATCH	SESSEND_LA TCH	SESSVALID_L ATCH	VBUSVALID_L ATCH	HOSTDISCON NECT_LATCH

BITS	FIELD NAME	DESCRIPTION	TYPE	RESET
7	Reserved		R	0
6	Reserved		R	0
5	Reserved		R	0
4	IDGND_LATCH	Set to 1 by the PHY when an unmasked event occurs on IdGnd. Cleared when this register is read.		0
3	SESSEND_LATCH	Set to 1 by the PHY when an unmasked event occurs on SessEnd. Cleared when this register is read.		0
2	SESSVALID_LATCH	Set to 1 by the PHY when an unmasked event occurs on SessValid. Cleared when this register is read. SessValid is the same as UTMI+ AValid.		0
1	VBUSVALID_LATCH	Set to 1 by the PHY when an unmasked event occurs on VbusValid. Cleared when this register is read.	R	0
0	HOSTDISCONNECT_LAT CH	Set to 1 by the PHY when an unmasked event occurs on Hostdisconnect. Cleared when this register is read. Applicable only in host mode.	R	0
		NOTE: As this IT is enabled by default, the reset value depends on the host status		
		Reset value is '0' when host is connected.		
		Reset value is '1' when host is disconnected.		

7.5.22 **DEBUG**

ADDRESS OFFSET	0x15				
PHYSICAL ADDRESS	0x15	INSTANCE	USB_SCUSB		
DESCRIPTION	Indicates the current value of various signals useful for debugging.				
TYPE	R				
WRITE LATENCY					

7	6	5	4	3	2	1	0
	Reserved						

BITS	FIELD NAME	DESCRIPTION	TYPE	RESET
7	Reserved		R	0
6	Reserved		R	0
5	Reserved		R	0
4	Reserved		R	0
3	Reserved		R	0
2	Reserved		R	0
1:00	LINESTATE	These signals reflect the current state of the single ended receivers. They directly reflect the current state of the DP (LineState[0]) and DM (LineState[1]) signals.	R	0x0
		Read 0x0: SE0 (LS/FS), Squelch (HS/Chirp)		
		Read 0x1: LS: 'K' State,		
		FS: 'J' State,		
		HS: !Squelch,		
		Chirp: !Squelch & HS_Differential_Receiver_Output		
		Read 0x2: LS: 'J' State,		
		FS: 'K' State,		
		HS: Invalid,		
		Chirp: !Squelch & !HS_Differential_Receiver_Output		
		Read 0x3: SE1 (LS/FS), Invalid (HS/Chirp)		

7.5.23 SCRATCH_REG

ADDRESS OFFSET	0x16				
PHYSICAL ADDRESS	0x16	INSTANCE	USB_SCUSB		
DESCRIPTION	Empty register byte for testing purposes. Software can read, write, set, and clear this register and the PHY functionality will not be affected.				
TYPE	RW				
WRITE LATENCY					

7	6	5	4	3	2	1	0	
	SCRATCH							

BITS	FIELD NAME	DESCRIPTION	TYPE	RESET
7:00	SCRATCH	Scratch data.	RW	0x00

7.5.24 SCRATCH_REG_SET

ADDRESS OFFSET	0x17						
PHYSICAL ADDRESS	0x17	INSTANCE	USB_SCUSB				
DESCRIPTION	This register doesn't physically ex	This register doesn't physically exist.					
	It is the same as the scratch_reg write '0' has no-action).	It is the same as the scratch_reg register with read/set-only property (write '1' to set a particular bit, a write '0' has no-action).					
TYPE	RW						
WRITE LATENCY							

7	6	5	4	3	2	1	0		
	SCRATCH								

BITS	FIELD NAME	DESCRIPTION	TYPE	RESET
7:00	SCRATCH		RW	0x00

7.5.25 SCRATCH_REG_CLR

ADDRESS OFFSET	0x18						
PHYSICAL ADDRESS	0x18	0x18 INSTANCE USB_SCUSB					
DESCRIPTION	J	This register doesn't physically exist. It is the same as the scratch_reg with read/clear-only property (write '1' to clear a particular bit, a write '1' has no action)					
TYPE WRITE LATENCY	RW						

7	6	5	4	3	2	1	0
			SCRA	ATCH			

BITS	FIELD NAME	DESCRIPTION	TYPE	RESET
7:00	SCRATCH		RW	0x00

7.5.26 VENDOR_SPECIFIC1

ADDRESS OFFSET 0x3D								
PHYSICAL ADD	RESS	0x3D	x3D INSTANCE USB_SCUSB					
DESCRIPTION Power Control register .								
TYPE		RW	SM.					
WRITE LATENC	CY							
7	6	5	4	3	2	1	0	
SPARE	MNTR_VUSBI N_OK_EN	ID_FLOAT_EN	ID_RES_EN	BVALID_FALL	BVALID_RISE	SPARE	ABNORMALST RESS_EN	

BITS	FIELD NAME	DESCRIPTION	TYPE	RESET
7	SPARE	Reserved. The link must never write a 1b to this bit.	RW	0
6	MNTR_VUSBIN_OK_EN	When set to 1, it enables RX CMDs for high to low or low to high transitions on MNTR_VUSBIN_OK. This bit is provided for debugging purposes.	RW	0
5	ID_FLOAT_EN	When set to 1, it enables RX CMDs for high to low or low to high transitions on ID_FLOAT. This bit is provided for debugging purposes.	RW	0
4	ID_RES_EN	When set to 1, it enables RX CMDs for high to low or low to high transitions on ID_RESA, ID_RESB and ID_RESC. This bit is provided for debugging purposes.	RW	0
3	BVALID_FALL	Enables RX CMDs for high to low transitions on BVALID. When BVALID changes from high to low, the USB TRANS will send an RX CMD to the link with the alt_int bit set to 1b.	RW	0
		This bit is optional and is not necessary for OTG devices. This bit is provided for debugging purposes. Disabled by default.		
2	BVALID_RISE	Enables RX CMDs for low to high transitions on BVALID. When BVALID changes from low to high, the USB Trans will send an RX CMD to the link with the alt_int bit set to 1b.	RW	0
		This bit is optional and is not necessary for OTG devices. This bit is provided for debugging purposes. Disabled by default.		
1	SPARE	Reserved. The link must never write a 1b to this bit.	RW	0
0	ABNORMALSTRESS_E N	When set to 1, it enables RX CMDs for low to high and high to low transitions on ABNORMALSTRESS. This bit is provided for debugging purposes.	RW	0

