STGY50NC60WD #### 50 A, 600 V, ultra fast IGBT #### **Features** - Very high frequency operation - Low C_{RES} / C_{IES} ratio (no cross-conduction susceptibility) - Very soft ultra fast recovery antiparallel diode #### **Applications** - Very high frequency inverters, UPS - HF, SMPS and PFC in both hard switch and resonant topologies - Motor drivers - Welding #### **Description** This IGBT utilizes the advanced Power MESH™ process resulting in an excellent trade-off between switching performance and low on-state behavior. Figure 1. Internal schematic diagram Table 1. Device summary | Order code | Marking | Package | Packaging | |--------------|------------|---------|-----------| | STGY50NC60WD | GY50NC60WD | Max247 | Tube | Contents STGY50NC60WD #### **Contents** | 1 | Electrical ratings 3 | |---|---| | 2 | Electrical characteristics 4 | | | 2.1 Electrical characteristics (curves) | | 3 | Test circuit | | 4 | Package mechanical data | | 5 | Revision history | STGY50NC60WD Electrical ratings ## 1 Electrical ratings Table 1. Absolute maximum ratings | Symbol | Parameter | Value | Unit | |-------------------------------|---|------------|------| | V_{CES} | Collector-emitter voltage (V _{GE} = 0) | 600 | V | | I _C ⁽¹⁾ | Collector current (continuous) at T _C = 25 °C | 110 | Α | | I _C ⁽¹⁾ | Collector current (continuous) at T _C = 100 °C | 50 | Α | | I _{CL} (2) | Turn-off latching current | 180 | Α | | I _{CP} (3) | Pulsed collector current | 180 | Α | | I _F | Diode RMS forward current at T _C = 25 °C | 30 | Α | | I _{FSM} | Surge not repetitive forward current (t _p =10 ms sinusoidal) | 120 | А | | V_{GE} | Gate-emitter voltage | ±20 | V | | P _{TOT} | Total dissipation at $T_C = 25$ °C 278 | | W | | T _j | Operating junction temperature | -55 to 150 | °C | ^{1.} Calculated according to the iterative formula: $$I_{C}(T_{C}) = \frac{T_{j(max)} - T_{C}}{R_{thj-c} \times V_{CE(sat)(max)}(T_{j(max)}, I_{C}(T_{C}))}$$ - 2. V_{clamp} = 80% of V_{CES} , T_j =150 °C, R_G =10 Ω , V_{GE} =15 V - 3. Pulse width limited by max. temperature allowed Table 2. Thermal resistance | Symbol | Parameter | Value | Unit | |-----------------------|---|-------|------| | R _{thj-case} | Thermal resistance junction-case IGBT max. | 0.45 | °C/W | | R _{thj-case} | Thermal resistance junction-case diode max. | 1.5 | °C/W | | R _{thj-amb} | Thermal resistance junction-ambient max. | 50 | °C/W | Electrical characteristics STGY50NC60WD ## 2 Electrical characteristics $(T_{CASE} = 25 \, ^{\circ}C \text{ unless otherwise specified})$ Table 3. Static | Symbol | Parameter | Test conditions | Min. | Тур. | Max. | Unit | |----------------------|---|--|------|------------|----------|----------| | V _{(BR)CES} | Collector-emitter breakdown voltage (V _{GE} = 0) | I _C = 1 mA | 600 | | | V | | V _{CE(sat)} | Collector-emitter saturation voltage | $V_{GE} = 15 \text{ V}, I_{C} = 40 \text{ A}$
$V_{GE} = 15 \text{ V}, I_{C} = 40 \text{ A}, T_{C} = 125 ^{\circ}\text{C}$ | | 2.1
1.9 | 2.6 | V
V | | V _{GE(th)} | Gate threshold voltage | $V_{CE} = V_{GE}, I_{C} = 250 \mu A$ | 3.75 | | 5.75 | V | | I _{CES} | Collector cut-off current (V _{GE} = 0) | V _{CE} = 600 V
V _{CE} = 600 V,T _C = 125 °C | | | 500
5 | μA
mA | | I _{GES} | Gate-emitter leakage current (V _{CE} = 0) | V _{GE} = ±20 V | | | ±100 | nA | | 9 _{fs} | Forward transconductance | V _{CE} = 15 V, I _C = 40 A | | 25 | | S | Table 4. Dynamic | Symbol | Parameter | Test conditions | Min. | Тур. | Max. | Unit | |--|---|---|------|-------------------|------|----------------| | C _{ies}
C _{oes}
C _{res} | Input capacitance Output capacitance Reverse transfer capacitance | $V_{CE} = 25 \text{ V, f} = 1 \text{ MHz,}$ $V_{GE} = 0$ | | 4700
410
90 | | pF
pF
pF | | Q _g
Q _{ge}
Q _{gc} | Total gate charge Gate-emitter charge Gate-collector charge | $V_{CE} = 390 \text{ V}, I_{C} = 40 \text{ A},$ $V_{GE} = 15 \text{ V},$ <i>Figure 16</i> | | 195
32
82 | | nC
nC
nC | Table 5. Switching on/off (inductive load) | Symbol | Parameter | Test conditions | Min. | Тур. | Max. | Unit | |---|---|---|------|------------------|------|------------------| | t _{d(on)}
t _r
(di/dt) _{on} | Turn-on delay time
Current rise time
Turn-on current slope | V_{CC} = 390 V, I_{C} = 40 A
R_{G} = 10 Ω , V_{GE} = 15 V,
Figure 17, Figure 15 | | 52
17
2400 | | ns
ns
A/µs | | t _{d(on)}
t _r
(di/dt) _{on} | Turn-on delay time
Current rise time
Turn-on current slope | $V_{CC} = 390 \text{ V, } I_{C} = 40 \text{ A}$ $R_{G} = 10 \Omega, V_{GE} = 15 \text{ V,}$ $T_{C} = 125 ^{\circ}\text{C}$ Figure 17, Figure 15 | | 50
19
2020 | | ns
ns
A/µs | | t _{r(Voff)} t _{d(Voff)} t _f | Off voltage rise time Turn-off delay time Current fall time | $V_{CC} = 390 \text{ V, } I_{C} = 40 \text{ A}$ $R_{G} = 10 \Omega, V_{GE} = 15 \text{ V,}$ Figure 17, Figure 15 | | 31
240
35 | | ns
ns
ns | | t _{r(Voff)} t _{d(Voff)} t _f | Off voltage rise time
Turn-off delay time
Current fall time | $V_{CC} = 390 \text{ V, } I_{C} = 40 \text{ A}$ $R_{G} = 10 \Omega, V_{GE} = 15 \text{ V,}$ $T_{C} = 125 ^{\circ}\text{C}$ Figure 17, Figure 15 | | 59
280
63 | | ns
ns
ns | Table 6. Switching energy (inductive load) | Symbol | Parameter | Test conditions | Min. | Тур. | Max. | Unit | |--|---|--|------|--------------------|--------------------|----------------| | E _{on} ⁽¹⁾ E _{off} ⁽²⁾ E _{ts} | Turn-on switching losses Turn-off switching losses Total switching losses | V_{CC} = 390 V, I_{C} = 40 A
R_{G} = 10 Ω , V_{GE} = 15 V,
Figure 15 | | 365
560
925 | 470
790
1260 | μJ
μJ
μJ | | E _{on} ⁽¹⁾ E _{off} ⁽²⁾ E _{ts} | Turn-on switching losses Turn-off switching losses Total switching losses | $V_{CC} = 390 \text{ V, } I_{C} = 40 \text{ A}$ $R_{G} = 10 \Omega, V_{GE} = 15 \text{ V,}$ $T_{C} = 125 \text{ °C}$ Figure 15 | | 635
910
1545 | | μJ
μJ
μJ | Eon is the tun-on losses when a typical diode is used in the test circuit in Figure 18 If the IGBT is offered in a package with a co-pak diode, the co-pack diode is used as external diode. IGBTs & Diode are at the same temperature (25°C and 125°C) 5/ ^{2.} Turn-off losses include also the tail of the collector current Electrical characteristics STGY50NC60WD Table 7. Collector-emitter diode | Symbol | Parameter | Test conditions | Min. | Тур. | Max. | Unit | |--|--|---|------|-------------------|------|---------------| | V _F | Forward on-voltage | I _F = 40 A
I _F = 40 A, T _C = 125 °C | | 3.2
2.2 | | V
V | | t _{rr}
Q _{rr}
I _{rrm} | Reverse recovery time Reverse recovery charge Reverse recovery current | $I_F = 40 \text{ A}, V_R = 50 \text{ V},$
di/dt = 100 A/ μ s
Figure 18 | | 55
100
3.6 | | ns
nC
A | | t _{rr}
Q _{rr}
I _{rrm} | Reverse recovery time Reverse recovery charge Reverse recovery current | $I_F = 40 \text{ A}, V_R = 50 \text{ V},$ $T_C = 125 ^{\circ}\text{C},$ $di/dt = 100 \text{ A}/\mu\text{s} (Figure 18)$ | | 164
525
6.4 | | ns
nC
A | ### 2.1 Electrical characteristics (curves) Figure 1. Output characteristics Figure 2. Transfer characteristics Figure 3. Transconductance Figure 4. Collector-emitter on voltage vs temperature Figure 5. Gate charge vs gate-source voltage Figure 6. Capacitance variations Electrical characteristics STGY50NC60WD Figure 7. Normalized gate threshold voltage Figure 8. Collector-emitter on voltage vs vs temperature collector current Figure 9. Normalized breakdown voltage vs Figure 10. Switching losses vs temperature temperature Figure 11. Switching losses vs gate resistance Figure 12. Switching losses vs collector current 8/14 Figure 13. Turn-off SOA Figure 14. Forward voltage drop vs. forward current Test circuit STGY50NC60WD ### 3 Test circuit Figure 15. Test circuit for inductive load switching Figure 16. Gate charge test circuit Figure 17. Switching waveform Figure 18. Diode recovery time waveform ## 4 Package mechanical data In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. 11/14 Table 8. Max247 mechanical data | Direc | | mm | | |-------|-------|------|-------| | Dim. | Min. | Тур. | Max. | | А | 4.70 | | 5.30 | | A1 | 2.20 | | 2.60 | | b | 1.00 | | 1.40 | | b1 | 2.00 | | 2.40 | | b2 | 3.00 | | 3.40 | | С | 0.40 | | 0.80 | | D | 19.70 | | 20.30 | | е | 5.35 | | 5.55 | | E | 15.30 | | 15.90 | | L | 14.20 | | 15.20 | | L1 | 3.70 | | 4.30 | Figure 19. Max247 drawing STGY50NC60WD Revision history # 5 Revision history Table 9. Document revision history | Date | Revision | Changes | |-------------|----------|--| | 09-Oct-2006 | 1 | Initial release. | | 07-May-2007 | 2 | Complete version | | 02-Jul-2007 | 3 | Modified value on Table 2: Thermal resistance | | 04-Nov-2008 | 4 | Table 8: Max247 mechanical data and Figure 19: Max247 drawing have been updated. | | 09-Jan-2009 | 5 | Figure 13: Turn-off SOA has been updated. | #### Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST's terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2009 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com