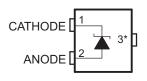


# 精密微功耗并联电压基准

查询样品: LM4040-EP

# 特性

- 固定电压输出 2.5 V
- 严格的输出电压允差和低温度系数
  - 最大 0.65%, 100 ppm/°C
- 低输出噪音: 35 μV<sub>RMS</sub> 典型值
- 宽工作电流范围: 45 µA Typ 至 15 mA
- 所有电容负载下均稳定;无需输出电容器


### 应用范围

- 数据采集系统
- 电源和电源监视器
- 测量仪器和测试设备
- 过程控制
- 高精度音频
- 车用电子器件
- 能耗管理
- 电池供电设备

#### 支持国防、航天和医疗应用

- 受控基线
- 一个组装/测试场所
- 一个制造场所
- 可在军用温度范围内 (-55°C/125°C)工作(1)
- 产品生命周期有所延长
- 拓展的产品变更通知
- 产品可追溯性

# DBZ (SOT-23) PACKAGE (TOP VIEW)



- \* Pin 3 is attached to substrate and must be connected to ANODE or left open.
- (1) 可提供定制温度范围的器件

## 说明/订购信息

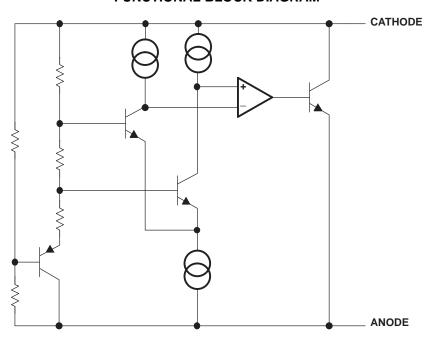
LM4040 并联电压基准系列是多用途的,易于使用的基准,能满足广泛应用。 2-引脚固定输出设备工作时无需外部 电容器并对所用电容负载都稳定。 除此之外, 此基准提供低动态阻抗、低噪音和低温度系数以保证大范围工作电流 和温度下的稳定输出电压。 LM4040 在片子分类过程中使用熔丝和Zener-zap 反向击穿电压微调以提供允许偏差在 0.65%的输出电压。

封装在节约空间的SOT-23-3封转内并要求 45 μA (典型值)最小电流, LM4040 同样也是便携式应用的最佳选择。 LM4040C25 工作环境温度范围为 –55°C 至 125°C。

## ORDERING INFORMATION(1)

| T <sub>A</sub> | DEVICE<br>GRADE                                               | V <sub>KA</sub> | PACKAC         | GE .        | ORDERABLE<br>PART NUMBER | TOP-SIDE<br>MARKING <sup>(2)</sup> |
|----------------|---------------------------------------------------------------|-----------------|----------------|-------------|--------------------------|------------------------------------|
| –55°C to 125°C | 0.65% initial accuracy and 100 ppm/°C temperature coefficient | 2.5 V           | SOT-23-3 (DBZ) | Reel of 250 | LM4040C25MDBZTEP         | SAGU                               |

<sup>(1)</sup> For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.




Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

<sup>(2)</sup> The actual top-side marking has one additional character that designates the wafer fab/assembly site.



#### **FUNCTIONAL BLOCK DIAGRAM**



# Absolute Maximum Ratings(1)

over free-air temperature range (unless otherwise noted)

|                  |                                        | MIN             | MAX | UNIT |
|------------------|----------------------------------------|-----------------|-----|------|
| IZ               | Continuous cathode current             | -10             | 25  | mA   |
| $T_{J}$          | Operating virtual junction temperature |                 | 150 | °C   |
| T <sub>stg</sub> | Storage temperature range              | <del>-</del> 65 | 150 | °C   |

Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

## THERMAL INFORMATION

|               |                                                             | LM4040 |       |
|---------------|-------------------------------------------------------------|--------|-------|
|               | THERMAL METRIC <sup>(1)</sup>                               | DBZ    | UNITS |
|               |                                                             | 3 PINS |       |
| $\theta_{JA}$ | Junction-to-ambient thermal resistance <sup>(2)</sup>       | 320.8  |       |
| $\theta_{JC}$ | Junction-to-case thermal resistance                         | 98.2   |       |
| $\theta_{JB}$ | Junction-to-board thermal resistance <sup>(3)</sup>         | 53.3   | °C/W  |
| ΨЈТ           | Junction-to-top characterization parameter (4)              | 3.3    |       |
| ΨЈВ           | Junction-to-board characterization parameter <sup>(5)</sup> | 51.8   |       |