7.5.27 VENDOR_SPECIFIC1_SET

ADDRESS OFFSET	0x3E						
PHYSICAL ADDRESS	0x3E	INSTANCE	USB_SCUSB				
DESCRIPTION	This register doesn't physically ex	This register doesn't physically exist.					
	It is the same as the func_ctrl reg '0' has no-action).	ister with read/se	t-only property (write '1' to set a particular bit, a write				
TYPE	RW						
WRITE LATEN CY							

7	6	5	4	3	2	1	0
SPARE	MNTR_VUSBI N_OK_EN	ID_FLOAT_EN	ID_RES_EN	BVALID_FALL	BVALID_RISE	SPARE	ABNORMALST RESS_EN

BITS	FIELD NAME	DESCRIPTION	TYPE	RESET
7	SPARE		RW	0
6	MNTR_VUSBIN_OK_EN		RW	0
5	ID_FLOAT_EN		RW	0
4	ID_RES_EN		RW	0
3	BVALID_FALL		RW	0
2	BVALID_RISE		RW	0
1	SPARE		RW	0
0	ABNORMALSTRESS_EN		RW	0

7.5.28 VENDOR_SPECIFIC1_CLR

ADDRESS OFF	SET	0x3F						
PHYSICAL ADD	RESS	0x3F		INSTANCE	USB_SC	SCUSB		
DESCRIPTION		This register doe	sn't physically exi	st.				
			It is the same as the func_ctrl register with read/clear-only property (write '1' to clear a particular bit, a write '0' has no-action).					
TYPE		RW						
WRITE LATENC	Y							
7	6	5 4 3 2 1 0				0		
SPARE MNTR_VUSBI N_OK_EN		ID_FLOAT_EN	ID_RES_EN	BVALID_FALL	BVALID_RISE	SPARE	ABNORMALST RESS_EN	

BITS	FIELD NAME	DESCRIPTION	TYPE	RESET
7	SPARE		RW	0
6	MNTR_VUSBIN_OK_EN		RW	0
5	ID_FLOAT_EN		RW	0
4	ID_RES_EN		RW	0
3	BVALID_FALL		RW	0
2	BVALID_RISE		RW	0
1	SPARE		RW	0
0	ABNORMALSTRESS_EN		RW	0

7.5.29 VENDOR_SPECIFIC2

ADDRESS OFF	SET	0x80						
PHYSICAL ADDRESS		0x80	0x80 INSTANCE USB_SCUSB					
DESCRIPTION Eye diagram programmability and DP/DM swap control .								
TYPE		RW	WW.					
WRITE LATENC	Υ							
7	6	5	5 4 3 2 1 0				0	
SPARE	DATAPOLARIT Y	ZHS	ZHSDRV IHSTX					

BITS	FIELD NAME	DESCRIPTION	TYPE	RESET
7	SPARE		RW	0
6	DATAPOLARITY	Control data polarity on dp/dm	RW	1
5:04	ZHSDRV	High speed output impedance configuration for eye diagram tuning :	RW	0x0
		00 45.455 Ω		
		01 43.779 Ω		
		10 42.793 Ω		
		11 42.411 Ω		
3:00	IHSTX	High speed output drive strength configuration for eye diagram tuning :	RW	0x1
		0000 17.928 mA		
		0001 18.117 mA		
		0010 18.306 mA		
		0011 18.495 mA		
		0100 18.683 mA		
		0101 18.872 mA		
		0110 19.061 mA		
		0111 19.249 mA		
		1000 19.438 mA		
		1001 19.627 mA		
		1010 19.816 mA		
		1011 20.004 mA		
		1100 20.193 mA		
		1101 20.382 mA		
		1110 20.570 mA		
		1111 20.759 mA		
		IHSTX[0] is also the AC BOOST enable		
		IHSTX[0] = 0 à AC BOOST is disabled		
		IHSTX[0] = 1 à AC BOOST is enabled		

7.5.30 VENDOR_SPECIFIC2_SET

ADDRESS OFFS	SET	0x81							
PHYSICAL ADD	RESS	0x81	0x81 INSTANCE US			USB_SCUSB	USB_SCUSB		
DESCRIPTION		This register doe	esn't physically exi	st.					
			t is the same as the VENDOR_SPECIFIC1 register with read/set-only property (write '1' to set a particular bit, a write '0' has no-action).						
TYPE		RW	WW.						
WRITE LATENCE	Y								
7	6	5	4	3	2	1	0		
SPARE	DATAPOLARIT Y	ZHS	DRV		IHS	STX			

BITS	FIELD NAME	DESCRIPTION	TYPE	RESET
7	SPARE		RW	0
6	DATAPOLARITY		RW	1
5:04	ZHSDRV		RW	0x0
3:00	IHSTX		RW	0x1

7.5.31 VENDOR_SPECIFIC2_CLR

ADDRESS OFFSET	0x82								
PHYSICAL ADDRESS	0x82	0x82 INSTANCE USB_SCUSB							
DESCRIPTION	This register doesn't ph	This register doesn't physically exist.							
	It is the same as the particular bit, a write '0'		ster with read/clear-only property (write '1' to clear a						
TYPE	RW	RW							
WRITE LATENCY									

7	6	5	4	3	2	1	0
SPARE	DATAPOLARIT Y	ZHS	DRV		IHS	STX	

BITS	FIELD NAME	DESCRIPTION	TYPE	RESET
7	SPARE		RW	0
6	DATAPOLARITY		RW	1
5:04	ZHSDRV		RW	0x0
3:00	IHSTX		RW	0x1

7.5.32 VENDOR_SPECIFIC1_STS

ADDRESS OFF	SET	0x83						
PHYSICAL ADD	RESS	0x83 INSTANCE USB_SCUSB						
DESCRIPTION		Indicates the current value of the interrupt source signal.						
TYPE R								
WRITE LATEN	CY							
7	6	5	4	3	2	1	0	
Reserved	MNTR_VUSBI N_OK_STS	ABNORMALST RESS_STS	ID_FLOAT_ST S	ID_RESC_STS	ID_RESB_STS	ID_RESA_STS	BVALID_STS	

