TMUX6219 ZHCSM12B - SEPTEMBER 2020 - REVISED JANUARY 2021 # 具有 1.8V 逻辑电平的 TMUX621936V、低 Ron、2:1 (SPDT) 开关 # 1 特性 双电源电压范围: ±4.5V 至 ±18V 单电源电压范围: 4.5V 至 36V 低导通电阻: 2.1Ω 低电荷注入:-10pC 高电流支持:330mA(最大值) -40°C 至 +125°C 工作温度 兼容 1.8V 逻辑电平 失效防护逻辑 轨至轨运行 双向信号路径 先断后合开关 # 2 应用 - 工厂自动化和工业控制 - 可编程逻辑控制器 (PLC) - 模拟输入模块 - 半导体测试 - 交流充电(桩)站 - 超声波扫描仪 - 患者监护和诊断 - 光纤网络 - 光学测试设备 - 远程无线电单元 - 有线网络 - 数据采集系统 - 燃气表 - 流量发送器 # 3 说明 TMUX6219 是一款互补金属氧化物半导体 (CMOS) 开 关,采用单通道 2:1 (SPDT) 配置。此器件在单电源 (4.5V 至 36V)、双电源(±4.5V 至 ±18V)或非对称 电源(例如 $V_{DD} = 8V$, $V_{SS} = -12V$)供电时均能正常 运行。TMUX6219 可在源极 (Sx) 和漏极 (D) 引脚上支 持从 Vss 到 Vpp 范围的双向模拟和数字信号。 可以通过控制 EN 引脚来启用或禁用 TMUX6219。当 禁用时,两个信号路径开关都关闭。当启用时,SEL 引脚可用于打开信号路径 1 (S1 至 D)或信号路径 2 (S2 至 D)。所有逻辑控制输入均支持 1.8V 到 V_{DD} 的逻辑电平,因此,当器件在有效电源电压范围内运行 时,可确保 TTL 和 CMOS 逻辑兼容性。失效防护逻辑 电路允许先在控制引脚上施加电压,然后在电源引脚上 施加电压,从而保护器件免受潜在的损害。 TMUX6219 是精密开关和多路复用器系列器件。这些 器件具有非常低的导通和关断泄漏电流以及较低的电荷 注入,因此可用于高精度测量应用。 ### 器件信息(1) | 器件型号 | 封装 | 封装尺寸 (标称值) | |----------|-----------------|-----------------| | TMUX6219 | VSSOP (8) (DGK) | 3.00mm × 3.00mm | 如需了解所有可用封装,请参阅数据表末尾的可订购产品附 (1) TMUX6219 方框图 # **Table of Contents** | 1 特性 1 | 7.9 Charge Injection27 | |--|--| | . · · · _
2 应用 1 | 7.10 Off Isolation27 | | 3 说明 | 7.11 Crosstalk | | 4 Revision History2 | 7.12 Bandwidth | | 5 Pin Configuration and Functions3 | 7.13 THD + Noise | | 6 Specifications4 | 7.14 Power Supply Rejection Ratio (PSRR)29 | | 6.1 Absolute Maximum Ratings4 | 8 Detailed Description30 | | 6.2 ESD Ratings4 | 8.1 Overview30 | | 6.3 Thermal Information4 | 8.2 Functional Block Diagram30 | | 6.4 Recommended Operating Conditions5 | 8.3 Feature Description30 | | 6.5 Source or Drain Continuous Current5 | 8.4 Device Functional Modes32 | | 6.6 ±15 V Dual Supply: Electrical Characteristics6 | 8.5 Truth Tables32 | | 6.7 ±15 V Dual Supply: Switching Characteristics7 | 9 Application and Implementation33 | | 6.8 36 V Single Supply: Electrical Characteristics9 | 9.1 Application Information | | 6.9 36 V Single Supply: Switching Characteristics 10 | 9.2 Typical Application33 | | 6.10 12 V Single Supply: Electrical Characteristics 12 | 10 Power Supply Recommendations34 | | 6.11 12 V Single Supply: Switching Characteristics13 | 11 Layout35 | | 6.12 ±5 V Dual Supply: Electrical Characteristics15 | 11.1 Layout Guidelines35 | | 6.13 ±5 V Dual Supply: Switching Characteristics 16 | 11.2 Layout Example35 | | 6.14 Typical Characteristics18 | 12 Device and Documentation Support36 | | 7 Parameter Measurement Information23 | 12.1 Related Documentation36 | | 7.1 On-Resistance23 | 12.2 Receiving Notification of Documentation Updates36 | | 7.2 Off-Leakage Current23 | 12.3 支持资源36 | | 7.3 On-Leakage Current24 | 12.4 Trademarks36 | | 7.4 Transition Time24 | 12.5 静电放电警告36 | | 7.5 t _{ON(EN)} and t _{OFF(EN)} | 12.6 术语表36 | | 7.6 Break-Before-Make25 | 13 Mechanical, Packaging, and Orderable | | 7.7 t _{ON (VDD)} Time26 | Information36 | | 7.8 Propagation Delay26 | | # **4 Revision History** 注:以前版本的页码可能与当前版本的页码不同 | С | Changes from Revision A (October 2020) to Revision B (January 2021) | Page | |---|---|--| | • | 将文档状态从 <i>预告信息</i> 更改为 <i>量产数据</i> | ······································ | # **5 Pin Configuration and Functions** 图 5-1. DGK Package 8-Pin VSSOP Top View # **Pin Functions** | NAME | NO. | TYPE ⁽¹⁾ | DESCRIPTION ⁽²⁾ | | |-----------------|-----|---------------------|---|--| | D | 1 | I/O | Drain pin. Can be an input or output. | | | S1 | 2 | I/O | Source pin 1. Can be an input or output. | | | GND | 3 | Р | Ground (0 V) reference | | | V _{DD} | 4 | Р | Positive power supply. This pin is the most positive power-supply potential. For reliable operation, connect a decoupling capacitor ranging from 0.1 μ F to 10 μ F between V_{DD} and GND. | | | EN | 5 | I | Active high logic enable, has internal pull-up resistor. When this pin is low, all switches are turned off. When this pin is high, the SEL logic input determine which switch is turned on. | | | SEL | 6 | I | Logic control input, has internal pull-down resistor. Controls the switch connection as shown in 表 8-1. | | | V _{SS} | 7 | Р | Negative power supply. This pin is the most negative power-supply potential. In single-supply applications, this pin can be connected to ground. For reliable operation, connect a decoupling capacitor ranging from 0.1 μ F to 10 μ F between V _{SS} and GND. | | | S2 | 8 | I/O | Source pin 2. Can be an input or output. | | - (1) I = input, O = output, I/O = input and output, P = power. - (2) Refer to 节 8.4 for what to do with unused pins. # **6 Specifications** # **6.1 Absolute Maximum Ratings** over operating free-air temperature range (unless otherwise noted)(1) (2) | | , | MIN | MAX | UNIT | |---|--|-----------------------|---------------------------------------|------| | V _{DD} - V _{SS} | | | 38 | V | | V_{DD} | Supply voltage | - 0.5 | 38 | V | | V _{SS} | | - 38 | 0.5 | V | | V _{SEL} or V _{EN} | Logic control input pin voltage (SEL, EN) ⁽³⁾ | - 0.5 | 38 | V | | I _{SEL} or I _{EN} | Logic control input pin current (SEL, EN) ⁽³⁾ | - 30 | 30 | mA | | V _S or V _D | Source or drain voltage (Sx, D) ⁽³⁾ | V _{SS} - 0.5 | V _{DD} +0.5 | V | | I _{IK} | Diode clamp current ⁽³⁾ | - 30 | 30 | mA | | I _S or I _{D (CONT)} | Source or drain continuous current (Sx, D) | | I _{DC} + 10 % ⁽⁴⁾ | mA | | T _A | Ambient temperature | - 55 | 150 | °C | | T _{stg} | Storage temperature | - 65 | 150 | °C | | T _J | Junction temperature | | 150 | °C | | P _{tot} | Total power dissipation ⁽⁵⁾ | | 460 | mW | - (1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. - (2) All voltages are with respect to ground, unless otherwise specified. - (3) Pins are diode-clamped to the power-supply rails. Over voltage signals must be voltage and current limited to maximum ratings. - (4) Refer to Source or Drain Continuous Current table for IDC specifications. - (5) For DGK package: P_{tot} derates linearily above $T_A = 70^{\circ}\text{C}$ by $6.7\text{mW}/^{\circ}\text{C}$. # 6.2 ESD Ratings | | | | VALUE | UNIT | |--------------------|---|--|-------|------| | ., | Human body model (HBM), per ANSI/ESDA/
JEDEC JS-001, all pins ⁽¹⁾ | | ±2000 | V | | V _(ESD) | | Charged device model (CDM), per JEDEC specification JESD22-C101, all pins ⁽²⁾ | ±500 | V | - (1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. - (2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. ### 6.3 Thermal Information | | | TMUX6219 | | |------------------------|--|-------------|------| | | THERMAL METRIC ⁽¹⁾ | DGK (VSSOP) | UNIT | | | | 8 PINS | | | R ₀ JA | Junction-to-ambient thermal resistance | 152.1 | °C/W | | R _{θ JC(top)} | Junction-to-case (top) thermal resistance | 48.4 | °C/W | | R _{θ JB} | Junction-to-board thermal resistance | 73.2 | °C/W | | Ψ_{JT} | Junction-to-top characterization parameter | 4.1 | °C/W | | ΨЈВ | Junction-to-board characterization parameter | 71.8 | °C/W | | R ₀ JC(bot) | Junction-to-case (bottom) thermal resistance | N/A | °C/W | For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report. Product Folder Links: TMUX6219 # **6.4 Recommended Operating Conditions** over operating free-air temperature range (unless otherwise noted) | | | MIN | NOM MAX | UNIT | |---|--|-----------------|--------------------------------|------| | V _{DD} - V _{SS} (1) | Power supply voltage differential | 4.5 | 36 | V | | V _{DD} | Positive power supply voltage | 4.5 | 36 | V | | V _S or V _D | Signal path input/output voltage (source or drain pin) (Sx, D) | V _{SS} | V_{DD} | V | | V _{SEL} or V _{EN} | Address or enable pin voltage | 0 | 36 | V | | I _S or I _{D (CONT)} | Source or drain continuous current (Sx, D) | | I _{DC} ⁽²⁾ | mA | | T _A | Ambient temperature | - 40 | 125 | °C | V_{DD} and V_{SS} can be any value as long as 4.5 V \leq (V_{DD} - V_{SS}) \leq 36 V, and the minimum V_{DD} is met. Refer to *Source or Drain Continuous Current* table for I_{DC} specifications. # **6.5 Source or Drain Continuous Current** at supply voltage of V_{DD} ± 10%, V_{SS} ± 10 % (unless otherwise noted) | CONTIN | UOUS CURRENT PER CHANNEL (I _{DC}) | T _A = 25°C | T _Δ = 85°C | T _A = 125°C | UNIT | |-------------|---|-----------------------|-----------------------|------------------------|------| | PACKAGE | TEST CONDITIONS | 1A - 25 C | 1A - 65 C | 1A - 125 C | ONIT | | | ±15 V Dual Supply | 330 | 210 | 120 | mA | | | +36 V Single Supply ⁽¹⁾ | 300 | 190 | 110 | mA | | DGK (VSSOP) | +12 V Single Supply | 240 | 160 | 100 | mA | | | ±5 V Dual Supply | 240 | 160 | 100 | mA | | | +5 V Single
Supply | 180 | 120 | 80 | mA | ⁽¹⁾ Specified for nominal supply voltage only. # 6.6 ±15 V Dual Supply: Electrical Characteristics V_{DD} = +15 V ± 10%, V_{SS} = - 15 V ±10%, GND = 0 V (unless otherwise noted) Typical at V_{DD} = +15 V, V_{SS} = - 15 V, T_A = 25°C (unless otherwise noted) | ANALOG | | | | | | | UNIT | |---|---|--|------------------|-------|--|---|------| | | SWITCH | | | | | | | | | | V _S = -10 V to +10 V | 25°C | | 2.1 | 2.9 | Ω | | R _{ON} | On-resistance | $I_D = -10 \text{ mA}$ | - 40°C to +85°C | | | 3.8 | Ω | | | | Refer to On-Resistance | - 40°C to +125°C | | | 4.5 | Ω | | | | V _S = -10 V to +10 V | 25°C | | 0.05 | 0.25 | Ω | | | On-resistance mismatch between channels | $I_D = -10 \text{ mA}$ | - 40°C to +85°C | | | 0.3 | Ω | | | | Refer to On-Resistance | - 40°C to +125°C | | | 0.35 | Ω | | | | V _S = -10 V to +10 V | 25°C | | 0.5 | 3.8 4.5 0.25 0.3 0.35 0.6 0.7 0.85 0.2 1.6 40 1 3 60 1 2 50 36 0.8 1 | Ω | | R _{ON FLAT} | On-resistance flatness | $I_S = -10 \text{ mA}$ | - 40°C to +85°C | | | 3.8 4.5 0.25 0.3 0.35 0.6 0.7 0.85 1.6 40 1 3 60 1 2 50 0.8 1 | Ω | | | | Refer to On-Resistance | - 40°C to +125°C | | 3.6 4.5 0.05 0.35 0.35 0.5 0.6 0.7 0.85 0.01 0.05 1.6 40 0.05 1.6 0.04 1.6 0.04 1.6 0.05 3.6 0.005 1.6 0.005 3.7 3.6 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 | 0.85 | Ω | | R _{ON DRIFT} | On-resistance drift | V _S = 0 V, I _S = -10 mA
Refer to On-Resistance | - 40°C to +125°C | | 0.01 | | Ω/°C | | | | V _{DD} = 16.5 V, V _{SS} = -16.5 V | 25°C | - 0.2 | 0.05 | 0.2 | nA | | A RON CORNELAT CORNELAT CORNELAT CORNELAT CORNELAT CORNELAT CORNELAT CORNELAT CORNELATION | Source off leakage current ⁽¹⁾ | Switch state is off V _S = +10 V / - 10 V V _D = -10 V / + 10 V Refer to Off-Leakage Current | - 40°C to +85°C | - 1.6 | | 1.6 | nA | | | course on rounding | | - 40°C to +125°C | - 40 | | 40 | nA | | | Drain off leakage current ⁽¹⁾ | V_{DD} = 16.5 V, V_{SS} = -16.5 V
Switch state is off
V_S = +10 V / -10 V
V_D = -10 V / +10 V
Refer to Off-Leakage Current | 25°C | - 1 | 0.05 | 1 | nA | | l==. | | | - 40°C to +85°C | - 3 | | 3 | nA | | I _{D(OFF)} | | | - 40°C to +125°C | - 60 | | 60 | nA | | | | V _{DD} = 16.5 V, V _{SS} = -16.5 V | 25°C | - 1 | 0.04 | 1 | nA | | | Channel on leakage current ⁽²⁾ | Switch state is on $V_S = V_D = \pm 10 \text{ V}$ | - 40°C to +85°C | - 2 | | 2 | nA | | D(OFF) [S(ON) (D(ON) LOGIC INP | | Refer to On-Leakage Current | - 40°C to +125°C | - 50 | | 50 | nA | | LOGIC INF | PUTS (SEL / EN pins) | | | | | | | | V _{IH} | Logic voltage high | | - 40°C to +125°C | 1.3 | | 36 | V | | V _{IL} | Logic voltage low | | - 40°C to +125°C | 0 | | 8.0 | V | | I _{IH} | Input leakage current | | - 40°C to +125°C | | 0.005 | 1 | μA | | I _{IL} | Input leakage current | | - 40°C to +125°C | - 1 | - 0.005 | | μA | | C _{IN} | Logic input capacitance | | - 40°C to +125°C | | 3 | | pF | | POWER S | UPPLY | | | | | ı | | | | | | 25°C | | 30 | 40 | μΑ | | I _{DD} | V _{DD} supply current | $V_{DD} = 16.5 \text{ V}, V_{SS} = -16.5 \text{ V}$
Logic inputs = 0 V, 5 V, or V_{DD} | - 40°C to +85°C | | | 48 | μA | | | | | - 40°C to +125°C | | | 62 | μΑ | | | | | 25°C | | 3 | 10 | μΑ | | I _{SS} | V _{SS} supply current | V_{DD} = 16.5 V, V_{SS} = -16.5 V
Logic inputs = 0 V, 5 V, or V_{DD} | - 40°C to +85°C | | | 15 | μA | | | | | - 40°C to +125°C | | | 25 | μΑ | When V_S is positive, V_D is negative, or when V_S is negative, V_D is positive. (1) When V_S is at a voltage potential, V_D is floating, or when V_D is at a voltage potential, V_S is floating. # 6.7 ±15 V Dual Supply: Switching Characteristics $V_{DD} = +15~V~\pm~10\%,~V_{SS} = ~-~15~V~\pm10\%,~GND = 0~V~(unless~otherwise~noted)$ Typical at $V_{DD} = +15~V,~V_{SS} = ~-~15~V,~T_A = 25\%$ (unless otherwise noted) | | PARAMETER | TEST CONDITIONS | T _A | MIN | TYP | MAX | UNIT | |--|---|---|------------------|-----|-------|-----|------| | | | V _S = 10 V | 25°C | | 120 | 175 | ns | | t _{TRAN} | Transition time from control input | $R_L = 300 \Omega$, $C_L = 35 pF$ | - 40°C to +85°C | | | 190 | ns | | | | Refer to Transition Time | - 40°C to +125°C | | | 210 | ns | | | | V _S = 10 V | 25°C | | 100 | 170 | ns | | t _{ON (EN)} | Turn-on time from enable | $R_L = 300 \Omega$, $C_L = 35 pF$
Refer to Turn-on and Turn-off | - 40°C to +85°C | | | 185 | ns | | | | Time | - 40°C to +125°C | | | 200 | ns | | | | V _S = 10 V | 25°C | | 100 | 180 | ns | | t _{OFF (EN)} | Turn-off time from enable | $R_L = 300 \Omega$, $C_L = 35 pF$
Refer to Turn-on and Turn-off | - 40°C to +85°C | | | 195 | ns | | ton (en) Ti toff (en) Ti tber (| | Time | - 40°C to +125°C | | | 210 | ns | | | | V _S = 10 V, | 25°C | | 50 | | ns | | t _{BBM} | Break-before-make time delay | $R_L = 300 \Omega$, $C_L = 35 pF$ | - 40°C to +85°C | 1 | | | ns | | t _{BBM} B T _{ON (VDD)} C (V t _{PD} P Q _{INJ} C O _{ISO} C | | Refer to Break-Before-Make | - 40°C to +125°C | 1 | | | ns | | | | V _{DD} rise time = 100ns | 25°C | | 0.19 | | ms | | T _{ON (VDD)} | Device turn on time (V _{DD} to output) | $R_L = 300 \Omega$, $C_L = 35 pF$ | - 40°C to +85°C | | 0.2 | | ms | | | (VDD to output) | Refer to Turn-on (VDD) Time | - 40°C to +125°C | | 0.2 | | ms | | t _{PD} | Propagation delay | R_L = 50 Ω , C_L = 5 pF
Refer to
Propagation Delay | 25°C | | 700 | | ps | | Q _{INJ} | Charge injection | V _D = 0 V, C _L = 1 nF
Refer to Charge Injection | 25°C | | - 10 | | pC | | O _{ISO} | Off-isolation | R_L = 50 Ω , C_L = 5 pF
V_S = 0 V, f = 100 kHz
Refer to Off Isolation | 25°C | | - 75 | | dB | | O _{ISO} | Off-isolation | R_L = 50 Ω , C_L = 5 pF
V_S = 0 V, f = 1 MHz
Refer to Off Isolation | 25°C | | - 55 | | dB | | X _{TALK} | Crosstalk | R_L = 50 Ω , C_L = 5 pF
V_S = 0 V, f = 100 kHz
Refer to Crosstalk | 25°C | | - 117 | | dB | | X _{TALK} | Crosstalk | $R_L = 50 \Omega$, $C_L = 5 pF$
$V_S = 0 V$, $f = 1 MHz$