- 有关传统和新的热度量的更多信息,请参阅 *IC* 封装热度量 应用报告 SPRA953。 在 JESD51-2a 描述的环境中,按照 JESD51-7 的指定在一个 JEDEC 标准 high-K 测试电路板上进行仿真,从而获得自然对流条件下的结 到外部热阻。
- 按照 JESD51-8 中的说明,通过在配有用于控制 PCB 温度的环形冷板夹具的环境中进行仿真,以获得结到电路板热阻。
- 结到顶部的表征参数 (ψ<sub>JT</sub>) 估算真实系统中器件的结温,并使用 JESD51-2a(第 6 章和第 7 章)中描述的程序从从得到 θ<sub>JA</sub>的仿真数据中 提取出该参数。
- 结到电路板的表征参数 (ΨJB) 估算真实系统中器件的结温,并使用 JESD51-2a(第 6 章和第7 章)中描述的程序从从得到 θJA 的仿真数据 中提取出该参数。



# **Recommended Operating Conditions**

|       |                      | MIN         | MAX | UNIT |
|-------|----------------------|-------------|-----|------|
| $I_Z$ | Cathode current      | See (1)     | 15  | mA   |
| TA    | Free-air temperature | <b>–</b> 55 | 125 | °C   |

<sup>(1)</sup> See parametric tables

#### **Electrical Characteristics**

at extended temperature range, full-range  $T_A = -55^{\circ}C$  to 125°C (unless otherwise noted)

|                                 | PARAMETER                                                    | TEST CONDITIONS                                                          | T <sub>A</sub> | MIN | TYP  | MAX  | UNIT                 |  |
|---------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------|----------------|-----|------|------|----------------------|--|
| $V_Z$                           | Reverse breakdown voltage                                    | I <sub>Z</sub> = 100 μA                                                  | 25°C           |     | 2.5  |      | V                    |  |
| ۸۱/                             | Reverse breakdown voltage                                    | 1. 100                                                                   | 25°C           | -16 |      | 16   | mV                   |  |
| $\Delta V_Z$                    | tolerance                                                    | I <sub>Z</sub> = 100 μA                                                  | Full range     | -42 |      | 42   |                      |  |
| l-,:                            | Minimum cathode current                                      |                                                                          | 25°C           |     | 45   | 75   | μA                   |  |
| $I_{Z,min}$                     | Williman Callidge Current                                    |                                                                          | Full range     |     |      | 82   | μΑ                   |  |
|                                 |                                                              | $I_Z = 10 \text{ mA}$                                                    | 25°C           |     | ±20  |      | ppm/°C               |  |
| ~                               | Average temperature coefficient of                           | I <sub>7</sub> = 1 mA                                                    | 25°C           |     | ±15  |      |                      |  |
| $\alpha_{VZ}$                   | reverse breakdown voltage                                    | IZ = I IIIA                                                              | Full range     |     |      | ±100 |                      |  |
|                                 |                                                              | $I_Z = 100 \mu A$                                                        | 25°C           |     | ±15  |      |                      |  |
|                                 |                                                              | I <sub>Z,min</sub> < I <sub>Z</sub> < 1 mA                               | 25°C           |     | 0.3  | 0.8  | mV                   |  |
| $\frac{\Delta V_Z}{\Delta I_Z}$ | Reverse breakdown voltage change with cathode current change | IZ,min \ IZ \ I IIIA                                                     | Full range     |     |      | 1.1  |                      |  |
| $\Delta I_{Z}$                  |                                                              | 1 mA < I <sub>7</sub> < 15 mA                                            | 25°C           |     | 2.5  | 6    | IIIV                 |  |
|                                 |                                                              | 1 IIIA < 1 <u>7</u> < 13 IIIA                                            | Full range     |     |      | 9    |                      |  |
| Z <sub>Z</sub>                  | Reverse dynamic impedance                                    | $I_Z = 1 \text{ mA}, f = 120 \text{ Hz},$<br>$I_{AC} = 0.1 I_Z$          | 25°C           |     | 0.3  |      | Ω                    |  |
| e <sub>N</sub>                  | Wideband noise                                               | $I_Z = 100 \mu A$ ,<br>10 Hz \le f \le 10 kHz                            | 25°C           |     | 35   |      | $\mu V_{\text{RMS}}$ |  |
|                                 | Long-term stability of reverse breakdown voltage             | t = 1000 h,<br>T <sub>A</sub> = 25°C ± 0.1°C,<br>I <sub>Z</sub> = 100 μA |                |     | 120  |      | ppm                  |  |
| V <sub>HYST</sub>               | Thermal hysteresis (1)                                       | $\Delta T_A = -55^{\circ}C$ to 125°C                                     |                |     | 0.08 |      | %                    |  |