BITS	FIELD NAME	DESCRIPTION	TYPE	RESET
7	Reserved		R	0
6	MNTR_VUSBIN_OK_STS	Current value of MNTR_VUSBIN_OK output	R	0
5	ABNORMALSTRESS_STS	Current value of ABNORMALSTRESS output	R	0
4	ID_FLOAT_STS	Current value of ID_FLOAT output	R	0
3	ID_RESC_STS	Current value of ID_RESC output	R	0
2	ID_RESB_STS	Current value of ID_RESB output	R	0
1	ID_RESA_STS	Current value of ID_RESA output	R	0
0	BVALID_STS	Current value of VB_SESS_VLD output	R	0

7.5.33 VENDOR_SPECIFIC1_LATCH

ADDRESS OFFS	SET	0x84					
PHYSICAL ADD	RESS	0x84		INSTANCE	USB_S	CUSB	
DESCRIPTION		The PHY will aut entered. The PH ClockSuspendM.	These bits are set by the PHY when an unmasked change occurs on the corresponding internal signal. The PHY will automatically clear all bits when the Link reads this register, or when Low Power Mode is entered. The PHY also clears this register when Serial mode is entered regardless of the value of ClockSuspendM. The PHY follows the rules defined in Table 26 of the ULPI spec for setting any latch register bit.				
TYPE		R					
WRITE LATENCE	Υ						
7 6		5	4	3	2	1	0
Reserved	MNTR_VUSBI N_OK_LATCH	ABNORMALST RESS_LATCH	ID_FLOAT_LA TCH	ID_RESC_LAT CH	ID_RESB_LAT CH	ID_RESA_LAT CH	BVALID_LATC H

BITS	FIELD NAME	DESCRIPTION	TYPE	RESET
7	Reserved		R	0
6	MNTR_VUSBIN_OK_LATCH	Set to 1 when an unmasked event occurs on MNTR_VUSBIN_OK_LATCH. Clear on read register.	R	0
5	ABNORMALSTRESS_LATCH	Set to 1 when an unmasked event occurs on ABNORMALSTRESS. Clear on read register.	R	0
4	ID_FLOAT_LATCH	Set to 1 when an unmasked event occurs on ID_FLOAT. Clear on read register.	R	0
3	ID_RESC_LATCH	Set to 1 when an unmasked event occurs on ID_RESC. Clear on read register.	R	0
2	ID_RESB_LATCH	Set to 1 when an unmasked event occurs on ID_RESB. Clear on read register.	R	0
1	ID_RESA_LATCH	Set to 1 when an unmasked event occurs on ID_RESA. Clear on read register.	R	0
0	BVALID_LATCH	Set to 1 when an unmasked event occurs on VB_SESS_VLD. Clear on read register.	R	0

7.5.34 VENDOR_SPECIFIC3

ADDRESS OFFS	SET	0x85						
PHYSICAL ADD	RESS	0x85 INSTANCE USB_SCUSB						
DESCRIPTION								
TYPE		RW						
WRITE LATENC	Υ							
7	6	5 4 3 2 1 0					0	
RESERVED	SOF_EN	CPEN_OD	CPEN_ODOS	IDGND_DRV	ND_DRV VUSB3V3_VSEL			

BITS	FIELD NAME	DESCRIPTION	TYPE	RESET
7	Reserved		RW	0
6	SOF_EN	0: HS USB SOF detector disabled.	RW	0
		1: Enable HS USB SOF detection when PHY is set in device mode.		
		SOF are output on CPEN pin. HS USB SOF (start-of-frame) output clock is available on CPEN pin when this bit is set. HS USB SOF packet rate is 8 kHz.		
		This bit is provided for debugging purpose only. It must never been write to '1' in functional mode		
5	CPEN_OD	This bit has no effect when CPEN_ODOS = '0', else :	RW	0
		0: CPEN pad is in OS (Open Source) mode.		
		In this case CPEN pin has an internal NMOS driver, and will be active LOW.		
		Externally there should be a pullup resistor on CPEN (min 1kohm) to a supply voltage (max 3.6V).		
		1: CPEN pad is in OD (Open Drain) mode		
		In this case CPEN pin has an internal PMOS driver, and will be active HIGH.		
		Externally there should be a pull-down resistor on CPEN (min 1 $k\Omega$ to GND.		
4	CPEN_ODOS	Mode selection bit for CPEN pin.	RW	0
		0 : CPEN pad is in CMOS mode		
		1: CPEN pad is in OD (Open Drain) or OS (Open Source) mode (controlled by CPEN_OD bit)		
3	IDGND_DRV	Drives ID pin to ground	RW	0x0
2:00	VUSB3V3_VSEL	000 VRUSB3P1V = 2.5 V	RW	0x3
		001 VRUSB3P1V = 2.75 V		
		010 VRUSB3P1V = 3.0 V		
		011 VRUSB3P1V = 3.10 V (default)		
		100 VRUSB3P1V = 3.20 V		
		101 VRUSB3P1V = 3.30 V		
		110 VRUSB3P1V = 3.40 V		
		111 VRUSB3P1V = 3.50 V		

7.5.35 VENDOR_SPECIFIC3_SET

ADDRESS OFFS	SET	0x86						
PHYSICAL ADDRESS 0:		0x86	0x86 INSTANCE USB_SCUSB					
DESCRIPTION								
TYPE		RW						
WRITE LATENC	Υ							
7	6	5	4	3	2	1	0	
RESERVED	RESERVED SOF_EN CPEN_OD CPEN_ODOS IDGND_DRV VUSB3V3_VSEL							

BITS	FIELD NAME	DESCRIPTION	TYPE	RESET
7	Reserved		RW	0
6	SOF_EN		RW	0
5	CPEN_OD		RW	0
4	CPEN _ODOS		RW	0
3	IDGND_DRV		RW	0x0
2:00	VUSB3V3_VSEL		RW	0x3