Refer to Crosstalk | 25°C | | - 106 | | dB | | BW | - 3dB Bandwidth | $R_L = 50 \Omega$, $C_L = 5 pF$
$V_S = 0 V$
Refer to Bandwidth | 25°C | | 40 | | MHz | | IL | Insertion loss | R_L = 50 Ω , C_L = 5 pF
V_S = 0 V, f = 1 MHz | 25°C | _ | 0.18 | | dB | | ACPSRR | AC Power Supply Rejection Ratio | V_{PP} = 0.62 V on V_{DD} and V_{SS} R_L = 50 Ω , C_L = 5 pF, f = 1 MHz Refer to ACPSRR | 25°C | | - 64 | | dB | | THD+N | Total Harmonic Distortion + Noise | V_{PP} = 15 V, V_{BIAS} = 0 V
R_L = 10 k Ω , C_L = 5 pF,
f = 20 Hz to 20 kHz
Refer to THD + Noise | 25°C | 0. | .0005 | | % | | C _{S(OFF)} | Source off capacitance | V _S = 0 V, f = 1 MHz | 25°C | | 33 | | pF | | C _{D(OFF)} | Drain off capacitance | V _S = 0 V, f = 1 MHz | 25°C | | 48 | | pF | $V_{DD} = +15 \text{ V} \pm 10\%, \ V_{SS} = -15 \text{ V} \pm 10\%, \ \text{GND} = 0 \text{ V} \ \text{(unless otherwise noted)}$ Typical at $V_{DD} = +15 \text{ V}, \ V_{SS} = -15 \text{ V}, \ T_A = 25 ^{\circ}\text{C} \ \text{(unless otherwise noted)}$ | PARAMETER | | PARAMETER TEST CONDITIONS | | MIN | TYP | MAX | UNIT | |--------------------------|----------------|---------------------------------|------|-----|-----|-----|------| | $C_{S(ON)}, \ C_{D(ON)}$ | On capacitance | V _S = 0 V, f = 1 MHz | 25°C | | 148 | | pF | # 6.8 36 V Single Supply: Electrical Characteristics V_{DD} = +36 V ± 10%, V_{SS} = 0 V, GND = 0 V (unless otherwise noted) Typical at V_{DD} = +36 V, V_{SS} = 0 V, T_A = 25 °C (unless otherwise noted) | | PARAMETER | TEST CONDITIONS | T _A | MIN | TYP | MAX | UNIT | |--|---|---|------------------|-------|---------|------|------| | ANALOG | SWITCH | | | | | | | | | | V _S = 0 V to 30 V | 25°C | | 2.5 | 3.2 | Ω | | R _{ON} | On-resistance | $I_D = -10 \text{ mA}$ | - 40°C to +85°C | | | 4.2 | Ω | | | | Refer to On-Resistance | - 40°C to +125°C | | | 4.9 | Ω | | | | V _S = 0 V to 30 V | 25°C | | 0.1 | 0.2 | Ω | | ΔR_{ON} | On-resistance mismatch between channels | I _D = - 10 mA | - 40°C to +85°C | | | 0.25 | Ω | | | | Refer to On-Resistance | - 40°C to +125°C | | | 0.3 | Ω | | | | V _S = 0 V to 30 V | 25°C | | 0.3 | 1 | Ω | | R _{ON FLAT} | On-resistance flatness | I _S = - 10 mA | - 40°C to +85°C | | | 1.5 | Ω | | | | Refer to On-Resistance | - 40°C to +125°C | | | 2 | Ω | | R _{ON DRIFT} | On-resistance drift | V _S = 18 V, I _S = -10 mA
Refer to On-Resistance | - 40°C to +125°C | | 0.009 | | Ω/°C | | | | V _{DD} = 39.6 V, V _{SS} = 0 V | 25°C | - 0.3 | 0.05 | 0.3 | nA | | I _{S(OFF)} | Source off leakage current ⁽¹⁾ | Switch state is off V _S = 30 V / 1 V | - 40°C to +85°C | - 3.5 | | 3.5 | nA | | , | | V _D = 1 V / 30 V
Refer to Off-Leakage Current | - 40°C to +125°C | - 60 | | 60 | nA | | | | V _{DD} = 39.6 V, V _{SS} = 0 V | 25°C | - 1 | 0.05 | 1 | nA | | I _{D(OFF)} | Drain off leakage current ⁽¹⁾ | Switch state is off V _S = 30 V / 1 V | - 40°C to +85°C | - 6.2 | | 6.2 | nA | | Б(біт) | | V _D = 1 V / 30 V
Refer to Off-Leakage Current | - 40°C to +125°C | - 80 | | 80 | nA | | | | $V_{DD} = 39.6 \text{ V}, V_{SS} = 0 \text{ V}$ | 25°C | - 0.4 | 0.05 | 0.4 | nA | | I _{S(ON)}
I _{D(ON)} | Channel on leakage current ⁽²⁾ | Switch state is on $V_S = V_D = 30 \text{ V or } 1 \text{ V}$ | - 40°C to +85°C | - 4.5 | | 4.5 | nA | | D(O(4) | | Refer to On-Leakage Current | - 40°C to +125°C | - 70 | | 70 | nA | | LOGIC IN | PUTS (SEL / EN pins) | | | | | | | | V_{IH} | Logic voltage high | | - 40°C to +125°C | 1.3 | | 36 | V | | V _{IL} | Logic voltage low | | - 40°C to +125°C | 0 | | 0.8 | V | | I _{IH} | Input leakage current | | - 40°C to +125°C | | 0.005 | 1 | μA | | I _{IL} | Input leakage current | | - 40°C to +125°C | - 1 | - 0.005 | | μA | | C _{IN} | Logic input capacitance | | - 40°C to +125°C | | 3 | | pF | | POWER S | SUPPLY | | _ | | | | | | | | | 25°C | | 28 | 50 | μΑ | | I_{DD} | V _{DD} supply current | $V_{DD} = 39.6 \text{ V}, V_{SS} = 0 \text{ V}$
Logic inputs = 0 V, 5 V, or V_{DD} | - 40°C to +85°C | | | 58 | μΑ | | | | J ,,, 700 | - 40°C to +125°C | | | 70 | μA | ⁽¹⁾ When V_S is positive, V_D is negative, or when V_S is negative, V_D is positive. ⁽²⁾ When V_S is at a voltage potential, V_D is floating, or when V_D is at a voltage potential, V_S is floating. # 6.9 36 V Single Supply: Switching Characteristics $V_{DD} = +36 \text{ V} \pm 10\%, V_{SS} = 0 \text{ V}, \text{ GND} = 0 \text{ V} \text{ (unless otherwise noted)}$ Typical at $V_{DD} = +36 \text{ V}, V_{SS} = 0 \text{ V}, T_A = 25 ^{\circ}\text{C}$ (unless otherwise noted) | | PARAMETER | TEST CONDITIONS | T _A | MIN | TYP | MAX | UNIT | |-----------------------|---|---|------------------|--------|--------|-----|------| | | | V _S = 18 V | 25°C | | 110 | 170 | ns | | t _{TRAN} | Transition time from control input | $R_L = 300 \Omega$, $C_L = 35 pF$ | - 40°C to +85°C | | | 185 | ns | | | | Refer to Transition Time | - 40°C to +125°C | | | 200 | ns | | | | V _S = 18 V | 25°C | | 110 | 180 | ns | | t _{ON (EN)} | Turn-on time from enable | $R_L = 300 \Omega$, $C_L = 35 pF$
Refer to Turn-on and Turn-off | - 40°C to +85°C | | | 190 | ns | | | | Time | - 40°C to +125°C | | | 200 | ns | | | | V _S = 18 V | 25°C | | 90 | 180 | ns | | t _{OFF (EN)} | Turn-off time from enable | $R_L = 300 \Omega$, $C_L = 35 pF$
Refer to Turn-on and Turn-off | - 40°C to +85°C | | | 195 | ns | | | | Time | - 40°C to +125°C | | | 200 | ns | | | | V _S = 18 V, | 25°C | | 44 | | ns | | t _{BBM} | Break-before-make time delay | $R_L = 300 \Omega$, $C_L = 35 pF$ | - 40°C to +85°C | 1 | | | ns | | | | Refer to Break-Before-Make | - 40°C to +125°C | 1 | | | ns | | | | V _{DD} rise time = 100ns | 25°C | | 0.17 | | ms | | T _{ON (VDD)} | Device turn on time (V _{DD} to output) | $R_L = 300 \Omega$, $C_L = 35 pF$ | - 40°C to +85°C | | 0.19 | | ms | | | (VDD to output) | Refer to Turn-on (VDD) Time | - 40°C to +125°C | | 0.19 | | ms | | t _{PD} | Propagation delay | R_L = 50 Ω , C_L = 5 pF
Refer to Propagation Delay | 25°C | | 920 | | ps | | Q _{INJ} | Charge injection | V _D = 18 V, C _L = 1 nF
Refer to Charge Injection | 25°C | | - 13 | | pC | | O _{ISO} | Off-isolation | R_L = 50 Ω , C_L = 5 pF
V_S = 6 V, f = 100 kHz
Refer to Off Isolation | 25°C | - 75 | | | dB | | O _{ISO} | Off-isolation | R_L = 50 Ω , C_L = 5 pF
V_S = 6 V, f = 1 MHz | | - 55 | | dB | | | X _{TALK} | Crosstalk | R_L = 50 Ω , C_L = 5 pF
V_S = 6 V, f = 100 kHz
Refer to Crosstalk | 25°C | | - 117 | | dB | | X _{TALK} | Crosstalk | R_L = 50 Ω , C_L = 5 pF
V_S = 6 V, f = 1MHz
Refer to Crosstalk | 25°C | | - 106 | | dB | | BW | - 3dB Bandwidth | $R_L = 50 \Omega$, $C_L = 5 pF$
$V_S = 6 V$,
Refer to Bandwidth | 25°C | | 38 | | MHz | | IL | Insertion loss | R_L = 50 Ω , C_L = 5 pF
V_S = 6 V, f = 1 MHz | 25°C | | - 0.19 | | dB | | ACPSRR | AC Power Supply Rejection Ratio | V_{PP} = 0.62 V on V_{DD} and V_{SS}
R_L = 50 Ω , C_L = 5 pF,
f = 1 MHz
Refer to ACPSRR | 25°C | - 60 | | | dB | | THD+N | Total Harmonic Distortion + Noise | V_{PP} =18 V, V_{BIAS} = 18 V
R_L = 10 k Ω , C_L = 5 pF,
f = 20 Hz to 20 kHz
