

1.65 V to 3.6 V -40 °C to +85 °C

20 µA (Typ)

0.6 µA (Typ)

30 ms to 60 s

Capacitive Proximity Sensor Controller ICs Capacitive Proximity Sensor Controller IC

BD21143GWL

General Description

The BD21143GWL is an ultra-low power capacitive sensor controller IC for application which is required the proximity detection and embedded an automatic calibration and a temperature drift compensation.

Features

- 3 Capacitive Sensor Pins
- Ultra-Low Power Consumption
- Self-Capacitance Measurements
- Capacitive Resolution Down to 0.002 fF
- Capacitive Load Capability Up to 200 pF
- Automatic Calibration
- Temperature Drift Compensation
- Capacitive Cancel Drive
- 400 kHz I²C Serial Interface
- Open Drain Interrupt Pin

Applications

- SAR (Specific Absorption Rate) Compliant Systems
- Mobile Phones
- Wearable Devices
- Tablets
- Laptop Computers

Key Specifications

Package

- Power Supply Voltage Range:
- Operating Temperature Range:
- Operating Current:
- Standby Current:
- Scan Period:

UCSP50L1C (8Pin)

W (Typ) x D (Typ) x H (Max) 1.7 mm x 0.94 mm x 0.57 mm

UCSP50L1C

(Note 1) The pull-up resistors must be connected to VDD. Choose the value of the pull-up resistors so as to meet I²C Serial Bus Interface Electrical Characteristics.

OProduct structure : Silicon integrated circuit OThis product has no designed protection against radioactive rays.

Typical Application Circuit

Contents

General Description	1
Features	1
Applications	1
Key Specifications	1
Package	1
Typical Application Circuit	1
Pin Configuration	3
Pin Description	3
Block Diagram	4
Description of Block	4
Absolute Maximum Ratings	5
Thermal Resistance	5
Recommended Operating Conditions	5
Electrical Characteristics	5
Interface Specification 2-wire Serial Bus Interface Electrical Characteristics 2-wire Serial Bus Protocol	6 6 7
Power-on Sequence Power-on Flowchart Power-on Timing Power-on Timing Characteristics Power-restart Timing Power-restart Timing Characteristics	8 8 8 9 9
Register Map	10
Register Description	12
I/O Equivalent Circuit	20
Operational Notes	21
Ordering Information	23
Marking Diagram	23
Physical Dimension and Packing Information	24
Revision History	25

Pin Configuration

Pin Description

Pin No.	Pin Name	I/O Type	Function	Initial Condition
A1	SCL	IN	Host interface pin: Serial clock line. Require external pull-up resistor.	HIZ
A2	VDD	-	Power	-
A3	CS0	IN/OUT	Sensor pin ^(Note 2)	Low
A4	VSS	-	Ground	-
B1	SDA	IN/OUT	Host interface pin: Serial data line. Require external pull-up resistor.	HIZ
B2	INTB	OUT	Interrupt pin: Active low interrupt. Require external pull-up resistor.	Low
B3	CS2	IN/OUT	Sensor pin ^(Note 2)	Low
B4	CS1	IN/OUT	Sensor pin ^(Note 2)	Low

(Note 2) If not used, this pin must be left as an open circuit.

Block Diagram

Description of Block

AFE (Analog Front End) (including MUX, Driver, C/V Converter) This block converts from capacitance to voltage and the voltage to digital value for each sensor.

OSC

This block consists of two oscillators that are 3 MHz and 64 kHz.

The 3 MHz oscillator supplies system clock to AFE, Data Processor and State Machine. The 64 kHz oscillator supplies scan period clock to Timer for Power Management.

Power-on Reset

This block is Power-on Reset circuit. It supplies system reset.

AFE Controller

This block is the sequencer to generate the timing to control AFE.

State Machine

This block manages the state of the IC based on results of data processing and commands from the host.

Data Processor

This block processes the sensor data for detecting proximity, compensation drift, self-calibration timing etc.

Power Management

This block manages the analog blocks for power saving.

Timer

This block measures the scan period time for Power Management using 64 kHz clock.

Reset Generator

This block generates reset for the system from Power-on Reset and the Software Reset command.

HOST I/F

This block has 2-wire serial bus interface compatible with I²C protocol and an open drain interrupt pin.

Absolute Maximum Ratings (Ta = 25°C)

Parameter	Symbol	Rating	Unit
Power Supply Voltage	V _{DD}	-0.3 to +4.5	V
Input Pin Voltage	Vin	-0.3 to V _{DD} + 0.3	V
Maximum Junction Temperature	Tjmax	150	°C
Storage Temperature Range	Tstg	-55 to +150	°C

Caution 1: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is operated over the absolute maximum ratings.
 Caution 2: Should by any chance the maximum junction temperature rating be exceeded the rise in temperature of the chip may result in deterioration of the properties of the chip. In case of exceeding this absolute maximum rating, design a PCB with thermal resistance taken into consideration by increasing board size and copper area so as not to exceed the maximum junction temperature rating.

Thermal Resistance

Parameter	Symbol	Thermal Resistance (Typ)	Unit
UCSP50L1C			
Junction to Ambient	θја	107.5	°C/W
			·

Layer Number of Measurement Board	Material	Board Size
Single	FR-4	41 mm x 51 mm x 1.6 mmt
Тор		
Copper Pattern	Thickness	
Footprints and Traces	35 µm	

Recommended Operating Conditions

Parameter	Symbol	Min	Тур	Max	Unit
Power Supply Voltage	Vdd	1.65	1.80	3.60	V
Operating Temperature	Topr	-40	+25	+85	°C

Electrical Characteristics (Unless otherwise specified V_{DD} = 1.8 V Ta = 25 °C)

Deremeter	Sumbol		Limit		Linit	Conditions
Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Input High Voltage	VIH	V _{DD} x 0.7	-	V _{DD} + 0.3	V	-
Input Low Voltage	VIL	V _{SS} - 0.3	-	V _{DD} x 0.3	V	-
Output High Voltage	Voncs	V _{DD} x 0.7	-	V _{DD}	V	I _{OH} = -1 mA (The CSm (m = 0 to 2) pins)
	Volcs	Vss	-	V _{DD} x 0.3	V	I_{OL} = +1 mA (The CSm (m = 0 to 2) pins)
Output Low Voltage	Vol1	Vss	-	V _{SS} + 0.4	V	I _{OL} = +3 mA (The SDA/INTB pins)
	V _{OL2}	Vss	-	V _{SS} + 0.6	V	I _{OL} = +6 mA (The SDA/INTB pins)
Standby Current	ISTBY	-	0.6	5.0	μA	-
Active Current	Іаст	-	20	-	μΑ	Active Sensor: 3 sensors Scan Period: 30 ms Sensing Integration: 128 times Sensing Frequency: 500 kHz Sensor Pins: No load

Interface Specification

2-wire Serial Bus Interface Compatible with I²C Protocol Support Slave Mode Only 7-bit Slave Address = 0x6A Support Sequential Read and Sequential Write

Figure 1. 2-wire Serial Bus Data Format

Figure 2. 2-wire Serial Bus Data Timing Chart

2-wire Serial Bus Interface Electrical Characteristics (Unless otherwise specified V_{DD} = 1.8 V Ta = 25 °C)

Parameter	Symbol		Limit		Linit	Conditions
Falameter	Symbol	Min	Тур	Max	Unit	Conditions
SCL Clock Frequency	fscL	0	-	400	kHz	-
Hold Time (repeated) START Condition	t _{HD;STA}	0.6	-	-	μs	-
Low Period of the SCL Clock	t∟ow	1.3	-	-	μs	-
High Period of the SCL Clock	tніgн	0.6	-	-	μs	-
Data Hold Time	thd;dat	0	-	-	μs	-
Data Set-up Time	tsu;dat	0.1	-	-	μs	-
Set-up Time for a Repeated START Condition	tsu;sta	0.6	-	-	μs	-
Set-up Time for STOP Condition	t _{su;sто}	0.6	-	-	μs	-
Bus Free Time between STOP and START Condition	t _{BUF}	1.3	-	-	μs	-

Interface Specification - continued

2-wire Serial Bus Protocol

Byte Write

Sequential Write

Random Read

START	7-b = (oit S 0x6A	lave	Add	dres	s	WRITE	ACK		Re (n)	giste	er A	ddr	ess			ACK	START		7-b = 0	it SI x6A	ave	Ado	dres	s	READ	ACK		Rea (Re	ad E egist	Data ter A	i froi Addr	m R ress	egis = n	ster 1)	NACK	STOP
SA6	SA5	SA4	SA3	SA2	SA1	SA0			RA7	RA6	RA5	RA4	RA3	RA2	RA1	RAO			SA6	SA5	SA4	SA3	SA2	SA1	SA0			RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0		

Sequential Read

Figure 3. 2-wire Serial Bus Data Protocol

Power-on Sequence

The IC is accessible from the host after the build-in Power-on Reset circuit supplies system reset.

Power-on Flowchart

Power-on Timing

Figure 4. Power-on Timing Chart

Power-on Timing Characteristics (Unless otherwise specified V_{DD} = 1.8 V Ta = 25 °C)

Paramotor	Symbol		Limit		Unit	Conditions		
Faiametei	Symbol	Min	Тур	Max		Conditions		
VDD Rise Time	t vr	0.1	-	10	ms	-		
I/F Communication Standby Time	t stby	-	-	10	ms	-		

Power-on Sequence - continued

Power-restart Timing

Figure 5. Power-restart Timing Chart

Power-restart Timing Characteristics (Unless otherwise specified V_{DD} = 1.8 V, Ta = 25 °C)

Daramatar	Symbol		Limit		Linit	Conditions			
Falameter	Symbol	Min	Тур	Max	Unit	Conditions			
Maximum Power-off Voltage	Voff	-	-	0.5	V	-			
Minimum Restart Width ^(Note 3)	tvoff	50	-	-	ms	-			

(*Note 3*) Power-on Reset is not guaranteed when the time of VDD \leq 0.5 V is less than 50 ms at power restarting.

Register Map

The time setting in this datasheet is based on the value when the oscillator is typical (3 MHz and 64 kHz). The default value is the value after initialization by reset.

Reserved bits should be left to their default value.

Address	Register Name	R/W	Default Value	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0				
0x00	IRQ_FIN	R	0x01	IRQ_FIN_FAILCAL	IRQ_FIN_OVFCAL	IRQ_FIN_STUCKCAL	IRQ_FIN_PERCAL	IRQ_FIN_SOFTCAL	Reserved	IRQ_FIN_SCAN	IRQ_FIN_INI				
0x01	IRQ_PROX_S	R	0x00	Reserved	IRQ_FAR_S_CS2	IRQ_FAR_S_CS1	IRQ_FAR_S_CS0	Reserved	IRQ_CLS_S_CS2	IRQ_CLS_S_CS1	IRQ_CLS_S_CS0				
0x02	IRQ_PROX_C	R	0x00	Reserved	IRQ_FAR_C_CS2	IRQ_FAR_C_CS1	IRQ_FAR_C_CS0	Reserved	IRQ_CLS_C_CS2	IRQ_CLS_C_CS1	IRQ_CLS_C_CS0				
0x03	IRQ_TRIG_CAL	R	0x00	Reserved	IRQ_OVF_CS2	IRQ_OVF_CS1	IRQ_OVF_CS0	Reserved	IRQ_STUCK_CS2	STUCK_CS2 IRQ_STUCK_CS1 IF					
0x04	IRQ_FAILCAL	R	0x00	Reserved	Reserved	Reserved	Reserved	Reserved	IRQ_FAILCAL_CS2	RQ_FAILCAL_CS2 IRQ_FAILCAL_CS1 IRQ					
0x05	STATE	R	0x00	STAT	re_ic	STATE_C_CS2	STATE_C_CS1	STATE_C_CS0	STATE_S_CS2	STATE_S_CS2 STATE_S_CS1 STATE_					
0x06		R	n/a				DATA_USE_CS0[15:8]	/ CALC_CAP_CS0[15:8]							
0x07	DATA_0SE_CS0	R	n/a				DATA_USE_CS0[7:0]	/CALC_CAP_CS0[7:0]							
0x08		R	n/a				DATA_USE_CS1[15:8]	/ CALC_CAP_CS1[15:8]	I						
0x09	DATA_USE_CST	R	n/a				DATA_USE_CS1[7:0]	/CALC_CAP_CS1[7:0]							
0x0A		R	n/a				DATA_USE_CS2[15:8]	/ CALC_CAP_CS2[15:8]							
0x0B	DATA_03E_032	R	n/a				DATA_USE_CS2[7:0]	/ CALC_CAP_CS2[7:0]							
0x0C	DATA SENS CSO	R	n/a				DATA_SENS_CS0[15	:8]/CTCAP_CS0[15:8]							
0x0D	DATA_SENS_COU	R	n/a				DATA_SENS_CS0[7	:0]/CTCAP_CS0[7:0]							
0x0E	DATA SENS CS4	R	n/a				DATA_SENS_CS1[15	:8]/CTCAP_CS1[15:8]							
0x0F	DATA_SENS_CST	R	n/a				DATA_SENS_CS1[7	:0]/CTCAP_CS1[7:0]							
0x10	DATA SENS CS2	R	n/a				DATA_SENS_CS2[15	:8]/CTCAP_CS2[15:8]							
0x11	DATA_SENS_CS2	R	n/a				DATA_SENS_CS2[7	:0] / CTCAP_CS2[7:0]							
0x12		R	n/a				DATA_BASE_CS0[15	:8]/OCCAP_CS0[15:8]							
0x13	DATA_BASE_CSU	R	n/a				DATA_BASE_CS0[7	:0]/OCCAP_CS0[7:0]							
0x14		R	n/a				DATA_BASE_CS1[15	:8]/OCCAP_CS1[15:8]							
0x15	DATA_BASE_CST	R	n/a				DATA_BASE_CS1[7	:0]/OCCAP_CS1[7:0]							
0x16	B.T. B.O. 000	R	n/a				DATA_BASE_CS2[15	:8]/OCCAP_CS2[15:8]							
0x17	DATA_BASE_CS2	R	n/a				DATA_BASE_CS2[7	:0]/OCCAP_CS2[7:0]							
0x18		R	n/a			DA	TA_REF_CS0[15:8] / DA	ATA_CALC_CAP_CS0[1	5:8]						
0x19	DATA_REF_CS0	R	n/a			D	ATA_REF_CS0[7:0] / DA	ATA_CALC_CAP_CS0[7	:0]						
0x1A	DATA REF CS1	R	n/a			DA	TA_REF_CS1[15:8] / D/	ATA_CALC_CAP_CS1[1	5:8]						
0x1B	DATA_REF_001	R	n/a			D	ATA_REF_CS1[7:0] / DA	ATA_CALC_CAP_CS1[7	:0]						
0x1C	DATA REE CS2	R	n/a			DA	TA_REF_CS2[15:8] / DA	ATA_CALC_CAP_CS2[1	5:8]						
0x1D	DATA_REF_032	R	n/a			D.	ATA_REF_CS2[7:0] / D/	ATA_CALC_CAP_CS2[7	:0]						
0x1E-0x1F	Reserved	R	0x00	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved				
0x20	CFG_CS0	R/W	0x00	CFG_CS2	2_EN_CS0	CFG_CS1	_EN_CS0	Reserved	Reserved	Reserved	EN_CS0				
0x21	CFG_CS1	R/W	0x00	CFG_CS2	2_EN_CS1	Reserved	Reserved	CFG_CS	D_EN_CS1	Reserved	EN_CS1				
0x22	CFG_CS2	R/W	0x00	Reserved	Reserved	CFG_CS1	_EN_CS2	CFG_CS0	_EN_CS2	Reserved	EN_CS2				
0x23	GAIN_CS0	R/W	0x20	Reserved	Reserved			GAIN	L_CS0						
0x24	GAIN_CS1	R/W	0x20	Reserved	Reserved			GAIN	I_CS1						
0x25	GAIN_CS2	R/W	0x20	Reserved	Reserved			GAIN	I_CS2						
0x26	TH_CLS_S_CS0	R/W	0x01				TH_CLS_S	6_CS0[15:8]							
0x27		R/W	0x00				TH_CLS_	S_CS0[7:0]							
0x28	TH_CLS_S_CS1	R/W	0x01				TH_CLS_S	S_CS1[15:8]							
0x29		R/W	0x00				TH_CLS_	S_CS1[7:0]							
0x2A	TH_CLS_S_CS2	R/W	0x01				TH_CLS_S	S_CS2[15:8]							
0x2B		R/W	0x00	TH_CLS_S_CS2[7:0]											
0x2C	TH_FAR_S_CS0	R/W	0x00	TH_FAR_S_CS0[15:8]											
0x2D		R/W	0x80				TH_FAR_	S_CS0[7:0]							
0x2E	TH_FAR_S_CS1	R/W	0x00				TH_FAR_S	S_CS1[15:8]							
0x2F		R/W	0x80				TH_FAR_	S_CS1[7:0]							
0x30	TH_FAR_S_CS2	R/W	0x00				TH_FAR_S	S_CS2[15:8]							
0x31		R/W	0x80				TH_FAR_	S_CS2[7:0]							
0x32	PRE_TH_S_CS0	R/W	0x44	Reserved		PRE_TH_FAR_S_CS0		Reserved		PRE_TH_CLS_S_CS0					
0x33	PRE_TH_S_CS1	R/W	0x44	Reserved		PRE_TH_FAR_S_CS1		PRE_TH_CLS_S_CS1							
0x34	PRE_TH_S_CS2	R/W	0x44	Reserved		PRE_TH_FAR_S_CS2		Reserved		PRE_TH_CLS_S_CS2					