7.5.36 VENDOR_SPECIFIC3_CLR

ADDRESS OFFSET	0x87		
PHYSICAL ADDRESS	0x87	INSTANCE	USB_SCUSB
DESCRIPTION			
TYPE	RW		
WRITE LATENCY			

7	6	5	4	3	2	1	0
RESERVED	SOF_EN	CPEN_OD	CPEN_ODOS	IDGND_DRV		VUSB3V3_VSEL	•

BITS	FIELD NAME	DESCRIPTION	TYPE	RESET
7	Reserved		RW	0
6	SOF_EN		RW	0
5	CPEN_OD		RW	0
4	CPEN_ODOS		RW	0
3	IDGND_DRV		RW	0x0
2:00	VUSB3V3_VSEL		RW	0x3

8 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

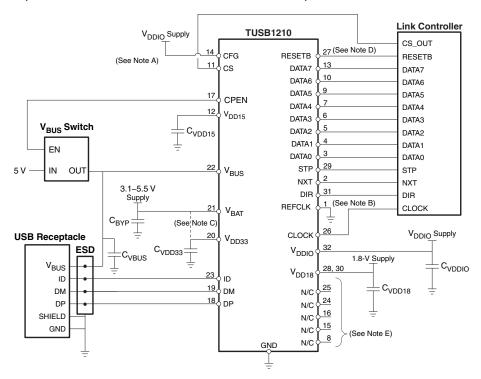

8.1 Application Information

Figure 5 shows the suggested application diagram (Host or OTG, ULPI input-clock mode).

8.2 Typical Application

8.2.1 Host or OTG, ULPI Input Clock Mode Application

Figure 5 shows a suggested application diagram for TUSB1210 in the case of ULPI input-clock mode (60 MHz ULPI clock is provided by link processor), in Host or OTG application. Note this is just one example, it is of course possible to operate as HOST or OTG while also in ULPI output-clock mode.

- A. Pin 11 (CS): can be tied high to VI_O if CS_OUT pin unavailable; Pin 14 (CFG): tie-high is Don't Care since ULPI clock is used in input mode
- B. Pin 1 (REFCLK): must be tied low
- C. Ext 3 V supply supported
- D. Pin 27 (RESETB) can be tied to V_{DDIO} if unused.
- E. Pins labeled N/C (no-connect) are truly no-connect, and can be tied or left floating.

Figure 5. Host or OTG, ULPI Input Clock Mode Application Diagram

Typical Application (continued)

8.2.1.1 Design Requirements

Table 8. Design Parameters

DESIGN PARAMETER	EXAMPLE VALUE
V_{BAT}	3.3 V
V_{DDIO}	1.8 V
V_{BUS}	5.0 V
USB Support	HS, FS, LS
USB On the Go (OTG)	Yes
Clock Sources	60 MHz Clock

8.2.1.2 Detailed Design Procedure

Connect the TUSB1210 device as is shown in Figure 5.

Follow the Board Guidelines of the Application Report, SWCA124.

8.2.1.2.1 Unused Pins Connection

- VBUS: Input. Recommended to tie to GND if unused. However leaving V_{BUS} floating is also acceptable since internally there is an 80 kΩ resistance to ground.
- REFCLK: Input. If REFCLK is unused, and 60 MHz clock is provided by MODEM (60 MHz should be connected to CLOCK pin in this case) then tie REFCLK to GND.
- CFG: Tie to GND if REFCLK is 19.2MHz, or tie to V_{DDIO} if REFCLK is 26 MHz. Tie to either GND or V_{DDIO} (doesn't matter which) if REFCLK not used (i.e., ULPI input clock configuration).

8.2.1.3 Application Curve

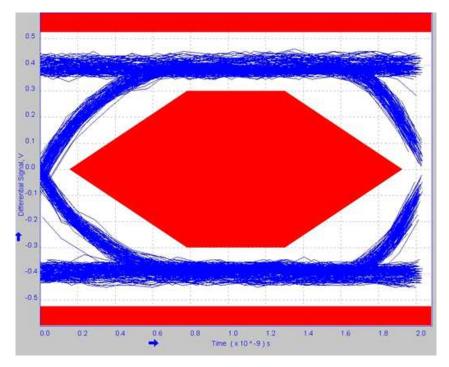
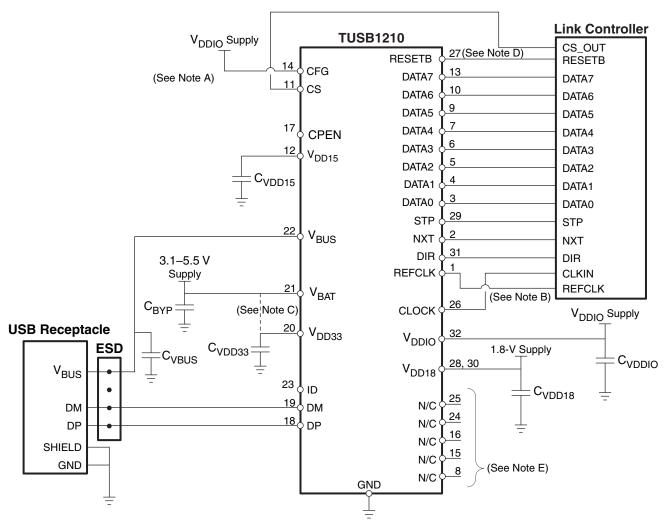



Figure 6. High-Speed Eye Diagram

8.2.2 Device, ULPI Output Clock Mode Application

Figure 7 shows a suggested application diagram for TUSB1210 in the case of ULPI output clock mode (60 MHz ULPI clock is provided by TUSB1210, while link processor or another external circuit provides REFCLK), in Device mode application. Note this is just one example, it is of course possible to operate as Device while also in ULPI input-clock mode. Refer also to Figure 5.

- A. Pin 11 (CS): can be tied high to V_{IO} if CS_OUT pin unavailable; Pin 14 (CFG): Tied to V_{DDIO} for 26MHz REFCLK mode here, tie to GND for 19.2MHz mode.
- B. Pin 1 (REFCLK): connect to external 3.3V square-wave reference clock
- C. Ext 3 V supply supported
- D. Pin 27 (RESETB) can be tied to V_{DDIO} if unused.
- E. Pins labeled N/C (no-connect) are truly no-connect, and can be tied or left floating.

Figure 7. Device, ULPI Output Clock Mode Application Diagram

8.2.2.1 Design Requirements

Table 9. Design Parameters

DESIGN PARAMETER	EXAMPLE VALUE
V_{BAT}	3.3 V
V_{DDIO}	1.8 V
V _{BUS}	5.0 V
USB Support	HS, FS, LS
Clock Sources	26 MHz or 19.2 MHz Oscillator

8.2.2.2 Detailed Design Procedure

Connect the TUSB1210 device as is shown in Figure 7.