Refer to THD + Noise | 25°C | 0.0004 | | | % | | C _{S(OFF)} | Source off capacitance | V _S = 6 V, f = 1 MHz | 25°C | | 35 | | pF | | C _{D(OFF)} | Drain off capacitance | V _S = 6 V, f = 1 MHz | 25°C | | 49 | | pF | www.ti.com.cn $V_{DD} = +36 \text{ V} \pm 10\%, \ V_{SS} = 0 \text{ V}, \ \text{GND} = 0 \text{ V} \ \text{(unless otherwise noted)}$ $\text{Typical at V}_{DD} = +36 \text{ V}, \ V_{SS} = 0 \text{ V}, \ T_{A} = 25 ^{\circ}\text{C} \ \text{(unless otherwise noted)}$ | | PARAMETER | TEST CONDITIONS | T _A | MIN | TYP | MAX | UNIT | |--------------------------|----------------|---------------------------------|----------------|-----|-----|-----|------| | $C_{S(ON),} \ C_{D(ON)}$ | On capacitance | V _S = 6 V, f = 1 MHz | 25°C | | 146 | | pF | # 6.10 12 V Single Supply: Electrical Characteristics V_{DD} = +12 V ± 10%, V_{SS} = 0 V, GND = 0 V (unless otherwise noted) Typical at V_{DD} = +12 V, V_{SS} = 0 V, T_A = 25°C (unless otherwise noted) | 71 | PARAMETER | TEST CONDITIONS | T _A | MIN | TYP | MAX | UNIT | |-------------------------|---|---|------------------|-------|---------|------|------| | ANALOG | SWITCH | | | | | | | | | | V _S = 0 V to 10 V | 25°C | | 4.6 | 6 | Ω | | R _{ON} | On-resistance | I _D = - 10 mA | - 40°C to +85°C | | | 7.5 | Ω | | | | Refer to On-Resistance | - 40°C to +125°C | | | 8.4 | Ω | | | | V _S = 0 V to 10 V | 25°C | | 0.08 | 0.2 | Ω | | ∆ R _{ON} | On-resistance mismatch between channels | $I_D = -10 \text{ mA}$ | - 40°C to +85°C | | | 0.32 | Ω | | | | Refer to On-Resistance | - 40°C to +125°C | | | 0.35 | Ω | | | | V _S = 0
V to 10 V | 25°C | | 1.2 | 2 | Ω | | R _{ON FLAT} | On-resistance flatness | $I_S = -10 \text{ mA}$ | - 40°C to +85°C | | | 2.2 | Ω | | | | Refer to On-Resistance | - 40°C to +125°C | | | 2.4 | Ω | | R _{ON DRIFT} | On-resistance drift | V _S = 6 V, I _S = -10 mA
Refer to On-Resistance | - 40°C to +125°C | | 0.017 | | Ω/°C | | | | V _{DD} = 13.2 V, V _{SS} = 0 V | 25°C | - 0.5 | 0.05 | 0.5 | nA | | I _{S(OFF)} | Source off leakage current ⁽¹⁾ | Switch state is off V _S = 10 V / 1 V | - 40°C to +85°C | - 2 | | 2 | nA | | 3(311) | oom oo on nomaago ourronn | V _D = 1 V / 10 V
Refer to Off-Leakage Current | - 40°C to +125°C | - 30 | | 30 | nA | | | | V _{DD} = 13.2 V, V _{SS} = 0 V | 25°C | - 0.5 | 0.05 | 0.5 | nA | | I _{D(OFF)} | Drain off leakage current ⁽¹⁾ | Switch state is off V _S = 10 V / 1 V | - 40°C to +85°C | - 3 | | 3 | nA | | Б(ОП) | | V _D = 1 V / 10 V
Refer to Off-Leakage Current | - 40°C to +125°C | - 50 | | 50 | nA | | | | V _{DD} = 13.2 V, V _{SS} = 0 V | 25°C | - 1.5 | 0.05 | 1.5 | nA | | $I_{S(ON)}$ $I_{D(ON)}$ | Channel on leakage current ⁽²⁾ | Switch state is on $V_S = V_D = 10 \text{ V}$ or 1 V | - 40°C to +85°C | - 3 | | 3 | nA | | ·D(ON) | | Refer to On-Leakage Current | - 40°C to +125°C | - 40 | | 40 | nA | | LOGIC IN | PUTS (SEL / EN pins) | | | | | | | | V _{IH} | Logic voltage high | | - 40°C to +125°C | 1.3 | | 36 | V | | V _{IL} | Logic voltage low | | - 40°C to +125°C | 0 | | 0.8 | V | | I _{IH} | Input leakage current | | - 40°C to +125°C | | 0.005 | 1 | μA | | I _{IL} | Input leakage current | | - 40°C to +125°C | - 1 | - 0.005 | | μA | | C _{IN} | Logic input capacitance | | - 40°C to +125°C | | 3 | | pF | | POWER S | SUPPLY | 1 | 1 | | | | | | | | | 25°C | | 10 | 35 | μΑ | | I_{DD} | V _{DD} supply current | V_{DD} = 13.2 V, V_{SS} = 0 V
Logic inputs = 0 V, 5 V, or V_{DD} | - 40°C to +85°C | | | 45 | μΑ | | | | J 1 | - 40°C to +125°C | | | 55 | μA | When V_S is positive, V_D is negative, or when V_S is negative, V_D is positive. ⁽²⁾ When V_S is at a voltage potential, V_D is floating, or when V_D is at a voltage potential, V_S is floating. # 6.11 12 V Single Supply: Switching Characteristics V_{DD} = +12 V ± 10%, V_{SS} = 0 V, GND = 0 V (unless otherwise noted) Typical at V_{DD} = +12 V, V_{SS} = 0 V, T_A = 25°C (unless otherwise noted) | | PARAMETER | TEST CONDITIONS | T _A | MIN | TYP | MAX | UNIT | |-----------------------|------------------------------------|--|------------------|------|--------|-----|------| | | | V _S = 8 V | 25°C | | 180 | 185 | ns | | t _{TRAN} | Transition time from control input | $R_L = 300 \Omega$, $C_L = 35 pF$ | - 40°C to +85°C | | | 215 | ns | | | | Refer to Transition Time | - 40°C to +125°C | | | 235 | ns | | | | V _S = 8 V | 25°C | | 120 | 180 | ns | | t _{ON (EN)} | Turn-on time from enable | $R_L = 300 \Omega$, $C_L = 35 pF$ | - 40°C to +85°C | | | 210 | ns | | - (/ | | Refer to Turn-on and Turn-off Time | - 40°C to +125°C | | | 230 | ns | | | | V _S = 8 V | 25°C | | 130 | 210 | ns | | t _{OFF (EN)} | Turn-off time from enable | $R_L = 300 \Omega$, $C_L = 35 pF$
Refer to Turn-on and Turn-off | - 40°C to +85°C | | | 235 | ns | | , , | | Time | - 40°C to +125°C | | | 250 | ns | | | | V _S = 8 V, | 25°C | | 40 | | ns | | t _{BBM} | Break-before-make time delay | $R_L = 300 \Omega$, $C_L = 35 pF$ | - 40°C to +85°C | 1 | | | ns | | | | Refer to Break-Before-Make | - 40°C to +125°C | 1 | | | ns | | | | V rice time = 100ne | 25°C | | 0.19 | | ms | | T _{ON (VDD)} | Device turn on time | V_{DD} rise time = 100ns
R _L = 300 Ω, C _L = 35 pF | - 40°C to +85°C | | 0.2 | | ms | | , | (V _{DD} to output) | Refer to Turn-on (VDD) Time | - 40°C to +125°C | | 0.2 | | ms | | t _{PD} | Propagation delay | $R_L = 50 \Omega$, $C_L = 5 pF$
Refer to Propagation Delay | 25°C | | 740 | | ps | | Q _{INJ} | Charge injection | V _D = 6 V, C _L = 1 nF
Refer to Charge Injection | 25°C | | - 6 | | рС | | O _{ISO} | Off-isolation | R_L = 50 Ω , C_L = 5 pF
V_S = 6 V, f = 100 kHz
Refer to Charge Injection | 25°C | | - 75 | | dB | | O _{ISO} | Off-isolation | $R_L = 50 \Omega$, $C_L = 5 pF$
$V_S = 6 V$, $f = 1 MHz$
Refer to Off Isolation | 25°C | | - 55 | | dB | | X _{TALK} | Crosstalk | $R_L = 50 \Omega$, $C_L = 5 pF$
$V_S = 6 V$, $f = 100 kHz$
Refer to Crosstalk | 25°C | | - 117 | | dB | | X _{TALK} | Crosstalk | $R_L = 50 \Omega$, $C_L = 5 pF$
$V_S = 6 V$, $f = 1MHz$
Refer to Crosstalk | 25°C | | - 106 | | dB | | BW | - 3dB Bandwidth | $R_L = 50 \Omega$, $C_L = 5 pF$
$V_S = 6 V$
Refer to Bandwidth | 25°C | | 42 | | MHz | | I _L | Insertion loss | R_L = 50 Ω , C_L = 5 pF
V_S = 6 V, f = 1 MHz | 25°C | | - 0.3 | | dB | | ACPSRR | AC Power Supply Rejection Ratio | V_{PP} = 0.62 V on V_{DD} and V_{SS} R_L = 50 Ω , C_L = 5 pF, f = 1 MHz Refer to ACPSRR | 25°C | - 65 | | | dB | | THD+N | Total Harmonic Distortion + Noise | V_{PP} = 6 V, V_{BIAS} = 6 V
R_L = 10 k Ω , C_L = 5 pF,
f = 20 Hz to 20 kHz
Refer to THD + Noise | 25°C | 1 | 0.0009 | | % | | C _{S(OFF)} | Source off capacitance | V _S = 6 V, f = 1 MHz | 25°C | | 38 | | pF | | C _{D(OFF)} | Drain off capacitance | V _S = 6 V, f = 1 MHz | 25°C | | 56 | | pF | V_{DD} = +12 V ± 10%, V_{SS} = 0 V, GND = 0 V (unless otherwise noted) Typical at V_{DD} = +12 V, V_{SS} = 0 V, T_A = 25 $^{\circ}$ C (unless otherwise noted) | | PARAMETER | TEST CONDITIONS | TA | MIN | TYP | MAX | UNIT | |---------------------------|----------------|---------------------------------|------|-----|-----|-----|------| | $C_{S(ON)}$, $C_{D(ON)}$ | On capacitance | V _S = 6 V, f = 1 MHz | 25°C | | 150 | | pF | # 6.12 ±5 V Dual Supply: Electrical Characteristics $V_{DD} = +5~V \pm 10\%, \ V_{SS} = -5~V \pm 10\%, \ GND = 0~V \ (unless otherwise noted)$ Typical at $V_{DD} = +5~V$, $V_{SS} = -5~V$, $V_{A} = 25^{\circ}C$ (unless otherwise noted) | | PARAMETER | TEST CONDITIONS | T _A | MIN | TYP | MAX | UNIT | |-----------------------|---|--|------------------|-------|---------|------|------| | ANALOG | SWITCH | | | | | | | | | | V_{DD} = +4.5 V, V_{SS} = -4.5 V | 25°C | | 4 | 7.2 | Ω | | R _{ON} | On-resistance | $V_S = -4.5 \text{ V to } +4.5 \text{ V}$ | - 40°C to +85°C | | | 8.6 | Ω | | | | I _D = - 10 mA