Register Map - continued

Address	Register Name	R/W	Default Value	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
0x35	CTCAP_CS0	R/W	0x00	EN_CTCAP_CS0	Reserved	Reserved		SET_CTCAP_CS0					
0x36	CTCAP_CS1	R/W	0x00	EN_CTCAP_CS1	Reserved	Reserved		SET_CTCAP_CS1					
0x37	CTCAP_CS2	R/W	0x00	EN_CTCAP_CS2	Reserved	Reserved	SET_CTCAP_CS2						
0x38		R/W	0x00	EN_OCCAP_CS0	Reserved	Reserved	Reserved		SET_OCCA	P_CS0[11:8]			
0x39	OCCAP_CS0 R/W		0x00		1	I	SET_OCC/	AP_CS0[7:0]					
0x3A		R/W	0x00	EN_OCCAP_CS1	Reserved	Reserved	Reserved		SET_OCCA	P_CS1[11:8]			
0x3B	OCCAP_CS1 R/W		0x00	SET_OCCAP_CS1[7:0]									
0x3C	RA	R/W	0x00	EN_OCCAP_CS2	Reserved	Reserved	Reserved		SET_OCCA	P_CS2[11:8]			
0x3D	OCCAP_CS2 R/W		0x00	SET_OCCAP_CS2[7:0]									
0x3E	R/W		0x80	TH_CLS_C_CS0[15:8]									
0x3F	TH_CLS_C_CS0	R/W	0x00	TH_CLS_C_CS0[7:0]									
0x40	R/W 0x8			TH_CLS_C_CS1[15:8]									
0x41	TH_CLS_C_CS1	R/W	0x00	TH_CLS_C_CS1[7:0]									
0x42		R/W	0x80	TH_CLS_C_CS2[15:8]									
0x43	TH_CLS_C_CS2	R/W	0x00	TH_CLS_C_CS2[7:0]									
0x44	R/		0x00	TH_FAR_C_CS0[15:8]									
0x45	TH_FAR_C_CS0	R/W	0x00	TH_FAR_C_CS0[7:0]									
0x46	R	R/W	0x00	TH_FAR_C_CS1[15:8]									
0x47	TH_FAR_C_CS1		0x00	TH_FAR_C_CS1[7:0]									
0x48		R/W	0x00	TH_FAR_C_CS2[15:8]									
0x49	TH_FAR_C_CS2	R/W	0x00	 TH_FAR_C_CS2[7:0]									
0x4A		R/W	0x00	OFS_CALC_C_CS0[15:8]									
0x4B	OFS_CALC_C_CS0	R/W	0x00	OFS_CALC_C_CS0[7:0]									
0x4C		R/W	0x00	OFS_CALC_C_CS1[15:8]									
0x4D	OFS_CALC_C_CS1	R/W	0x00	OFS_CALC_C_CS177.01									
0x4E		R/W	0x00	OFS_CALC_C_CS2[15:8]									
0x4F	OFS_CALC_C_CS2	R/W	0x00				OFS_CALC	_C_CS2[7:0]					
0x50	SCAN_PERIOD	R/W	0x01	Reserved	Reserved	Reserved	Reserved		SCAN_	PERIOD			
0x51	FREQ	R/W	0x00	TAP_N	/EDIAN	Reserved	Reserved	Reserved	Reserved	SAMP.	_FREQ		
0x52	INTEG	R/W	0x03	Reserved		INTEG_CAL		Reserved		INTEG_SENS			
0x53	DEBOUNCE	R/W	0x00	Reserved	Reserved	NUM_E	DEB_C	Reserved	Reserved	NUM_I	DEB_S		
0x54	FIL_SENS	R/W	0x01	Reserved	Reserved	Reserved	Reserved FIL_SENS						
0x55	FIL_BASE	R/W	0x14	FIL_BASE_FAR FIL_BASE_CLS									
0x56	PERCAL	R/W	0x00	PERCAL									
0x57	TH_OVS_S	R/W	0x80	TH_OVF_S									
0x58	STUCK_S	R/W	0x00	STUCK_S									
0x59	MSK_IRQ_FIN	R/W	0x00	MSK_ IRQ_FIN_FAILCAL	MSK_ IRQ_FIN_OVFCAL	MSK_ IRQ_FIN_STUCKCAL	MSK_ IRQ_FIN_PERCAL	MSK_ IRQ_FIN_SOFTCAL	Reserved	MSK_ IRQ_FIN_SCAN	Reserved		
0x5A	MSK_IRQ_PROX_S	R/W	0x00	Reserved	MSK_	MSK_	MSK_	Reserved	MSK_	MSK_	MSK_		
0x5B	MSK_IRQ_PROX_C	R/W	0x00	Reserved	MSK_ IRO_C_CS2	MSK_ IBQ_C_CS1	MSK_ IRO_C_CS0	Reserved	Reserved	Reserved	Reserved		
0x5C	MSK_IRQ_TRIG_CAL	R/W	0x00	Reserved	MSK_ IBQ_OVE_CS2	MSK_ IRO_OVE_CS1	MSK_ IRO_OVE_CS0	Reserved	MSK_ IRO STUCK CS2	MSK_ IBO_STUCK_CS1	MSK_ IBO STUCK CS0		
0x5D	MSK_IRQ_FAILCAL	R/W	0x00	Reserved	Reserved	Reserved	Reserved	Reserved	MSK_	MSK_ IRO_FAILCAL_CS1	MSK_		
0x5E	DIS_TRIG_CAL	R/W	0x00	Reserved	DIS_ CAL OVE CS2	DIS_ CAL_OVE_CS1	DIS_ CAL_OVE_CS0	Reserved	DIS_ CAL_STUCK_CS2	DIS_ CAL_STUCK_CS1	DIS_ CAL_STUCK_CS0		
0x5F	DIS_FAILCAL	R/W	0x00	SEL_READ_C	SEL_READ_TYPE_C	PAUSE_BASE_ STAT_CLS_S	SEL_TH_FAR_S	Reserved	DIS_ CAL_FAILCAL_CS2	DIS_ CAL_FAILCAL_CS1	DIS_ CAL_FAILCAL_CS0		
0x60	CLR_IRQ_FIN	R/W	0x00	Reserved	Reserved	Reserved	Reserved	CLR_ IRO FIN SCAN	CLR_ IRO FIN CAI	CLR_ IRO FIN SOFTCAL	CLR_ IRO FIN INI		
0x61	CLR_IRQ_PROX_S	R/W	0x00	Reserved	CLR_ IRQ_FAR_S_CS?	CLR_ IRQ_FAR_S_CS1	CLR_ IRQ_FAR_S_CS0	Reserved	CLR_ IRQ_CLS_S_CS2		CLR_ IRQ_CLS_S_CS0		
0x62	CLR_IRQ_PROX_C	R/W	0x00	Reserved	CLR_ IRQ_FAR_C_CS2	CLR_ IRQ_FAR_C_CS1	CLR_ IRQ_FAR_C_CS0	Reserved		CLR_ IRQ_CLS_C_CS1	CLR_ IRQ_CLS_C_CS0		
0x63	CLR_IRQ_TRIG_CAL	R/W	0x00	Reserved	CLR_ IRQ_OVF_CS2	CLR_ IRQ_OVF_CS1	CLR_ IRQ_OVF_CS0	Reserved	CLR_ IRQ_STUCK_CS2	CLR_ IRQ_STUCK_CS1	CLR_ IRQ_STUCK_CS0		
0x64	CLR_IRQ_FAILCAL	R/W	0x00	Reserved	Reserved	Reserved	Reserved	Reserved	CLR_ IRQ_FAILCAL_CS2	CLR_ IRQ_FAILCAL_CS1	CLR_ IRQ_FAILCAL_CS0		
0x65-0x6C	Reserved	R/W	0x00	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved		
0x6D	0057	R/W	0x00	SOFT_RST[15:8]									
0x6E	SOFT_RST	R/W	0x00				SOFT_	RST[7:0]					
0x6F	CNT	R/W	0x00	Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	SOFTCAL	ACT		

Register Description

IRQ (0x00 to 0x04), IRQ MASK (0x59 to 0x5D), IRQ CLEAR (0x60 to 0x64)

IRQ: When any IRQ bit (0x00 to 0x04) is 1, the INTB pin is low. When all IRQ bits (0x00 to 0x04) are 0, the INTB pin is high due to pull-up resistor.

IRQ_FIN_INI (0x00[0]): Finish Initialize IC by Power-on Reset or the Software Reset command. This bit is cleared by writing 1 to CLR_IRQ_FIN_INI (0x60[0]) or ACT (0x6F[0]) (Start AFE sensing).

IRQ_FIN_SCAN (0x00[1]): Finish sensing of all sensors by scan period.

- **IRQ_FIN_SOFTCAL** (0x00[3]): Finish Software Calibration by command from the host.
- **IRQ_FIN_PERCAL** (0x00[4]): Finish Periodical Calibration.
- **IRQ_FIN_STUCKCAL** (0x00[5]): Finish Stuck Calibration.
- IRQ_FIN_OVFCAL (0x00[6]): Finish Overflow Calibration.
- **IRQ_FIN_FAILCAL** (0x00[7]): Finish Recalibration occurred by calibration fail.

IRQ_CLS_S_CSm (m = 0 to 2) (0x01[2:0]): Detect Close state judged by Sensing Data. **IRQ_FAR_S_CSm (m = 0 to 2)** (0x01[6:4]): Detect Far state judged by Sensing Data.

IRQ_CLS_C_CSm (m = 0 to 2) (0x02[2:0]): Detect Close state judged by Capacitance Value. **IRQ_FAR_C_CSm (m = 0 to 2)** (0x02[6:4]): Detect Far state judged by Capacitance Value.

IRQ_STUCK_CSm (m = 0 to 2) (0x03[2:0]): Detect Stuck condition. IRQ_OVF_CSm (m = 0 to 2) (0x03[6:4]): Detect Overflow condition for dynamic range. IRQ_FAILCAL_CSm (m = 0 to 2) (0x04[2:0]): Detect Calibration fail.

IRQ MASK: IRQ bit (except IRQ_FIN_INI (0x00[0])) has an IRQ Mask bit (0x59 to 0x5D). 0: IRQ bit is not masked (Default)

1: IRQ bit is masked

MSK_IRQ_FIN_SCAN (0x59[1]): Mask bit for IRQ_FIN_SCAN. MSK_IRQ_FIN_SOFTCAL (0x59[3]): Mask bit for IRQ_FIN_SOFTCAL. MSK_IRQ_FIN_PERCAL (0x59[4]): Mask bit for IRQ_FIN_PERCAL. MSK_IRQ_FIN_STUCKCAL (0x59[5]): Mask bit for IRQ_FIN_STUCKCAL. MSK_IRQ_FIN_OVFCAL (0x59[6]): Mask bit for IRQ_FIN_OVFCAL. MSK_IRQ_FIN_FAILCAL (0x59[7]): Mask bit for IRQ_FIN_FAILCAL.

MSK_IRQ_CLS_S_CSm (m = 0 to 2) (0x5A[2:0]): Mask bit for IRQ_CLS_S_CSm. **MSK_IRQ_FAR_S_CSm (m = 0 to 2)** (0x5A[6:4]): Mask bit for IRQ_FAR_S_CSm.

MSK_IRQ_C_CSm (m = 0 to 2) (0x5B[6:4]): Mask bit for IRQ_CLS_C_CSm and IRQ_FAR_C_CSm.

MSK_IRQ_STUCK_CSm (m = 0 to 2) (0x5C[2:0]): Mask bit for IRQ_STUCK_CSm. MSK_IRQ_OVF_CSm (m = 0 to 2) (0x5C[6:4]): Mask bit for IRQ_OVF_CSm. MSK_IRQ_FAILCAL_CSm (m = 0 to 2) (0x5D[2:0]): Mask bit for IRQ_FAILCAL_CSm.

IRQ CLEAR: IRQ bit is cleared by writing 1 to IRQ CLEAR (0x60 to 0x64). CLR_IRQ_FIN_INI (0x60[0]): Clear bit for IRQ_FIN_INI. CLR_IRQ_FIN_SOFTCAL (0x60[1]): Clear bit for IRQ_FIN_SOFTCAL. CLR_IRQ_FIN_CAL (0x60[2]): Clear bit for IRQ_FIN_PERCAL, IRQ_FIN_STUCKCAL, IRQ_FIN_OVFCAL and IRQ_FIN_FAILCAL. CLR_IRQ_FIN_SCAN (0x60[3]): Clear bit for IRQ_FIN_SCAN.

CLR_IRQ_CLS_C_CSm (m = 0 to 2) (0x62[2:0]): Clear bit for IRQ_CLS_C_CSm. **CLR_IRQ_FAR_C_CSm (m = 0 to 2)** (0x62[6:4]): Clear bit for IRQ_FAR_C_CSm.

 $\label{eq:clr_lrq_stuck_csm} \begin{array}{l} \text{CLR_lrq_stuck_cSm} \ (m = 0 \ to \ 2) \ (0x63[2:0]): \ Clear \ bit \ for \ IRq_stuck_cSm. \\ \text{CLR_lrq_oVF_cSm} \ (m = 0 \ to \ 2) \ (0x63[6:4]): \ Clear \ bit \ for \ IRq_oVF_cSm. \\ \text{CLR_lrq_FAILCAL_cSm} \ (m = 0 \ to \ 2) \ (0x64[2:0]): \ Clear \ bit \ for \ IRq_FAILCAL_cSm. \\ \end{array}$

State (0x05)

State of IC and Proximity state.

STATE_IC (0x05[7:6]):

- 0: Standby.
- 1: Calibration.
- 2: Idle.
- 3: Sensing.

STATE_S_CSm (m = 0 to 2) (0x05[2:0]):

- 0: Not Proximity state (Far state) judged by Sensing Data.
- 1: Proximity state (Close state) judged by Sensing Data.

STATE_C_CSm (m = 0 to 2) (0x05[5:3]):

- 0: Not Proximity state (Far state) judged by Capacitance Value.
- 1: Proximity state (Close state) judged by Capacitance Value.

Sensing Data (0x06 to 0x1D), Setting Offset Capacitance Value (0x4A to 0x4F)

2-byte data of each sensor. Data range is from 0 to 65535 (0xFFFF).

In the case SEL_READ_C (0x5F[7]) is 0,

DATA_USE_CSm (m = 0 to 2) (0x06 to 0x0B): Sensing Data without drift. This value is compared to threshold. DATA_SENS_CSm (m = 0 to 2) (0x0C to 0x11): Sensing Data filtered by Low Path Filter. DATA_BASE_CSm (m = 0 to 2) (0x12 to 0x17): Sensing Data to detect environment drift. DATA_REF_CSm (m = 0 to 2) (0x18 to 0x1D): Reference Offset Data.

In the case SEL_READ_C (0x5F[7]) is 1,

CALC_CAP_CSm (m = 0 to 2) (0x06 to 0x0B): Capacitance Value. 1 count is about 0.01 pF. This value is compared to threshold.

CTCAP_CSm (m = 0 to 2) (0x0C to 0x11): Parameter Value of Integrated Capacitance for Charge Transfer. OCCAP_CSm (m = 0 to 2) (0x12 to 0x17): Parameter Value of Integrated Capacitance for Offset Compensation. DATA_CALC_CAP_CSm (m = 0 to 2) (0x18 to 0x1D): Sensing Data to calculate Capacitance Value.

OFS_CALC_C_Sm (m = 0 to 2) (0x4A to 0x4F): Setting Offset Capacitance Value. 1 count is about 0.01 pF. Capacitance Value is calculated from Sensing Data and Integrated Capacitance Parameter. OFS_CALC_C_CSm is signed 2's complement format. CALC_CAP_CSm = Calculated Capacitance Value + OFS_CALC_C_CSm.

Configuration Sensors (0x20 to 0x22)

EN_CSm (m = 0 to 2) (0x20[0], 0x21[0], 0x22[0]):

- 0: Not use sensor pin (Default)
- 1: Use sensor pin

CFG_CSx_EN_CS0 (x = 1 and 2) (0x20[5:4], 0x20[7:6]): Configuration the CSx pin during the CS0 pin is sensing. CFG_CSx_EN_CS1 (x = 0 and 2) (0x21[3:2], 0x21[7:6]): Configuration the CSx pin during the CS1 pin is sensing. CFG_CSx_EN_CS2 (x = 0 and 1) (0x22[3:2], 0x22[5:4]): Configuration the CSx pin during the CS2 pin is sensing. 0: HIZ (Default) 1: GND

- 1: GND 2: Canacitivo C
- 2: Capacitive Cancel Drive 3: Do not use

Sensitivity (0x23 to 0x25)

GAIN_CSm (m = 0 to 2) (0x23 to 0x25): The smaller the value, the higher the sensitivity. It is prohibited to set 0.

Threshold for Sensing Data (0x26 to 0x31)

TH_CLS_S_CSm (m = 0 to 2) (0x26 to 0x2B): Threshold for sensing data to detect Close state. Condition for Detect Close state: DATA_USE_CSm > 32768 (0x8000) + TH_CLS_S_CSm Settable range: 0x0008 < TH_CLS_S_CSm < 0x7FFF

TH_FAR_S_CSm (m = 0 to 2) (0x2C to 0x31): Threshold for sensing data to detect Far state. Condition for Detect Far state: DATA_USE_CSm < DATA_REF_CSm - TH_FAR_S_CSm (In the case SEL_TH_FAR_S (0x5F[4]) = 0) DATA_USE_CSm < 32768 (0x8000) + TH_FAR_S_CSm (In the case SEL_TH_FAR_S (0x5F[4]) = 1) Settable range: 0x0008 < TH_FAR_S_CSm < 0x7FFF

2nd Threshold for Sensing Data (0x32 to 0x34)

2nd Threshold Sensing Data is for Drift Detect.

PRE_TH_CLS_S_CSm (m = 0 to 2) (0x32[2:0], 0x33[2:0], 0x34[2:0]): 2nd Threshold Sensing Data at Far state = TH_CLS_S_CSm x PRE_TH_CLS_S_CSm / 8 In the condition that (DATA_SENS_CSm - DATA_BASE_CSm > 2nd Threshold Sensing Data at Far state) before detect Close state, DATA_BASE_CSm is not update and Drift Detect is pause. When detected Close state, Drift Detect is restart. When PRE_TH_CLS_S_CSm is 0, always detect drift.

PRE_TH_FAR_S_CSm (m = 0 to 2) (0x32[6:4], 0x33[6:4], 0x34[6:4]): 2nd Threshold Sensing Data at Close state = TH_FAR_S_CSm x PRE_TH_FAR_S_CSm / 8 In the condition that (DATA_BASE_CSm - DATA_SENS_CSm > 2nd Threshold Sensing Data at Close state) before detect Far state, DATA_BASE_CSm is not update and Drift Detect is pause. When detect Far state, Drift Detect is restart. When PRE_TH_FAR_S_CSm is 0, always detect drift.

Threshold for Capacitance Value (0x3E to 0x49)

TH_CLS_C_CSm (m = 0 to 2) (0x3E to 0x43): Threshold for Capacitance Value to detect Close state. Condition for detect Close state: CALC_CAP_CSm > TH_CLS_C_CSm

TH_FAR_C_CSm (m = 0 to 2) (0x44 to 0x49): Threshold for Capacitance Value to detect Far state. Condition for detect Far state: CALC_CAP_CSx < TH_FAR_C_CSm

Setting constraint: TH_CLS_C_CSm > TH_FAR_C_CSm

Configuration Sensing (0x50 to 0x55)

Common parameters for all sensors.

Do not use settings that the Sensing Time exceeds the Scan Period.

Sensing Time = (Number of Using sensor pins) x (Number of Sensing Integration at Normal Sensing) / (Sensing Frequency)

SCAN_PERIOD (0x50[3:0]): Interval Time between Sensing and Next Sensing. AFE and OSC stop during Idle.

0: Do not use

1: 30 ms (Default)

2: 60 ms

3: 90 ms

- 4: 120 ms
- 5: 180 ms
- 6: 240 ms
- 7: 300 ms 8: 450 ms
- 9:1s

10:5 s

11: 10 s

12: 20 s

13: 30 s

14: 45 s

15: 60 s

SAMP_FREQ (0x51[1:0]): Sensing Frequency.

- 0: 500 kHz (Default)
- 1: 250 kHz
- 2: 125 kHz
- 3: 62.5 kHz

TAP_MEDIAN (0x51[7:6]): Tap of Median Filter for RAW Sensing Data.

- 0: 1 data (Default)
- 1: 3 data
- 2: 5 data
- 3: 7 data

 $\mbox{INTEG_SENS}\ (0x52[2:0]):$ Number of Sensing Integration at Normal Sensing. $\mbox{INTEG_CAL}\ (0x52[6:4]):$ Number of Sensing Integration at Calibration.

- 0: 64 times (Default of INTEG_CAL)
- 1: 128 times
- 2: 256 times
- 3: 512 times (Default of INTEG_SENS)
- 4: 1024 times
- 5: 2048 times
- 6: 4096 times
- 7: 8192 times

Configuration Sensing - continued

Figure 6. Power Consumption for Configuration Sensing (Fixed Scan Period)

Configuration Sensing - continued

NUM_DEB_S (0x53[1:0]): The number of consecutive scans for debouncer to detect Close / Far state by Sensing Data. **NUM_DEB_C** (0x53[5:4]): The number of consecutive scans for debouncer to detect Close / Far state by Capacitance Value.

0: 1 consecutive scan (Default)

1: 2 consecutive scans

2: 4 consecutive scans

3: 8 consecutive scans

FIL_SENS (0x54[3:0]): Low Path Filter setting for DATA_SENS_CSm.

FIL_BASE_CLS (0x55[3:0]): Low Path Filter setting for DATA_BASE_CSm when DATA_BASE_CSm ≤ DATA_SENS_CSm.

FIL_BASE_FAR (0x55[7:4]): Low Path Filter setting for DATA_BASE_CSm when DATA_BASE_CSm > DATA_SENS_CSm.

Low Path Filter formula:

$$y[i] = \frac{1}{2^n} \left(x[i] + \left((2^n - 1) \times y[i - 1] \right) \right)$$

where:

n is Low Path Filter setting value.

x[i] is input value of Low Path Filter.

y[i] is output value of Low Path Filter.

y[i-1] is previous output value of Low Path Filter.

Figure 7. Low Path Filter Characteristic

Calibration (0x56 to 0x58 and 0x5E to 0x5F)

PERCAL (0x56): Periodical Calibration
When PERCAL is 0, Periodical Calibration is disabled.
Periodical Calibration Interval = Scan Period x PERCAL x 16
When there is at least one sensor detecting Close state, Periodical Calibration Interval is not measured and Periodical Calibration is disabled.
When the scan times reach to Periodical Calibration Interval, all sensors are calibrated (Periodical Calibration).
When Periodical Calibration is finished, IRQ_FIN_PERCAL is set to 1.
TH_OVF_S (0x57): Threshold for Overflow
When TH_OVF_S is 0, Overflow detection and Calibration Fail detection are disabled.
At Normal Sensing:
Overflow condition: | DATA_BASE_CSm - 32768 (0x8000) | > TH_OVF_S x 128
When it detects Overflow condition on any sensor, all sensors are calibrated (Overflow Calibration).
When Overflow Calibration is finished, IRQ_FIN_OVFCAL is set to 1.

At Calibration:

t Calibration: Calibration fail condition: | DATA_MED_CSm - 32768 (0x8000) | > TH_OVF_S x 128 DATA_MED_CSm is median filtered RAW Sensing Data. When it detects calibration fail condition on any sensor, all sensors are recalibrated (Recalibration). When Recalibration is finished, IRQ_FIN_FAILCAL is set to 1.

STUCK_S (0x58): Stuck Time

When STUCK_S is 0, Stuck detection is disabled.

Stuck Time = Scan Period x STUCK_S x 4

When Close state times reach to Stuck Time on any sensor, it detects Stuck condition and all sensors are calibrated (Stuck Calibration).

When Stuck Calibration is finished, IRQ_FIN_STUCKCAL is set to 1.

DIS_CAL_STUCK_CAL_CSm (m = 0 to 2) (0x5E[2:0]): Set disabled Stuck Calibration when CSm (m = 0 to 2) detects Stuck condition.

0: Enable Stuck Calibration (Default)

1: Disable Stuck Calibration

DIS_CAL_OVF_CAL_CSm (m = 0 to 2) (0x5E[6:4]): Set disabled Overflow Calibration when CSm (m = 0 to 2) detects Overflow condition.

0: Enable Overflow Calibration (Default)

1: Disable Overflow Calibration

DIS_CAL_FAILCAL_CSm (m = 0 to 2) (0x5F[2:0]): Set disabled Recalibration when CSm (m = 0 to 2) detects Calibration fail condition.

0: Enable Recalibration (Default)

1: Disable Recalibration

Software Reset (0x6D to 0x6E)

SOFT_RST (0x6D to 0x6E): The Software Reset 2-byte Command. When this register is 0xAA55, Software Reset is released at the timing of I^2C Stop Condition.

Since the oscillator must be stopped for a reliable Software Reset, so execute a Software Reset once to stop the oscillator, and then execute the Software Reset again.

Software Reset requires the oscillator to be stopped. So perform a Software Reset once to stop the oscillator, and then perform a Software Reset again.

Control (0x6F)

ACT (0x6F[0]):

- 0: Stop AFE sensing. State of IC is Standby.
- 1: Start AFE sensing. State of IC is Active.

SOFTCAL (0x6F[1]):

- 0: Not Act Software Calibration.
- 1: Act Software Calibration.
 - It needs Software Calibration at the first start AFE sensing.

Other Function (0x5F[7:4])

SEL_READ_C (0x5F[7]): Select Read Data from 0x06 to 0x1D. Refer to Sensing Data (0x06 to 0x1D).

SEL_READ_TYPE_C (0x5F[6]): Select the type of DATA_CALC_CAP_CSm. DATA_CALC_CAP_CSm is Sensing Data to calculate Capacitance Value.

0: DATA_CALC_CAP_CSm is RAW Sensing Data.

1: DATA_CALC_CAP_CSm is USE Sensing Data.

PAUSE_BASE_STAT_CLS_S (0x5F[5]): Select Drift Detect when Close state is.

0: Drift Detect continues.

1: Drift Detect is pause.

SEL_TH_FAR_S (0x5F[4]): Select condition for Detect Far state. Refer to Threshold for Sensing Data (0x26 to 0x31).

Configuration Integrated Capacitance Parameter (0x35 to 0x3D)

EN_CTCAP_CSm (m = 0 to 2) (0x35[7], 0x36[7], 0x37[7]): Select parameter value of Integrated Capacitance for Charge Transfer.

0: Use the parameter from calibration result.

1: Use the SET_CTCAP_CSm (m = 0 to 2) (0x35[4:0], 0x36[4:0], 0x37[4:0]).

EN_OCCAP_CSm (m = 0 to 2) (0x38[7], 0x3A[7], 0x3C[7]): Select the parameter value of Integrated Capacitance for Offset Compensation

0: Use the parameter from calibration result.

1: Use the SET_OCCAP_CSm (m = 0 to 2) (0x38 to 0x3D).

This value is 12-bit signed 2's complement format. The range of SET_OCCAP_CSm is ±2047.

I/O Equivalent Circuit

Operational Notes

1. Reverse Connection of Power Supply

Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when connecting the power supply, such as mounting an external diode between the power supply and the IC's power supply pins.

2. Power Supply Lines

Design the PCB layout pattern to provide low impedance supply lines. Furthermore, connect a capacitor to ground at all power supply pins. Consider the effect of temperature and aging on the capacitance value when using electrolytic capacitors.

3. Ground Voltage

Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition.

4. Ground Wiring Pattern

When using both small-signal and large-current ground traces, the two ground traces should be routed separately but connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal ground caused by large currents. Also ensure that the ground traces of external components do not cause variations on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.

5. Recommended Operating Conditions

The function and operation of the IC are guaranteed within the range specified by the recommended operating conditions. The characteristic values are guaranteed only under the conditions of each item specified by the electrical characteristics.

6. Inrush Current

When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may flow instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power supply. Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and routing of connections.

7. Testing on Application Boards

When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may subject the IC to stress. Always discharge capacitors completely after each process or step. The IC's power supply should always be turned off completely before connecting or removing it from the test setup during the inspection process. To prevent damage from static discharge, ground the IC during assembly and use similar precautions during transport and storage.

8. Inter-pin Short and Mounting Errors

Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin. Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and unintentional solder bridge deposited in between pins during assembly to name a few.

9. Unused Input Pins

Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small charge acquired in this way is enough to produce a significant effect on the conduction through the transistor and cause unexpected operation of the IC. So unless otherwise specified, unused input pins should be connected to the power supply or ground line.

Operational Notes - continued

10. Regarding the Input Pin of the IC

This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them isolated. P-N junctions are formed at the intersection of the P layers with the N layers of other elements, creating a parasitic diode or transistor. For example (refer to figure below):

When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode. When GND > Pin B, the P-N junction operates as a parasitic transistor.

Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should be avoided.

Figure 8. Example of Monolithic IC Structure

11. Ceramic Capacitor

When using a ceramic capacitor, determine a capacitance value considering the change of capacitance with temperature and the decrease in nominal capacitance due to DC bias and others.

12. Over Current Protection Circuit (OCP)

This IC incorporates an integrated overcurrent protection circuit that is activated when the load is shorted. This protection circuit is effective in preventing damage due to sudden and unexpected incidents. However, the IC should not be used in applications characterized by continuous operation or transitioning of the protection circuit.

13. Disturbance Light

In a device where a portion of silicon is exposed to light such as in a WL-CSP and chip products, IC characteristics may be affected due to photoelectric effect. For this reason, it is recommended to come up with countermeasures that will prevent the chip from being exposed to light.

Ordering Information

Marking Diagram

Physical Dimension and Packing Information

Pocket Quadrants

Reel

Revision History

Date	Revision	Changes			
31.Aug.2020	001	New Release			

Notice

Precaution on using ROHM Products

1. Our Products are designed and manufactured for application in ordinary electronic equipment (such as AV equipment, OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment (^{Note 1)}, transport equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or serious damage to property ("Specific Applications"), please consult with the ROHM sales representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any ROHM's Products for Specific Applications.

,	1 1			
JAPAN	USA	EU	CHINA	
CLASSⅢ		CLASS II b		
CLASSⅣ	CLASSIII	CLASSⅢ	CLASSII	

- 2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which a failure or malfunction of our Products may cause. The following are examples of safety measures:
 - [a] Installation of protection circuits or other protective devices to improve system safety
 - [b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure
- 3. Our Products are designed and manufactured for use under standard conditions and not under any special or extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the use of any ROHM's Products under any special or extraordinary environments or conditions. If you intend to use our Products under any special or extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of product performance, reliability, etc, prior to use, must be necessary:
 - [a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents
 - [b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust
 - [c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl₂, H₂S, NH₃, SO₂, and NO₂
 - [d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves
 - [e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items
 - [f] Sealing or coating our Products with resin or other coating materials
 - [g] Use of our Products without cleaning residue of flux (Exclude cases where no-clean type fluxes is used. However, recommend sufficiently about the residue.); or Washing our Products by using water or water-soluble cleaning agents for cleaning residue after soldering
 - [h] Use of the Products in places subject to dew condensation
- 4. The Products are not subject to radiation-proof design.
- 5. Please verify and confirm characteristics of the final or mounted products in using the Products.
- 6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse, is applied, confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect product performance and reliability.
- 7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in the range that does not exceed the maximum junction temperature.
- 8. Confirm that operation temperature is within the specified range described in the product specification.
- 9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in this document.

Precaution for Mounting / Circuit board design

- 1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product performance and reliability.
- 2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products, please consult with the ROHM representative in advance.

For details, please refer to ROHM Mounting specification

Precautions Regarding Application Examples and External Circuits

- 1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the characteristics of the Products and external components, including transient characteristics, as well as static characteristics.
- 2. You agree that application notes, reference designs, and associated data and information contained in this document are presented only as guidance for Products use. Therefore, in case you use such information, you are solely responsible for it and you must exercise your own independent verification and judgment in the use of such information contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of such information.

Precaution for Electrostatic

This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron, isolation from charged objects, setting of lonizer, friction prevention and temperature / humidity control).

Precaution for Storage / Transportation

- 1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:
 - [a] the Products are exposed to sea winds or corrosive gases, including Cl₂, H₂S, NH₃, SO₂, and NO₂
 - [b] the temperature or humidity exceeds those recommended by ROHM
 - [c] the Products are exposed to direct sunshine or condensation
 - [d] the Products are exposed to high Electrostatic
- 2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is exceeding the recommended storage time period.
- 3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads may occur due to excessive stress applied when dropping of a carton.
- 4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of which storage time is exceeding the recommended storage time period.

Precaution for Product Label

A two-dimensional barcode printed on ROHM Products label is for ROHM's internal use only.

Precaution for Disposition

When disposing Products please dispose them properly using an authorized industry waste company.

Precaution for Foreign Exchange and Foreign Trade act

Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign trade act, please consult with ROHM in case of export.

Precaution Regarding Intellectual Property Rights

- 1. All information and data including but not limited to application example contained in this document is for reference only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any other rights of any third party regarding such information or data.
- 2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the Products with other articles such as components, circuits, systems or external equipment (including software).
- 3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to manufacture or sell products containing the Products, subject to the terms and conditions herein.

Other Precaution

- 1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.
- 2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written consent of ROHM.
- 3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the Products or this document for any military purposes, including but not limited to, the development of mass-destruction weapons.
- 4. The proper names of companies or products described in this document are trademarks or registered trademarks of ROHM, its affiliated companies or third parties.

General Precaution

- 1. Before you use our Products, you are requested to carefully read this document and fully understand its contents. ROHM shall not be in any way responsible or liable for failure, malfunction or accident arising from the use of any ROHM's Products against warning, caution or note contained in this document.
- 2. All information contained in this document is current as of the issuing date and subject to change without any prior notice. Before purchasing or using ROHM's Products, please confirm the latest information with a ROHM sales representative.
- 3. The information contained in this document is provided on an "as is" basis and ROHM does not warrant that all information contained in this document is accurate and/or error-free. ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or concerning such information.