Follow the Board Guidelines of the Application Report, SWCA124.

8.2.2.2.1 Unused Pins Connection

- ID: Input. Leave floating if unused or TUSB1210 is Device mode only. Tie to GND through RID < 1 kΩ if Host mode.
- REFCLK: Input. If REFCLK is unused, and 60 MHz clock is provided by MODEM (60 MHz should be connected to CLOCK pin in this case) then tie REFCLK to GND.
- CFG: Tie to GND if REFCLK is 19.2MHz, or tie to V_{DDIO} if REFCLK is 26 MHz. Tie to either GND or V_{DDIO} (doesn't matter which) if REFCLK not used (i.e., ULPI input clock configuration).

8.2.2.3 Application Curve

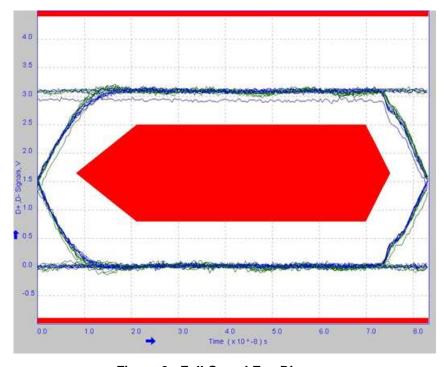


Figure 8. Full-Speed Eye Diagram

8.3 External Components

Table 10. TUSB1210 External Components

FUNCTION	COMPONENT	REFERENCE	VALUE	NOTE	LINK
V_{DDIO}	Capacitor	CVDDIO	100 nF	Suggested value, application dependent	Figure 5
V_{DD33}	Capacitor	CVDD33	2.2 μF	Range: [0.45 μF : 6.5 μF] , ESR = [0 : 600 mΩ] for f> 10 kHz	Figure 5
V_{DD15}	Capacitor	CVDD15	2.2 μF	Range: [0.45 μF : 6.5 μF] , ESR = [0 : 600 mΩ] for f> 10 kHz	Figure 5
V _{DD18}	Capacitor	Ext 1.8V supply	100 nF	Suggested value, application	Figure 5
		CVDD18		dependent	
V_{BAT}	Capacitor	СВҮР	100 nF ⁽¹⁾	Range: [0.45 μF : 6.5 μF] , ESR = [0 : 600 mΩ] for f> 10 kHz	Figure 5
V _{BUS}	Capacitor	CVBUS	See Table 11	Place close to USB connector	Figure 5

⁽¹⁾ Recommended value but 2.2 uF may be sufficient in some applications

Table 11. TUSB1210 V_{BUS} Capacitors

FUNCTION	COMPONENT	REFERENCE	VALUE	NOTE	LINK
VBUS - HOST	Capacitor	CVBUS	>120 μF		Figure 5
VBUS - DEVICE	Capacitor	CVBUS	4.7 μF	Range: 1.0 μF to 10.0 μF	Figure 5
VBUS - OTG	Capacitor	CVBUS	4.7 μF	Range: 1.0 μF to 6.5 μF	Figure 5

9 Power Supply Recommendations

 V_{BUS} , and V_{BAT} , and V_{DDIO} , are needed for power the TUSB1210. Recommended operation is for V_{BAT} to be present before V_{DDIO} . Applying V_{DDIO} before V_{BAT} to TUSB1210 is not recommended as there is a diode from V_{DDIO} to V_{BAT} which will be forward biased when V_{DDIO} is present but V_{BAT} is not present. TUSB1210 does not strictly require V_{BUS} to function.

9.1 TUSB1210 Power Supply

- The V_{DDIO} pins of the TUSB1210 supply 1.8 V (nominal) power to the core of the TUSB1210. This power rail
 can be isolated from all other power rails by a ferrite bead to reduce noise.
- The V_{BAT} pin of the TUSB1210 supply 3.3 V (nominal) power rail to the TUSB1210. This power rail can be isolated from all other power rails by a ferrite bead to reduce noise.
- The V_{BUS} pin of the TUSB1210 supply 5.0 V (nominal) power rail to the TUSB1210. This pin is normally connected to the V_{BUS} pin of the USB connector.
- The V_{BUS} pin of the TUSB1210 supply 5.0 V (nominal) power rail to the TUSB1210. This pin is normally connected to the V_{BUS} pin of the USB connector.

9.2 Ground

It is recommended that almost one board ground plane be used in the design. This provides the best image plane for signal traces running above the plane. An earth or chassis ground is implemented only near the USB port connectors on a different plane for EMI and ESD purposes.

9.3 Power Providers

Table 12 is a summary of TUSB1210 power providers.

Table 12. Power Providers⁽¹⁾

NAME	USAGE	TYPE	TYPICAL VOLTAGE (V)	MAXIMUM CURRENT (mA)
V_{DD15}	Internal	LDO	1.5	50
V _{DD18}	External	LDO	1.8	30
V _{DD33}	Internal	LDO	3.1	15

⁽¹⁾ V_{DD33} may be supplied externally, or by shorting the V_{DD33} pin to V_{BAT} pin provided V_{BAT} min is in range [3.2 V : 3.6 V]. Note that the V_{DD33} LDO will always power-on when the chip is enabled, irrespective of whether V_{DD33} is supplied externally or not. In the case the V_{DD33} pin is not supplied externally in the application, the electrical specs for this LDO are provided below.

9.4 Power Modules

9.4.1 V_{DD33} Regulator

The V_{DD33} internal LDO regulator powers the USB PHY, charger detection, and OTG functions of the USB subchip inside TUSB1210. Power Characteristics describes the regulator characteristics.

V_{DD33} regulator takes its power from V_{BAT}.

Since the USB2.0 standard requires data lines to be biased with pullups biased from a supply greater than 3 V, and since V_{DD33} regulator has an inherent voltage drop from its input, V_{BAT} , to its regulated output, TUSB1210 will not meet USB 2.0 Standard if operated from a battery whose voltage is lower than 3.3 V.

9.4.2 V_{DD18} Supply

The V_{DD18} supply is powered externally at the V_{DD18} pin. See Table 10 for external components.