Refer to On-Resistance | - 40°C to +125°C | | | 10 | Ω | | | | V _S = -4.5 V to +4.5 V | 25°C | | 0.1 | 0.3 | Ω | | ΔR_{ON} | On-resistance mismatch between channels | $I_D = -10 \text{ mA}$ | - 40°C to +85°C | | | 0.35 | Ω | | | CHAINEIS | Refer to On-Resistance | - 40°C to +125°C | | | 0.4 | Ω | | | | V _S = -4.5 V to +4.5 V | 25°C | | 1.3 | 2.2 | Ω | | R _{ON FLAT} | On-resistance flatness | I _D = - 10 mA | - 40°C to +85°C | | | 2.5 | Ω | | | | Refer to On-Resistance | - 40°C to +125°C | | | 2.8 | Ω | | R _{ON DRIFT} | On-resistance drift | V _S = 0 V, I _S = -10 mA
Refer to On-Resistance | - 40°C to +125°C | | 0.019 | | Ω/°C | | | | V _{DD} = +5.5 V, V _{SS} = -5.5 V | 25°C | - 0.3 | 0.05 | 0.3 | nA | | I _{S(OFF)} | Source off leakage current ⁽¹⁾ | Switch state is off $V_S = +4.5 \text{ V} / -4.5 \text{ V}$ | - 40°C to +85°C | - 1 | | 1 | nΑ | | 15(OFF) | Course on realitage carroin | $V_D = -4.5 \text{ V} / +4.5 \text{ V}$ Refer to Off-Leakage Current | - 40°C to +125°C | - 30 | | 30 | nA | | | | V _{DD} = +5.5 V, V _{SS} = -5.5 V | 25°C | - 0.4 | 0.05 | 0.4 | nA | | I _{D(OFF)} | Drain off leakage current ⁽¹⁾ | Switch state is off $V_S = +4.5 \text{ V} / -4.5 \text{ V}$ | - 40°C to +85°C | - 3 | | 3 | nA | | | | $V_D = -4.5 \text{ V} / +4.5 \text{ V}$ Refer to Off-Leakage Current | - 40°C to +125°C | - 50 | | 50 | nA | | | | V _{DD} = +5.5 V, V _{SS} = -5.5 V | 25°C | - 0.4 | 0.05 | 0.4 | nA | | I _{S(ON)} | Channel on leakage current ⁽²⁾ | Switch state is on $V_S = V_D = \pm 4.5 \text{ V}$ | - 40°C to +85°C | - 3 | | 3 | nA | | I _{D(ON)} | | Refer to On-Leakage Current | - 40°C to +125°C | - 40 | | 40 | nA | | LOGIC IN | PUTS (SEL / EN pins) | | | | | | | | V _{IH} | Logic voltage high | | - 40°C to +125°C | 1.3 | | 36 | V | | V _{IL} | Logic voltage low | | - 40°C to +125°C | 0 | | 0.8 | V | | I _{IH} | Input leakage current | | - 40°C to +125°C | | 0.005 | 1 | μA | | I _{IL} | Input leakage current | | - 40°C to +125°C | - 1 | - 0.005 | | μΑ | | C _{IN} | Logic input capacitance | | - 40°C to +125°C | | 3 | | pF | | POWER S | SUPPLY | | - | | | ' | | | | | | 25°C | | 20 | 35 | μΑ | | I_{DD} | V _{DD} supply current | V_{DD} = +5.5 V, V_{SS} = -5.5 V
Logic inputs = 0 V, 5 V, or V_{DD} | - 40°C to +85°C | | | 40 | μΑ | | | | | - 40°C to +125°C | | | 50 | μA | | | | | 25°C | | 0.001 | 5 | μΑ | | I _{SS} | V _{SS} supply current | V_{DD} = +5.5 V, V_{SS} = -5.5 V
Logic inputs = 0 V, 5 V, or V_{DD} | - 40°C to +85°C | | | 8 | μΑ | | | | J , o . , o | - 40°C to +125°C | | | 15 | μA | | | | | | | | | | When V_S is positive, V_D is negative, or when V_S is negative, V_D is positive. When V_S is at a voltage potential, V_D is floating, or when V_D is at a voltage potential, V_S is floating. # 6.13 ±5 V Dual Supply: Switching Characteristics $V_{DD} = +5 \text{ V} \pm 10\%, \ V_{SS} = -5 \text{ V} \pm 10\%, \ \text{GND} = 0 \text{ V} \ \text{(unless otherwise noted)}$ Typical at $V_{DD} = +5 \text{ V}, \ V_{SS} = -5 \text{ V}, \ T_A = 25\%$ (unless otherwise noted) | | PARAMETER | TEST CONDITIONS | T _A | MIN | TYP | MAX | UNIT | |-----------------------|---|--|------------------|------|--------|-----|------| | | | V _S = 3
V | 25°C | | 300 | 400 | ns | | t _{TRAN} | Transition time from control input | $R_L = 300 \Omega$, $C_L = 35 pF$ | - 40°C to +85°C | | | 490 | ns | | | | Refer to Transition Time | - 40°C to +125°C | | | 550 | ns | | | | V _S = 3 V | 25°C | | 220 | 300 | ns | | t _{ON (EN)} | Turn-on time from enable | $R_L = 300 \Omega$, $C_L = 35 pF$
Refer to Turn-on and Turn-off | - 40°C to +85°C | | | 350 | ns | | | | Time | - 40°C to +125°C | | | 380 | ns | | | | V _S = 3 V | 25°C | | 210 | 280 | ns | | t _{OFF (EN)} | Turn-off time from enable | $R_L = 300 \Omega$, $C_L = 35 pF$
Refer to Turn-on and Turn-off | - 40°C to +85°C | | | 330 | ns | | | | Time | - 40°C to +125°C | | | 350 | ns | | | | V _S = 3 V, | 25°C | | 50 | | ns | | t _{BBM} | Break-before-make time delay | $R_L = 300 \Omega$, $C_L = 35 pF$ | - 40°C to +85°C | 1 | | | ns | | | | Refer to Break-Before-Make | - 40°C to +125°C | 1 | | | ns | | | | V _{DD} rise time = 100ns | 25°C | | 0.19 | | ms | | T _{ON (VDD)} | Device turn on time (V _{DD} to output) | $R_L = 300 \Omega$, $C_L = 35pF$ | - 40°C to +85°C | | 0.19 | 1 | ms | | | (VDD to output) | Refer to Turn-on (VDD) Time | - 40°C to +125°C | | 0.19 | 1 | ms | | t _{PD} | Propagation delay | R_L = 50 Ω , C_L = 5 pF
Refer to Propagation Delay | 25°C | | 650 | | ps | | Q _{INJ} | Charge injection | V _D = 0 V, C _L = 1 nF
Refer to Charge Injection | 25°C | | - 5 | | рС | | O _{ISO} | Off-isolation | $R_L = 50 \Omega$, $C_L = 5 pF$
$V_S = 0 V$, $f = 100 kHz$
Refer to Off Isolation | 25°C | - 75 | | | dB | | O _{ISO} | Off-isolation | $R_L = 50 \Omega$, $C_L = 5 pF$
$V_S = 0 V$, $f = 1 MHz$
Refer to Off Isolation | 25°C | | - 55 | | dB | | X _{TALK} | Crosstalk | R_L = 50 Ω , C_L = 5 pF
V_S = 0 V, f = 100 kHz
Refer to Crosstalk | 25°C | | - 117 | | dB | | X _{TALK} | Crosstalk | R_L = 50 Ω , C_L = 5 pF
V_S = 0 V, f = 1MHz
Refer to Crosstalk | 25°C | | - 106 | | dB | | BW | - 3dB Bandwidth | $R_L = 50 \Omega$, $C_L = 5 pF$
$V_S = 0 V$,
Refer to Bandwidth | 25°C | | 43 | | MHz | | IL | Insertion loss | R_L = 50 Ω , C_L = 5 pF
V_S = 0 V, f = 1 MHz | 25°C | | - 0.35 | | dB | | ACPSRR | AC Power Supply Rejection Ratio | V_{PP} = 0.62 V on V_{DD} and V_{SS}
R_L = 50 Ω , C_L = 5 pF,
f = 1 MHz
Refer to ACPSRR | 25°C | - 68 | | dB | | | THD+N | Total Harmonic Distortion + Noise | V_{PP} = 5 V, V_{BIAS} = 0 V
R_L = 10 k Ω , C_L = 5 pF,
f = 20 Hz to 20 kHz
Refer to THD + Noise | 25°C | | 0.001 | | % | | C _{S(OFF)} | Source off capacitance | V _S = 0 V, f = 1 MHz | 25°C | | 40 | | pF | | C _{D(OFF)} | Drain off capacitance | V _S = 0 V, f = 1 MHz | 25°C | | 60 | | pF | Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated www.ti.com.cn V_{DD} = +5 V ± 10%, V_{SS} = - 5 V ±10%, GND = 0 V (unless otherwise noted) Typical at V_{DD} = +5 V, V_{SS} = - 5 V, T_A = 25°C (unless otherwise noted) | | PARAMETER | TEST CONDITIONS | T _A | MIN | TYP | MAX | UNIT | |--------------------------|----------------|---------------------------------|----------------|-----|-----|-----|------| | $C_{S(ON),} \ C_{D(ON)}$ | On capacitance | V _S = 0 V, f = 1 MHz | 25°C | | 150 | | pF | ### **6.14 Typical Characteristics** # 7 Parameter Measurement Information #### 7.1 On-Resistance The on-resistance of a device is the ohmic resistance between the source (Sx) and drain (D) pins of the device. The on-resistance varies with input voltage and supply voltage. The symbol R_{ON} is used to denote on-resistance. 