

Automotive-grade N-channel 950 V, 0.280 Ω typ., 17.5 A MDmesh[™] K5 Power MOSFET in a TO-247 package

Datasheet - production data

Order code	V_{DS}	R _{DS(on)} max.	ID	P _{TOT}
STW22N95K5	950 V	0.330 Ω	17.5 A	250 W

- AEC-Q101 qualified
- Industry's lowest RDS(on) x area
- Industry's best FoM (figure of merit) •
- Ultra-low gate charge
- 100% avalanche tested •
- Zener-protected •

Applications

Switching applications

Description

This very high voltage N-channel Power MOSFET is designed using MDmesh™ K5 technology based on an innovative proprietary vertical structure. The result is a dramatic reduction in on-resistance and ultra-low gate charge for applications requiring superior power density and high efficiency.

Table 1: Device summary

AM01476v1_No_tab

Order code	Marking	Package	Packing
STW22N95K5	22N95K5	TO-247	Tube

DocID025115 Rev 4

1/13

This is information on a product in full production.

TO-247 Figure 1: Internal schematic diagram D(2) G(1)

S(3)

 \cap

Contents

Contents

1	Electric	cal ratings	3
2	Electric	cal characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	rcuits	9
4	Packag	e information	10
	4.1	TO-247 package information	10
5	Revisio	on history	12

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
Vgs	Gate-source voltage	±30	V
ID	Drain current (continuous) at $T_C = 25 \ ^\circ C$	17.5	А
ID	Drain current (continuous) at T _c = 100 °C	11	А
ID ⁽¹⁾	Drain current (pulsed)	70	А
P _{TOT}	Total dissipation at $T_C = 25 \text{ °C}$	250	W
ESD	Gate-source human body model (R= 1.5 k Ω , C = 100 pF)	2	kV
dv/dt ⁽²⁾	Peak diode recovery voltage slope	4.5	
dv/dt ⁽³⁾	dv/dt ⁽³⁾ MOSFET dv/dt ruggedness		V/ns
Tj	Operating junction temperature range	55 to 150	°C
T _{stg}	Storage temperature range	-55 to 150	C

Notes:

 $\ensuremath{^{(1)}}\ensuremath{\mathsf{Pulse}}$ width limited by safe operating area.

⁽²⁾ $|_{SD} \le 17.5 \text{ A}, \text{ di/dt} \le 100 \text{ A}/\mu\text{s}; \text{ V}_{DS} \text{ peak} \le \text{V}_{(BR)DSS}$

 $^{(3)}\mathsf{V}_{\mathsf{DS}} \leq 760 \; \mathsf{V}$

Table 3: Thermal data

Symbol Parameter		Value	Unit
R _{thj-case}	0.5	°C/W	
Rthj-amb Thermal resistance junction-ambient		50	°C/W

Table 4: Avalanche characteristics

Symbol Parameter		Value	Unit
lar	I _{AR} Avalanche current, repetitive or not repetitive (pulse width limited by T _{jmax} .)		А
Eas	Single pulse avalanche energy (starting $T_j = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 50$ V)	182	mJ

2 **Electrical characteristics**

 $T_C = 25$ °C unless otherwise specified

Table 5: On/off-state								
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit		
V _{(BR)DSS}	Drain-source breakdown voltage	$V_{GS} = 0 V$, $I_D = 1 mA$	950			V		
		$V_{GS} = 0 V, V_{DS} = 950 V$			1	μA		
IDSS	Zero-gate voltage drain current	$V_{GS} = 0 V, V_{DS} = 950 V$ $T_{C} = 125 \ ^{\circ}C^{(1)}$			50	μA		
I _{GSS}	Gate body leakage current	V_{DS} = 0 V, V_{GS} = ±20 V			±10	μA		
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 100 \ \mu A$	3	4	5	V		
R _{DS(on)}	Static drain-source on-resistance	$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 9 \text{ A}$		0.280	0.330	Ω		

Notes:

⁽¹⁾Defined by design, not subject to production test.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ciss	Input capacitance		-	1550	-	pF
Coss	Output capacitance	V _{DS} = 100 V, f = 1 MHz, V _{GS} = 0 V	-	140	-	pF
Crss	Reverse transfer capacitance	V83 – V V	-	1	-	pF
C _{o(er)} ⁽¹⁾	Equivalent capacitance energy related	$V_{GS} = 0 V$, $V_{DS} = 0$ to	-	65	-	pF
Co(tr) ⁽²⁾	Equivalent capacitance time related	760 V		178	-	pF
Rg	Intrinsic gate resistance	f = 1 MHz , I _D = 0 A	-	3.5	-	Ω
Qg	Total gate charge	V _{DD} = 760 V,	-	48	-	nC
Q _{gs}	Gate-source charge	I _D = 17.5 A	-	9	-	nC
Q _{gd}	Gate-drain charge	V _{GS} = 10 V (see Figure 16: "Test circuit for gate charge behavior")	-	32.5	-	nC

Table 6: Dynamic

Notes:

 $^{(1)}C_{o(er)}$ is a constant capacitance value that gives the same stored energy as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS}.