9.4.3 V_{DD15} Regulator

The V_{DD15} internal LDO regulator powers the USB subchip inside TUSB1210. Power Characteristics describes the regulator characteristics.

9.5 Power Consumption

Table 13 describes the power consumption depending on the use cases.

NOTE

The typical power consumption is obtained in the nominal operating conditions and with the TUSB1210 standalone.

Table 13. Power Consumption

MODE	CONDITIONS	SUPPLY	TYPICAL CONSUMPTION	UNIT		
		I_{VBAT}	8			
OFF Mode	$V_{BAT} = 3.6 \text{ V},$	I _{VDDIO}	3			
	V _{DDIO} = 1.8 V, V _{DD18} = 1.8 V, CS = 0 V	I _{VDD18}	5	μΑ		
		I _{TOTAL}	16			
		I _{VBAT}	204			
Suspend Mode V _{BAT} = 3	$V_{BUS} = 5 V$	I _{VDDIO}	3			
	$V_{BAT} = 3.6 \text{ V},$ $V_{DDIO} = 1.8 \text{ V}, \text{ No clock}$	I _{VDD18}	3	μΑ		
		I _{TOTAL}	210			
HS USB Operation (Synchronous Mode)		I _{VBAT}	24.6	A		
	$V_{BAT} = 3.6 \text{ V},$	I _{VDDIO}	1.89			
	$V_{DDIO} = 1.8 \text{ V},$ $V_{DD18} = 1.8 \text{ V}, \text{ active USB transfer}$	I _{VDD18}	21.5	mA		
	22.0	I _{TOTAL}	48			
		I_{VBAT}	25.8			
FS USB Operation	$V_{BAT} = 3.6 \text{ V},$	I _{VDDIO}	1.81	A		
(Synchronous Mode)	V _{DDIO} = 1.8 V, active USB transfer	I _{VDD18}	4.06	mA		
		I _{TOTAL}	31.7			
Reset Mode		I _{VBAT}	237			
	RESETB = 0 V, V_{BUS} = 5 V,	I _{VDDIO}	3			
	$V_{BAT} = 3.6 \text{ V},$ $V_{DDIO} = 1.8 \text{ V}, \text{ No clock}$	I _{VDD18}	3	μΑ		
		I _{TOTAL}	243			

10 Layout

10.1 TUSB121x USB2.0 Product Family Board Layout Recommendations

Table 14. TUSB121x USB2.0 Product Family Board Layout Recommendations

Item	USB General Considerations
1.00	USB design requires symmetrical termination and symmetrical component placement along the DP and DM paths
1.01	Place the USB host controller and major components on the unrouted board first.
1.02	Place the USB host controller, as close as possible to the transceiver device, that is, ULPI interface traces as short as possible
1.03	Route high-speed clock and high-speed USB. Route differential pairs first. Since these signals are critical and long length traces are to be avoided, it is therefore recommended to route DP/DM before routing less critical signals on the board. A similar recommendation is true for CLK, and ULPI signals which should be routed with equalized trace length.
1.04	Maintain maximum possible distance between high-speed clocks/periodic signals to high speed USB differential pairs and any connector leaving the PCB (such as I/O connectors, control, and signal headers or power connectors).
1.05	Place the USB receptacle at the board edge
1.06	 Maximum TI-recommended external capacitance on DP (or DM) lines is 4 pF This capacitance is the sum of all external discrete components, that is, the total capacitance on DP (or DM) lines including trace capacitance can be larger than 4 pF. All discrete components should be placed as close as possible to the USB receptacle.
1.07	Place the low-capacitance ESD protections as close as possible to the USB receptacle, with no other external devices in between.
1.08	Common mode chokes degrade signal quality, thus they should only be used if EMI performance enhancement is absolutely necessary.
1.09	Place the common mode choke (if required to improve EMI performance) as close as possible to the USB receptacle (but after the ESD device(s)).
	USB Interface (DP, DM)
2.00	Separate signal traces into similar categories and route similar signal traces together, that is, DP/DM and ULPI.
2.01	Route the USB receptacle ground pin to the analog ground plane of the device with multiple via connections.
2.02	Route the DP/DM trace pair together.
2.03	For HS-capable devices, route the DP/DM signals from the device to the USB receptacle with an optimum trace length of 5 cm. Maximum trace length 1-way delay of 0.5 ns (7.5 cm for 67 ps/cm in FR-3).
2.04	Match the DP/DM trace lengths. Maximum mismatch allowable is 150 mils (~0.4 cm).
2.05	Route the DP/DM signals with $90-\Omega$ differential impedance, and $22.5\sim30-\Omega$ common-mode impedance (objective is to have Zodd $\sim=$ Z0 = Zdiff/2 = 45 Ω).
2.06	Use an impedance calculator to determine the trace width and spacing required for the specific board stack up being used.
2.07	Keep the maximum possible distance between DP and DM signals from the other platform clocks, power sources and digital / analog signals
2.08	Do not route DP/DM signals over or under crystals, oscillators, clock synthesizers, magnetic devices, or ICs that use clocks.
2.09	Avoid changing the routing layer for DP/DM traces. If unavoidable, use multiple vias.
2.10	Minimize bends and corners on DP/DM traces.
2.11	When it becomes necessary to turn 90°, use two 45° turns or an arc instead of making a single 90° turn. This reduces reflections on the signal by minimizing impedance discontinuities.
2.12	Avoid creating stubs on the DP/DM traces as stubs cause signal reflections and affect global signal quality.