<sup>(1)</sup> Thermal hysteresis is defined as  $V_{Z,25^{\circ}C}$  (after cycling to  $-55^{\circ}C$ ) –  $V_{Z,25^{\circ}C}$  (after cycling to  $125^{\circ}C$ ).



#### TYPICAL CHARACTERISTICS

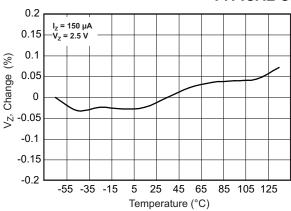



Figure 1. Change in Vz vs Change in Temperature

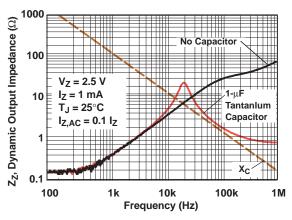



Figure 3. Output Impedance vs Frequency

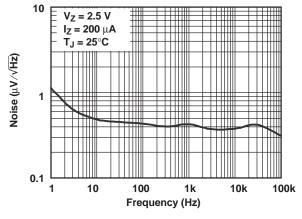



Figure 5. Noise Voltage vs Frequency

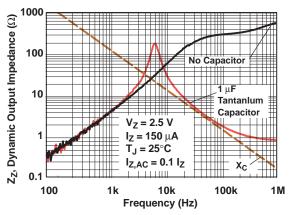



Figure 2. Output Impedance vs Frequency

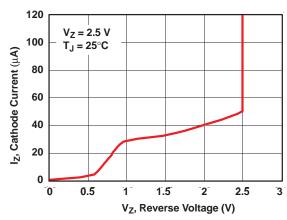



Figure 4. Cathode Current vs Reverse Voltage

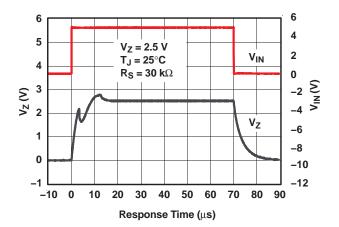



Figure 6. Start-Up Characteristics



#### **APPLICATION INFORMATION**

#### **Start-Up Characteristics**

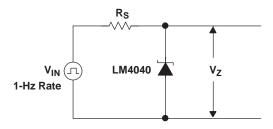



Figure 7. Test Circuit

#### **Output Capacitor**

The LM4040 does not require an output capacitor across cathode and anode for stability. However, if an output bypass capacitor is desired, the LM4040 is designed to be stable with all capacitive loads.

#### **SOT-23 Connections**

There is a parasitic Schottky diode connected between pins 2 and 3 of the SOT-23 packaged device. Thus, pin 3 of the SOT-23 package must be left floating or connected to pin 2.

#### **Cathode and Load Currents**

In a typical shunt-regulator configuration (see Figure 8), an external resistor,  $R_S$ , is connected between the supply and the cathode of the LM4040.  $R_S$  must be set properly, as it sets the total current available to supply the load ( $I_L$ ) and bias the LM4040 ( $I_Z$ ). In all cases,  $I_Z$  must stay within a specified range for proper operation of the reference. Taking into consideration one extreme in the variation of the load and supply voltage (maximum  $I_L$  and minimum  $V_S$ ),  $R_S$  must be small enough to supply the minimum  $I_Z$  required for operation of the regulator, as given by data-sheet parameters. At the other extreme, maximum  $V_S$  and minimum  $I_L$ ,  $R_S$  must be large enough to limit  $I_Z$  to less than its maximum-rated value of 15 mA.

R<sub>S</sub> is calculated according to Equation 1:

$$R_{s} = \frac{(V_{s} - V_{z})}{(I_{L} + I_{z})} \tag{1}$$

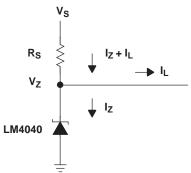



Figure 8. Shunt Regulator



## PACKAGE OPTION ADDENDUM

11-Dec-2020

#### PACKAGING INFORMATION

www.ti.com

| Orderable Device | Status | Package Type | Package<br>Drawing | Pins | Package<br>Qty | Eco Plan     | Lead finish/<br>Ball material | MSL Peak Temp      | Op Temp (°C) | Device Marking (4/5) | Samples |
|------------------|--------|--------------|--------------------|------|----------------|--------------|-------------------------------|--------------------|--------------|----------------------|---------|
| LM4040C25MDBZTEP | ACTIVE | SOT-23       | DBZ                | 3    | 250            | RoHS & Green | NIPDAU                        | Level-1-260C-UNLIM | -55 to 125   | SAGU                 | Samples |
| V62/11615-01XB   | ACTIVE | SOT-23       | DBZ                | 3    | 250            | RoHS & Green | NIPDAU                        | Level-1-260C-UNLIM | -55 to 125   | SAGU                 | Samples |

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

**OBSOLETE:** TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

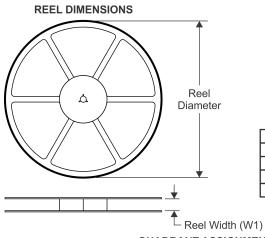
Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

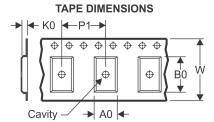
- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

**Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

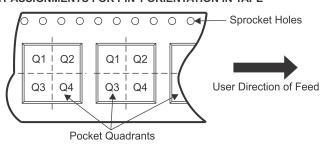






11-Dec-2020

# PACKAGE MATERIALS INFORMATION

www.ti.com 5-Jan-2021


## TAPE AND REEL INFORMATION





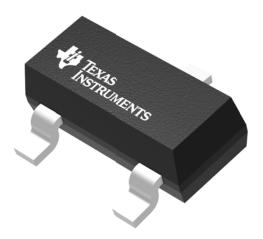
|    | Dimension designed to accommodate the component width     |
|----|-----------------------------------------------------------|
| B0 | Dimension designed to accommodate the component length    |
| K0 | Dimension designed to accommodate the component thickness |
| W  | Overall width of the carrier tape                         |
| P1 | Pitch between successive cavity centers                   |

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE




#### \*All dimensions are nominal

| Device           | Package<br>Type | Package<br>Drawing |   |     | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
|------------------|-----------------|--------------------|---|-----|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------|
| LM4040C25MDBZTEP | SOT-23          | DBZ                | 3 | 250 | 179.0                    | 8.4                      | 3.15       | 2.95       | 1.22       | 4.0        | 8.0       | Q3               |


# **PACKAGE MATERIALS INFORMATION**

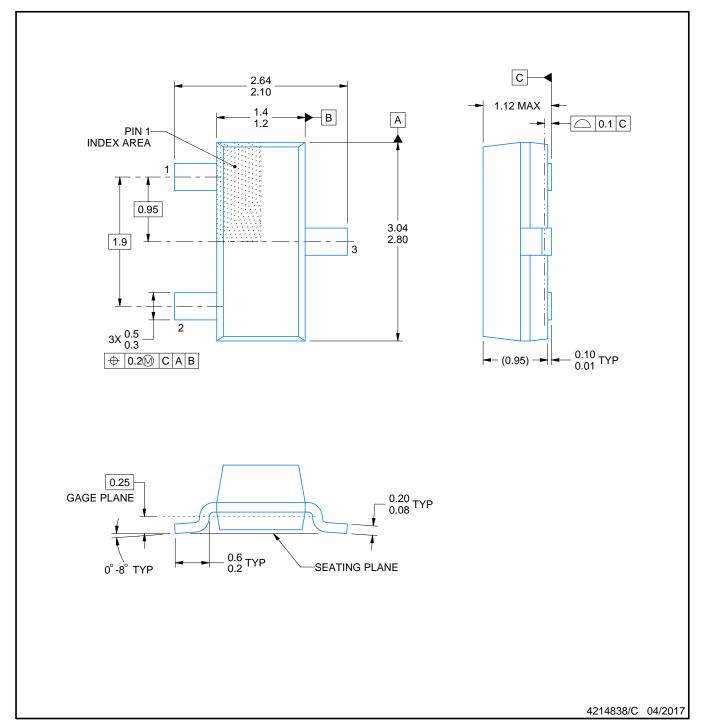
www.ti.com 5-Jan-2021



#### \*All dimensions are nominal

| Device Package Typ |        | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) |  |
|--------------------|--------|-----------------|------|-----|-------------|------------|-------------|--|
| LM4040C25MDBZTEP   | SOT-23 | DBZ             | 3    | 250 | 200.0       | 183.0      | 25.0        |  |