87-1 shows the measurement setup used to measure R_{ON} . Voltage (V) and current (I_{SD}) are measured using the following setup, where R_{ON} is computed as $R_{ON} = V / I_{SD}$: 图 7-1. On-Resistance ### 7.2 Off-Leakage Current There are two types of leakage currents associated with a switch during the off state: - 1. Source off-leakage current. - 2. Drain off-leakage current. Source leakage current is defined as the leakage current flowing into or out of the source pin when the switch is off. This current is denoted by the symbol $I_{S(OFF)}$. Drain leakage current is defined as the leakage current flowing into or out of the drain pin when the switch is off. This current is denoted by the symbol $I_{D(OFF)}$. 图 7-2 shows the setup used to measure both off-leakage currents. 图 7-2. Off-Leakage Measurement Setup Copyright © 2021 Texas Instruments Incorporated # 7.3 On-Leakage Current Source on-leakage current is defined as the leakage current flowing into or out of the source pin when the switch is on. This current is denoted by the symbol $I_{S(ON)}$. Drain on-leakage current is defined as the leakage current flowing into or out of the drain pin when the switch is on. This current is denoted by the symbol $I_{D(ON)}$. Either the source pin or drain pin is left floating during the measurement. $\boxed{8}$ 7-3 shows the circuit used for measuring the on-leakage current, denoted by $I_{S(ON)}$ or $I_{D(ON)}$. 图 7-3. On-Leakage Measurement Setup #### 7.4 Transition Time 图 7-4. Transition-Time Measurement Setup Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated # 7.5 t_{ON(EN)} and t_{OFF(EN)} Turn-on time is defined as the time taken by the output of the device to rise to 90% after the enable has risen past the logic threshold. The 90% measurement is utilized to provide the timing of the device. System level timing can then account for the time constant added from the load resistance and load capacitance. $\boxed{8}$ 7-5 shows the setup used to measure turn-on time, denoted by the symbol $t_{ON(EN)}$. Turn-off time is defined as the time taken by the output of the device to fall to 10% after the enable has fallen past the logic threshold. The 10% measurement is utilized to provide the timing of the device. System level timing can then account for the time constant added from the load resistance and load capacitance. $\boxed{8}$ 7-5 shows the setup used to measure turn-off time, denoted by the symbol $t_{OFF(EN)}$. 图 7-5. Turn-On and Turn-Off Time Measurement Setup #### 7.6 Break-Before-Make Break-before-make delay is a safety feature that prevents two inputs from connecting when the device is switching. The output first breaks from the on-state switch before making the connection with the next on-state switch. The time delay between the *break* and the *make* is known as break-before-make delay. 8 7-6 shows the setup used to measure break-before-make delay, denoted by the symbol $t_{OPEN(BBM)}$. 图 7-6. Break-Before-Make Delay Measurement Setup # 7.7 t_{ON (VDD)} Time 图 7-7. t_{ON (VDD)} Time Measurement Setup # 7.8 Propagation Delay Propagation delay is defined as the time taken by the output of the device to rise or fall 50% after the input signal has risen or fallen past the 50% threshold. 87-8 shows the setup used to measure propagation delay, denoted by the symbol t_{PD} . 图 7-8. Propagation Delay Measurement Setup Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated # 7.9 Charge Injection The TMUX6219 has a transmission-gate topology. Any mismatch in capacitance between the NMOS and PMOS transistors results in a charge injected into the drain or source during the falling or rising edge of the gate signal. The amount of charge injected into the source or drain of the device is known as charge injection, and is denoted by the symbol Q_C . 87-9 shows the setup used to measure charge injection from source (Sx) to drain (D). 图 7-9. Charge-Injection Measurement Setup #### 7.10 Off Isolation Off isolation is defined as the ratio of the signal at the drain pin (D) of the device when a signal is applied to the source pin (Sx) of an off-channel. 87-10 shows the setup used to measure, and the equation used to calculate off isolation. 图 7-10. Off Isolation Measurement Setup Off Isolation = $$20 \cdot Log\left(\frac{V_{OUT}}{V_{S}}\right)$$ (1) Copyright © 2021 Texas Instruments Incorporated #### 7.11 Crosstalk Crosstalk is defined as the ratio of the signal at the drain pin (D) of a different channel, when a signal is applied at the source pin (Sx) of an on-channel. 2 7-11 shows the setup used to measure, and the equation used to calculate crosstalk. 图 7-11. Crosstalk Measurement Setup #### 7.12 Bandwidth Bandwidth is defined as the range of frequencies that are attenuated by less than 3 dB when the input is applied to the source pin (Sx) of an on-channel, and the output is measured at the drain pin (D) of the device. 7-12 shows the setup used to measure bandwidth. 图 7-12. Bandwidth Measurement Setup #### 7.13 THD + Noise The total harmonic distortion (THD) of a signal is a measurement of the harmonic distortion, and is defined as the ratio of the sum of the powers of all harmonic components to the power of the fundamental frequency at the mux output. The on-resistance of the device varies with the amplitude of the input signal and results in distortion when the drain pin is connected to a low-impedance load. Total harmonic distortion plus noise is denoted as THD + N. 图 7-13. THD + N Measurement Setup # 7.14 Power Supply Rejection Ratio (PSRR) PSRR measures the ability of a device to prevent noise and spurious signals that appear on the supply voltage pin from coupling to the output of the switch. The DC voltage on the device supply is modulated by a sine wave of 620 mV $_{PP}$. The ratio of the amplitude of signal on the output to the amplitude of the modulated signal is the ACPSRR. A high ratio represents a high degree of tolerance to supply rail variation. 图 7-14. ACPSRR Measurement Setup Copyright © 2021 Texas Instruments Incorporated # **8 Detailed Description** #### 8.1 Overview The TMUX6219 is a 2:1, 1-channel switch. Each input is turned on or turned off based on the state of the select line and enable pin. #### 8.2 Functional Block Diagram 图 8-1. TMUX6219 Functional Block Diagram #### 8.3
Feature Description # 8.3.1 Bidirectional Operation The TMUX6219 conducts equally well from source (Sx) to drain (D) or from drain (D) to source (Sx). Each channel has very similar characteristics in both directions and supports both analog and digital signals. #### 8.3.2 Rail to Rail Operation The valid signal path input or output voltage for TMUX6219 ranges from V_{SS} to V_{DD}. #### 8.3.3 1.8 V Logic Compatible Inputs The TMUX6219 has 1.8-V logic compatible control for all logic control inputs. 1.8-V logic level inputs allows the TMUX6219 to interface with processors that have lower logic I/O rails and eliminates the need for an external translator, which saves both space and BOM cost. For more information on 1.8 V logic implementations refer to Simplifying Design with 1.8 V logic Muxes and Switches. #### 8.3.4 Fail-Safe Logic The TMUX6219 supports Fail-Safe Logic on the control input pins (EN, SEL) allowing for operation up to 36 V above ground, regardless of the state of the supply pins. This feature allows voltages on the control pins to be applied before the supply pin, protecting the device from potential damage. Fail-Safe Logic minimizes system complexity by removing the need for power supply sequencing on the logic control pins. For example, the Fail-Safe Logic feature allows the logic input pins of the TMUX6219 to be ramped to +36 V while V_{DD} and V_{SS} = 0 V. The logic control inputs are protected against positive faults of up to +36 V in powered-off condition, but do not offer protection against negative overvoltage conditions. Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated #### 8.3.5 Latch-Up Immune Latch-Up is a condition where a low impedance path is created between a supply pin and ground. This condition is caused by a trigger (current injection or overvoltage), but once activated, the low impedance path remains even after the trigger is no longer present. This low impedance path may cause system upset or catastrophic damage due to excessive current levels. The Latch-Up condition typically requires a power cycle to eliminate the low impedance path. The TMUX62xx family of devices are constructed on Silicon on Insulator (SOI) based process where an oxide layer is added between the PMOS and NMOS transistor of each CMOS switch to prevent parasitic structures from forming. The oxide layer is also known as an insulating trench and prevents triggering of latch up events due to overvoltage or current injections. The latch-up immunity feature allows the TMUX62xx family of switches and multiplexers to be used in harsh environments. # 8.3.6 Ultra-Low Charge Injection The TMUX6219 has a transmission gate topology, as shown in 🖺 8-2. Any mismatch in the stray capacitance associated with the NMOS and PMOS causes an output level change whenever the switch is opened or closed. 图 8-2. Transmission Gate Topology The TMUX6219contains specialized architecture to reduce charge injection on the source (Sx). To further reduce charge injection in a sensitive application, a compensation capacitor (Cp) can be added on the drain (D). This will ensure that excess charge from the switch transition will be pushed into the compensation capacitor on the drain (D) instead of the source (Sx). As a general rule of thumb, Cp should be 20×10^{-5} larger than the equivalent load capacitance on the source (Sx). 8-3 shows charge injection variation with source voltage with different compensation capacitors on the Drain side. 图 8-3. Charge Injection Compensation Copyright © 2021 Texas Instruments Incorporated #### **8.4 Device Functional Modes** When the EN pin of the TMUX6219 is pulled high, one of the switches is closed based on the state of the SEL pin. When the EN pin is pulled low, both of the switches are in an open state regardless of the state of the SEL pin. The control pins can be as high as 36 V. The TMUX6219 can be operated without any external components except for the supply decoupling capacitors. The EN pin has an internal pull-up resistor of 4 M Ω and SEL pin has internal pull-down resistor of 4 M Ω . If unused, EN pin must be tied to V_{DD} and SEL pin must be tied to GND in order to ensure the device does not consume additional current as highlighted in *Implications of Slow or Floating CMOS Inputs*. Unused signal path inputs (S1, S2, or D) should be connected to GND. #### 8.5 Truth Tables 表 8-1 show the truth tables for the TMUX6219. 表 8-1. TMUX6219 Truth Table | EN | SEL | Selected Source Connected To Drain (D) Pin | |----|------------------|--| | 0 | X ⁽¹⁾ | All sources are off (HI-Z) | | 1 | 0 | S1 | | 1 | 1 | S2 | (1) X denotes don't care. Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated # 9 Application and Implementation #### Note Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality. # 9.1 Application Information TMUX6219 is part of the precision switches and multiplexers family of devices. TMUX6219 offers low RON, low on and off leakage currents and ultra-low charge injection performance. These properties make TMUX6219 ideal for implementing high precision industrial systems requiring selection of one of two inputs or outputs. #### 9.2 Typical Application ### 9.2.1 Power Amplifier Gate Driver One application of the TMUX6219 is for input control of a power amplifier gate driver. Utilizing a switch allows a system to control when the DAC is connected to the power amplifier, and can stop biasing the power amplifier by switching the gate to V_{SS} . The wide dual supply range of ± 4.5 V to ± 18 V allows the switch to work with GaN power amplifiers and the wide single supply range 4.5 V to 36 V works well with LDMOS power amplifiers. ⊠ 9-1 shows the TMUX6219 configured for control of the power amplifier gate driver in GaN application. 图 9-1. Power Amplifier Gate Driver ### 9.2.2 Design Requirements For the design example, use the parameters listed in $\frac{1}{2}$ 9-1. 表 9-1. Design Parameters | PARAMETERS | VAL | UES | |---------------------------|--|--| | FARAIVIETERS | GAN application | LDMOS application | | Supply (V _{DD}) | 8 V | 5 V | | Supply (V _{SS}) | -12 V | 0 V | | MUX I/O signal range | -12 V to 8 V (Rail-to-Rail) | 0 V to 5 V (Rail-to-Rail) | | Control logic thresholds | 1.8 V compatiable (up to V _{DD}) | 1.8 V compatiable (up to V _{DD}) | | EN | EN pulled high to enable the switch | EN pulled high to enable the switch | Copyright © 2021 Texas Instruments Incorporated #### 9.2.3 Detailed Design Procedure The application shown in Power Amplifier Gate Driver figure demonstrates how to toggle between the DAC output and low signal voltage for control of a GaN power amplifier using a single control input. The DAC output is utilized to bias the gate of the power amplifier and can be disconnected from the circuit using the select pin of the switch. The TMUX6219 can support 1.8 V logic signals on the control input, allowing the device to interface with low logic controls of an FPGA or MCU. The TMUX6219 can be operated without any external components except for the supply decoupling capacitors. The select pin has an internal pull-down resistor to prevent floating input logic. All inputs to the switch must fall within the recommend operating conditions of the TMUX6219 including signal range and continuous current. For this design with a positive supply of 8 V on V_{DD}, and negative supply of -12 V on V_{SS}, the signal range can be 8 V to -12 V. The max continuous current (I_{DC}) can be up to 330 mA as shown in the *Recommended Operating Conditions table* for wide-range current measurement. #### 9.2.4 Application Curve The low on and off leakage currents of TMUX6219 and ultra-low charge injection performance make this device ideal for implementing high precision industrial systems. ☑ 9-2 shows the plot for the charge injection versus source voltage for the TMUX6219. 图 9-2. Charge Injection vs Drain Voltage # 10 Power Supply Recommendations The TMUX6219 operates across a wide supply range of of ± 4.5 V to ± 18 V (4.5 V to 36 V in single-supply mode). As shown in $\boxed{8}$ 9-1, the device also performs well with asymmetrical supplies such as V_{DD} = 8 V and V_{SS} = -12 V. Power-supply bypassing improves noise margin and prevents switching noise propagation from the supply rails to other components. Good power-supply decoupling is important to achieve optimum performance. For improved supply noise immunity, use a supply decoupling capacitor ranging from 0.1 μ F to 10 μ F at both the V_{DD} and V_{SS} pins to ground. Place the bypass capacitors as close to the power supply pins of the device as possible using low-impedance connections. TI recommends using multi-layer ceramic chip capacitors (MLCCs) that offer low equivalent series resistance (ESR) and inductance (ESL) characteristics for power-supply decoupling purposes. For very sensitive systems, or for systems in harsh noise environments, avoiding the use of vias for connecting the capacitors to the device pins may offer superior noise immunity. The use of multiple vias in parallel lowers the overall inductance and is beneficial for connections to power and ground planes. Always ensure the ground (GND) connection is established before supplies are ramped. Product Folder Links: TMUX6219 ### 11 Layout # 11.1 Layout Guidelines When a PCB trace turns a corner at a 90° angle, a reflection can occur. A reflection occurs primarily because of the change of width of the trace. At the apex of the turn, the trace width increases to 1.414 times
the width. This increase upsets the transmission-line characteristics, especially the distributed capacitance and self – inductance of the trace which results in the reflection. Not all PCB traces can be straight and therefore some traces must turn corners. 11-1 shows progressively better techniques of rounding corners. Only the last example (BEST) maintains constant trace width and minimizes reflections. 图 11-1. Trace Example Route high-speed signals using a minimum of vias and corners which reduces signal reflections and impedance changes. When a via must be used, increase the clearance size around it to minimize its capacitance. Each via introduces discontinuities in the signal's transmission line and increases the chance of picking up interference from the other layers of the board. Be careful when designing test points, through-hole pins are not recommended at high frequencies. - Decouple the supply pins with a 0.1-µF and 1 µF capacitor, placed lowest value capacitor as close to the pin as possible. Make sure that the capacitor voltage rating is sufficient for the supply voltage. - · Keep the input lines as short as possible. - Use a solid ground plane to help reduce electromagnetic interference (EMI) noise pickup. - Do not run sensitive analog traces in parallel with digital traces. Avoid crossing digital and analog traces if possible, and only make perpendicular crossings when necessary. - Using multiple vias in parallel will lower the overall inductance and is beneficial for connection to ground planes. #### 11.2 Layout Example 图 11-2. TMUX6219 Layout Example Copyright © 2021 Texas Instruments Incorporated # 12 Device and Documentation Support # 12.1 Related Documentation Texas Instruments, Improve Stability Issues with Low CON Multiplexers. Texas Instruments, Improving Signal Measurement Accuracy in Automated Test Equipment. Texas Instruments, Multiplexers and Signal Switches Glossary. Texas Instruments, QFN/SON PCB Attachment. Texas Instruments, Quad Flatpack No-Lead Logic Packages. Texas Instruments, Simplifying Design with 1.8 V logic Muxes and Switches. Texas Instruments, System-Level Protection for High-Voltage Analog Multiplexers. Texas Instruments, True Differential, 4 x 2 MUX, Analog Front End, Simultaneous-Sampling ADC Circuit. #### 12.2 Receiving Notification of Documentation Updates To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document. #### 12.3 支持资源 TI E2E™ 支持论坛是工程师的重要参考资料,可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解答或提出自己的问题可获得所需的快速设计帮助。 链接的内容由各个贡献者"按原样"提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI 的《使用条款》。 #### 12.4 Trademarks TI E2E[™] is a trademark of Texas Instruments. 所有商标均为其各自所有者的财产。 #### 12.5 静电放电警告 静电放电 (ESD) 会损坏这个集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理和安装程序,可能会损坏集成电路。 ESD 的损坏小至导致微小的性能降级,大至整个器件故障。精密的集成电路可能更容易受到损坏,这是因为非常细微的参数更改都可能会导致器件与其发布的规格不相符。 #### 12.6 术语表 TI术语表本术语表列出并解释了术语、首字母缩略词和定义。 ### 13 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. Product Folder Links: TMUX6219 # PACKAGE OPTION ADDENDUM 27-.lan-2021 #### PACKAGING INFORMATION | Orderable Device | Status | Package Type | Package
Drawing | Pins | Package
Qty | Eco Plan | Lead finish/
Ball material | MSL Peak Temp | Op Temp (°C) | Device Marking
(4/5) | Samples | |------------------|--------|--------------|--------------------|------|----------------|--------------|-------------------------------|--------------------|--------------|-------------------------|---------| | | | | | | | | (6) | | | | | | TMUX6219DGKR | ACTIVE | VSSOP | DGK | 8 | 2500 | RoHS & Green | NIPDAU | Level-1-260C-UNLIM | -40 to 125 | X219 | Samples | (1) The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. - (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. - (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. - (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. - (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. # PACKAGE MATERIALS INFORMATION www.ti.com 27-Jan-2021 # TAPE AND REEL INFORMATION | | Dimension designed to accommodate the component width | |----|---| | | Dimension designed to accommodate the component length | | K0 | Dimension designed to accommodate the component thickness | | W | Overall width of the carrier tape | | P1 | Pitch between successive cavity centers | # QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE #### *All dimensions are nominal | Device | Package
Type | Package
Drawing | | | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |--------------|-----------------|--------------------|---|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | TMUX6219DGKR | VSSOP | DGK | 8 | 2500 | 330.0 | 12.4 | 5.3 | 3.4 | 1.4 | 8.0 | 12.0 | Q1 | www.ti.com 27-Jan-2021 #### *All dimensions are nominal | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | | |--------------|--------------|-----------------|------|------|-------------|------------|-------------|--| | TMUX6219DGKR | VSSOP | DGK | 8 | 2500 | 366.0 | 364.0 | 50.0 | | # DGK (S-PDSO-G8) # PLASTIC SMALL-OUTLINE PACKAGE NOTES: - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 per end. - Body width does not include interlead flash. Interlead flash shall not exceed 0.50 per side. - E. Falls within JEDEC MO-187 variation AA, except interlead flash. # DGK (S-PDSO-G8) # PLASTIC SMALL OUTLINE PACKAGE #### NOTES: - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Publication IPC-7351 is recommended for alternate designs. - D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations. - E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads. # 重要声明和免责声明 TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。 这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI
知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。 TI 提供的产品受 TI 的销售条款 (https://www.ti.com.cn/zh-cn/legal/termsofsale.html) 或 ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。 邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122 Copyright © 2021 德州仪器半导体技术(上海)有限公司