 $^{(2)}C_{o(tr)}$ is a constant capacitance value that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% VDSS.

Electrical characteristics

_	Table 7: Switching times								
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit			
t _{d(on)}	Turn-on delay time	V_{DD} = 475 V, I_D = 9 A, R_G = 4.7 Ω	-	18	-	ns			
tr	Rise time	V _{GS} = 10 V	-	9	-	ns			
t _{d(off)}	Turn-off delay time	(see Figure 15: "Test circuit for resistive load switching times" and Figure 20: "Switching time waveform")	-	65	-	ns			
t _f	Fall time		-	18	-	ns			

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		17.5	А
Isdm ⁽¹⁾	Source-drain current (pulsed)		-		70	А
V _{SD} ⁽²⁾	Forward on voltage	I _{SD} = 17.5 A, V _{GS} = 0 V	-		1.5	V
trr	Reverse recovery time	I _{SD} = 17.5 A, di/dt = 100 A/µs,	-	513		ns
Qrr	Reverse recovery charge	V _{DD} = 60 V (see Figure 17: "Test circuit for inductive load switching and diode	-	12		μC
Irrm	Reverse recovery current	recovery times")	-	46		А
trr	Reverse recovery time	I _{SD} = 17.5 A, di/dt = 100 A/μs	-	670		ns
Qrr	Reverse recovery charge	V _{DD} = 60 V, T _j = 150 °C (see Figure 17: "Test circuit for inductive load switching and diode recovery times")	-	15		μC
Irrm	Reverse recovery current		-	44		А

Table 8: Source-drain diode

Notes:

 $\ensuremath{^{(1)}}\ensuremath{\mathsf{Pulse}}$ width limited by safe operating area.

 $^{(2)}$ Pulsed: pulse duration = 300 µs, duty cycle 1.5%.

Table 9: Gate-source Zener diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V(BR) GSO	Gate-source breakdown voltage	$I_{GS} = \pm 1 \text{ mA}, I_D = 0 \text{ A}$	30	-	-	V

The built-in back-to-back Zener diodes are specifically designed to enhance the ESD performance of the device. The Zener voltage facilitates efficient and cost-effective device integrity protection, thus eliminating the need for additional external componentry.

1

0.1

0.01

GC18460

 $Z_{th} = k R_{thJ}$ $\delta = t_p / \tau$

 10^{-1}

 $t_{p}(s)$

SINGLE PULSE

.

 10^{-3}

 10^{-2}

 10^{-4}

10⁻²

10⁻³ 10⁻⁵

Electrical characteristics (curves) 2.1 Figure 3: Thermal impedance Figure 2: Safe operating area Κ AM11184v2 ld (A) $\delta = 0.5$ ₩ 10 µs 0.2 0.1 10 100 µs 10⁻¹ 0.05

1 ms 10 ms

Tj=150 °C Tc=25 °C Single pulse

100

VDS(V)

10

57

Electrical characteristics

Electrical characteristics

STW22N95K5

3 Test circuits

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

4.1 TO-247 package information

Package information

SK5 Package									
	Table 10: TO-247 package mechanical data								
Dim		mm							
Dim.	Min.	Тур.	Max.						
A	4.85		5.15						
A1	2.20		2.60						
b	1.0		1.40						
b1	2.0		2.40						
b2	3.0		3.40						
С	0.40		0.80						
D	19.85		20.15						
E	15.45		15.75						
е	5.30	5.45	5.60						
L	14.20		14.80						
L1	3.70		4.30						
L2		18.50							
ØP	3.55		3.65						
ØR	4.50		5.50						
S	5.30	5.50	5.70						

5 Revision history

Table 11: Document revision history

Date	Revision	Changes
17-Oct-2013	1	First release.
19-Dec-2013	2	Datasheet promoted from preliminary to production data Modified: title and <i>Features</i> Minor text changes
20-Mar-2014	3	 Modified: note 3 in Table 2 Modified: Q_{gs} and Q_{gd} typical values in <i>Table 5</i> Modified: typical values in <i>Table 6</i> and 7 Updated: <i>Figure 6</i> Minor text changes
11-Jan-2017	4	Updated title, features and description in cover page. Minor text changes in Section 1: "Electrical ratings" and Section 2: "Electrical characteristics". Changed Figure 7: "Static drain-source on-resistance".

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved