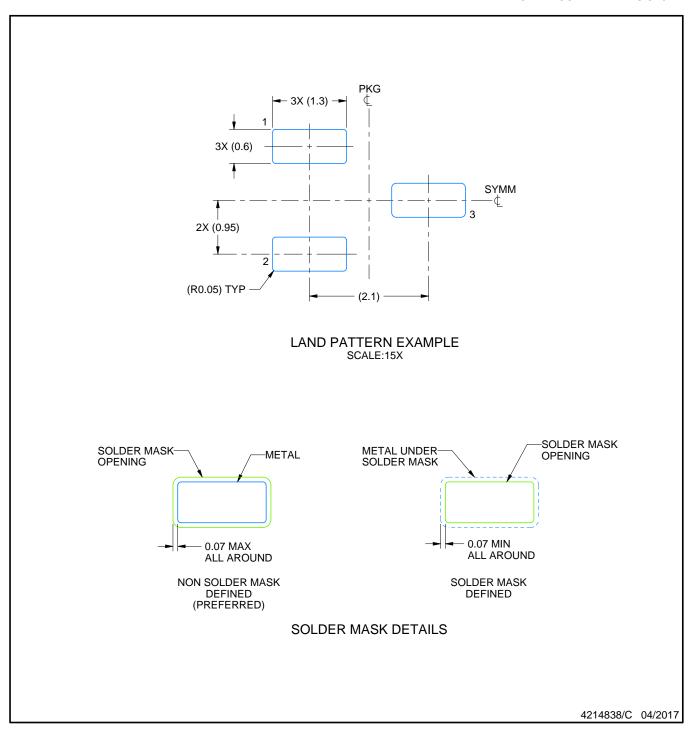

Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

4203227/C





SMALL OUTLINE TRANSISTOR

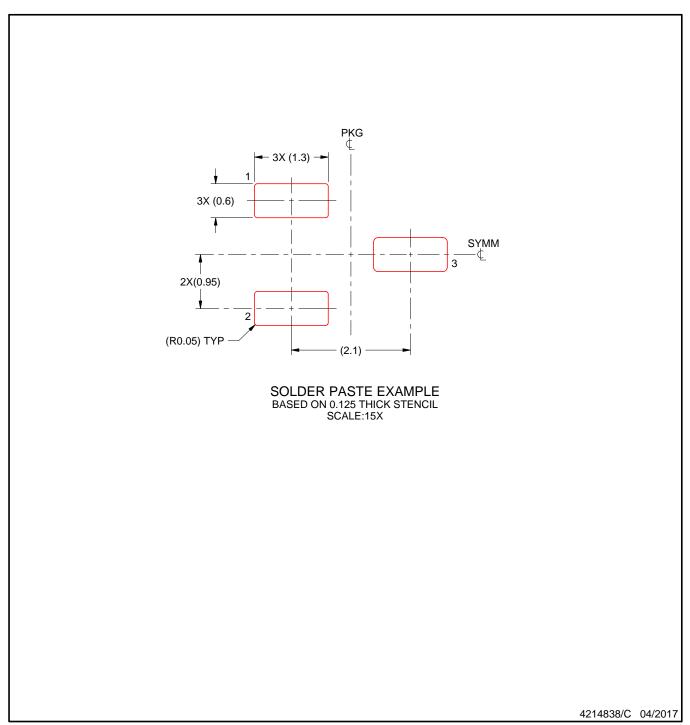



#### NOTES:

- All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
   This drawing is subject to change without notice.
   Reference JEDEC registration TO-236, except minimum foot length.



SMALL OUTLINE TRANSISTOR




NOTES: (continued)

- 4. Publication IPC-7351 may have alternate designs.5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.



SMALL OUTLINE TRANSISTOR



NOTES: (continued)

- 6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 7. Board assembly site may have different recommendations for stencil design.



## 重要声明和免责声明

TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。

这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。

TI 提供的产品受 TI 的销售条款 (https://www.ti.com.cn/zh-cn/legal/termsofsale.html) 或 ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。

邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122 Copyright © 2021 德州仪器半导体技术(上海)有限公司