TUSB121x USB2.0 Product Family Board Layout Recommendations (continued)

Table 14. TUSB121x USB2.0 Product Family Board Layout Recommendations (continued)

Item	USB General Considerations							
2.13	If stubs are unavoidable, they must be less than 200 mils (~0.5 cm).							
2.14	Route DP/DM signals over continuous VCC or GND planes, without interruption, avoiding crossing anti-etch (plane splits), which increase both inductance and radiation levels by introducing a greater loop area.							
2.15	Route DP/DM signals with at least 25 mils (~0.65 mm) away from any plane splits.							
2.16	Follow the 20*h thumb rule by keeping traces at least 20*(height above the plane) away from the edge of the plane (VCC or GND, depending on the plane the trace is over).							
2.17	Changing signal layers is preferable to crossing plane splits if a choice must be made.							
2.18	If crossing a plane split is completely unavoidable, proper placement of stitching capacitors can minimize the adverse effects on EMI and signal quality performance caused by crossing the split.							
2.19	Avoid anti-etch on the ground plane.							
	ULPI Interface (ULPIDATA<7:0>, ULPICLK, ULPINXT, ULPIDIR, ULPISTP)							
3.00	Route ULPI 12-pin bus as a $50-\Omega$ single-ended adapted bus.							
3.01	Route ULPI 12-pin bus with minimum trace lengths and a strict maximum of 90 mm, to ensure timing. (Timing budget 600 ps maximum 1-way delay assuming 66 ps/cm							
3.02	Route ULPI 21-pin bus equalizing paths lengths as much as possible to have equal delays.							
3.03	Route ULPI 12-pin bus as clock signals and set a minimum spacing of 3 times the trace width (S < 3W).							
3.04	If the 3W minimum spacing is not respected, the minimum spacing for clock signals based on EMI testing experience is 50 mils (1.27 mm).							
3.05	Route ULPI 12-pin bus with a dedicated ground plane.							
3.06	Place and route the ULPI monitoring buffers as close as possible from the device ULPI bus (on test boards).							
	USB Clock (USBCLKIN, CLK_IN1, CLK_IN0)							
4.00	Route the USB clock with the minimum possible trace length.							
4.01	Keep the maximum possible distance between the USB clock and the other platform clocks, power sources, and digital and analog signals.							
4.02	Route the USBCLKIN, CLK_IN1 and CLK_IN0 inputs as 50-Ω single-ended signals.							
	USB Power Supply (VBUS, REG3V3, REG1V5, VBAT)							
5.00	VBUS must be a power plane from the device VBUS ball to the USB receptacle, or if a power plan is not possible, VBUS must be as large as possible.							
5.01	Power signals must be wide to accommodate current level.							

10.2 Layout Guidelines

- The V_{DDIO} pins of the TUSB1210 supply 1.8-V (nominal) power to the core of the TUSB1210. This power rail
 can be isolated from all other power rails by a ferrite bead to reduce noise.
- The V_{BAT} pin of the TUSB1210 supply 3.3-V (nominal) power rail to the TUSB1210. This power rail can be isolated from all other power rails by a ferrite bead to reduce noise.
- The V_{BUS} pin of the TUSB1210 supply 5-V (nominal) power rail to the TUSB1210. This pin is normally connected to the V_{BUS} pin of the USB connector.
- All power rails require 0.1 μF decoupling capacitors for stability and noise immunity. The smaller decoupling
 capacitors should be placed as close to the TUSB1210 power pins as possible with an optimal grouping of
 two of differing values per pin.

10.3 Layout Example

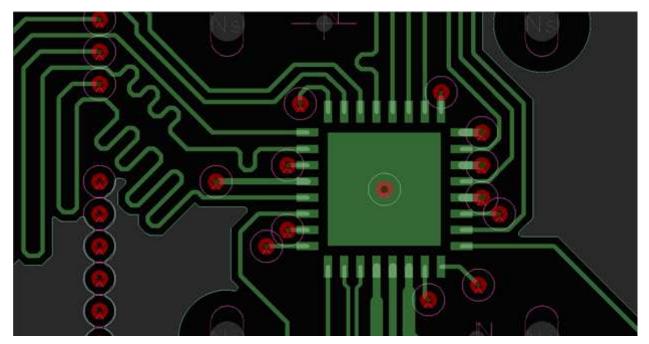


Figure 9. TUSB1210 Layout Example

器件和文档支持

11.1 器件支持

11.2 文档支持

SLLZ066 器件勘误表。介绍 TUSB1210-Q1 的功能规格的已知例外情况。

11.3 接收文档更新通知

要接收文档更新通知,请导航至 ti.com. 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产品 信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。

11.4 支持资源

TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

11.5 商标

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

11.6 静电放电警告

ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序,可 能会损坏集成电路。

🕼 ESD 的损坏小至导致微小的性能降级,大至整个器件故障。 精密的集成电路可能更容易受到损坏,这是因为非常细微的参数更改都可 能会导致器件与其发布的规格不相符。

11.7 Glossary

SLYZ022 — TI Glossarv.

This glossary lists and explains terms, acronyms, and definitions.

12 机械、封装和可订购信息

以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且 不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。

重要声明和免责声明

TI 均以"原样"提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示担保。

所述资源可供专业开发人员应用TI产品进行设计使用。您将对以下行为独自承担全部责任: (1)针对您的应用选择合适的TI产品; (2)设计、验证并测试您的应用; (3)确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI对您使用所述资源的授权仅限于开发资源所涉及TI产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI及其代表造成的损害。

TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。

邮寄地址: 上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码: 200122 Copyright © 2020 德州仪器半导体技术(上海)有限公司

PACKAGE OPTION ADDENDUM

10-Dec-2020

PACKAGING INFORMATION

www.ti.com

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
TUSB1210BRHBR	ACTIVE	VQFN	RHB	32	3000	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	T1210B	Samples
TUSB1210BRHBT	ACTIVE	VQFN	RHB	32	250	RoHS & Green	NIPDAU	Level-2-260C-1 YEAR	-40 to 85	T1210B	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

10-Dec-2020

PACKAGE MATERIALS INFORMATION

www.ti.com 28-Dec-2019

TAPE AND REEL INFORMATION

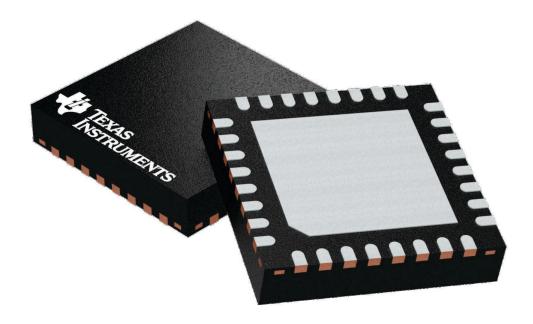
	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

ĺ													
	Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
	TUSB1210BRHBR	VQFN	RHB	32	3000	330.0	12.4	5.3	5.3	1.1	8.0	12.0	Q2
	TUSB1210BRHBT	VQFN	RHB	32	250	180.0	12.4	5.3	5.3	1.1	8.0	12.0	Q2

www.ti.com 28-Dec-2019

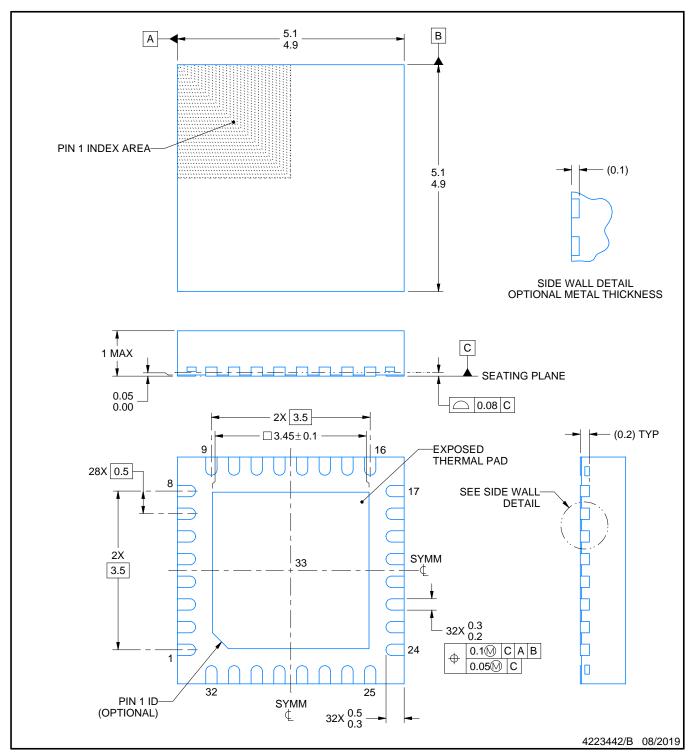


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins SPQ		Length (mm)	Width (mm)	Height (mm)	
TUSB1210BRHBR	VQFN	RHB	32	3000	367.0	367.0	35.0	
TUSB1210BRHBT	VQFN	RHB	32	250	210.0	185.0	35.0	

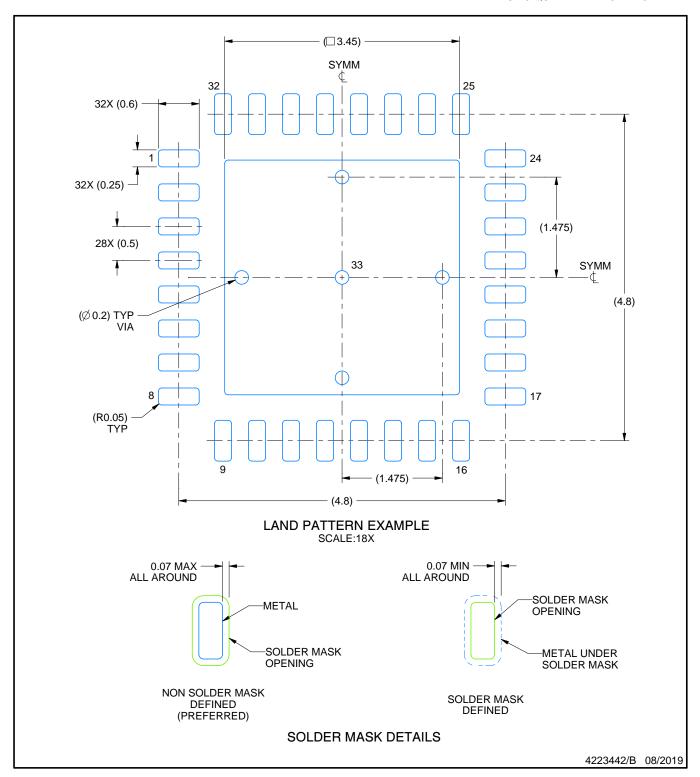
5 x 5, 0.5 mm pitch

PLASTIC QUAD FLATPACK - NO LEAD


Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

4224745/A

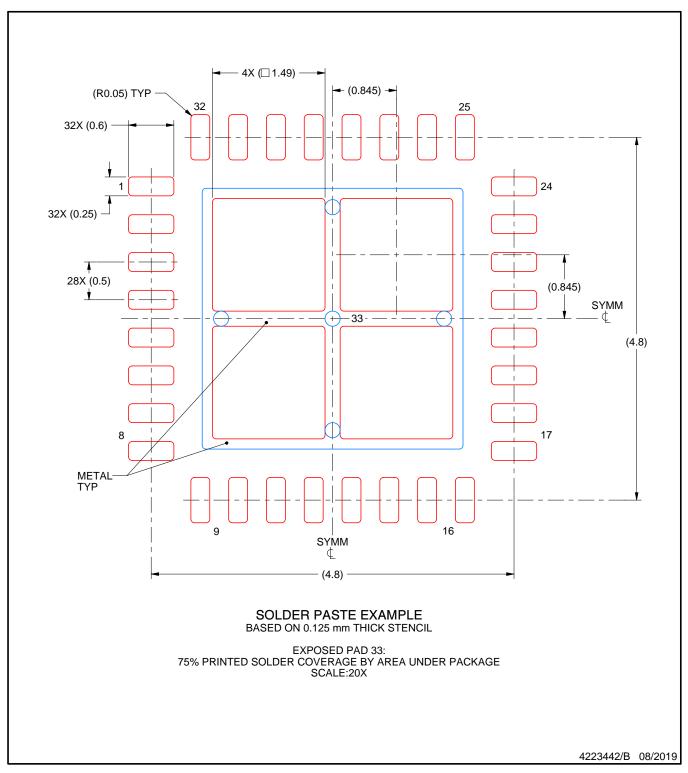
PLASTIC QUAD FLATPACK - NO LEAD



NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

PLASTIC QUAD FLATPACK - NO LEAD



NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

重要声明和免责声明

TI 均以"原样"提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示担保。

所述资源可供专业开发人员应用TI产品进行设计使用。您将对以下行为独自承担全部责任: (1)针对您的应用选择合适的TI产品; (2)设计、验证并测试您的应用; (3)确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI对您使用所述资源的授权仅限于开发资源所涉及TI产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI及其代表造成的损害。

TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。

邮寄地址: 上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码: 200122 Copyright © 2020 德州仪器半导体技术(上海)有限公司