

STPS40SM100C

Datasheet

100 V, 40 A power Schottky rectifier

TO-220AB

Features

- Low forward voltage drop
- Good trade-off between leakage current and forward voltage drop
- High frequency operation
- Avalanche capability specified
- ECOPACK[®]2 compliant

Applications

- Switching diode
- SMPS
- DC/DC converter
- LED lighting
- Adapter for notebook and game station

Description

The STPS40SM100C is suited for high frequency switch mode power supply.

Packaged in TO-220AB, the STPS40SM100C is optimized for use in notebook and game station adaptors, providing in these applications a good efficiency at both low and high load.

Product status link			
STPS40SM100C			
Product summary			
Symbol Value			
I _{F(AV)}	2 x 20 A		
V_{RRM} 100 V			
T _j (max.) 150 °C			
V_F (typ.) 0.605 ∨			

1 Characteristics

51

Table 1. Absolute Ratings (limiting values, per diode, at 25 °C, unless otherwise specified)

Symbol	Parameter			Value	Unit
V _{RRM}	Repetitive peak reverse voltage			100	V
I _{F(RMS)}	Forward rms current			60	Α
		T _C = 130 °C	Per diode	20	•
I _{F(AV)}	Average forward current, $\delta = 0.5$ square wave	T _C = 125 °C	Per device	40	A
I _{FSM}	Surge non repetitive forward current	on repetitive forward current t_p = 10 ms sinusoidal			Α
P _{ARM}	Repetitive peak avalanche power $t_p = 10 \ \mu s$, $T_j = 125 \ ^{\circ}C$			1295	W
T _{stg}	Storage temperature range			-65 to +175	°C
Tj	Maximum operating junction temperature ⁽¹⁾			150	°C

1. $(dP_{tot'}/dT_j) < (1/R_{th(j-a)})$ condition to avoid thermal runaway for a diode on its own heatsink.

Table 2. Thermal resistance parameters

Symbol	Parameter		Max. value	Unit
P	lunction to case	Per diode	1.3	
R _{th(j-c)} Junction to case	Total	0.7	°C/W	
R _{th(c)}	Coupling		0.1	

When the diodes 1 and 2 are used simultaneously:

 $\Delta T_{j \text{ (diode1)}} = P_{\text{(diode1)}} \times R_{\text{th}(j-c)} \text{ (per diode)} + P_{\text{(diode2)}} \times R_{\text{th}(c)}$

For more information, please refer to the following application note :

AN5088 : Rectifiers thermal management, handling and mounting recommendations

Table 3. Static electrica	I characteristics	(per diode)
---------------------------	-------------------	-------------

Symbol	Parameter	Test conditions		Min.	Тур.	Max.	Unit
		T _j = 25 °C	V _R = 70 V	-	7		μA
I_ (1)	Deverse leakage surrent	T _j = 125 °C	VR - 70 V	-	7		mA
IR (1)	I _R ⁽¹⁾ Reverse leakage current	T _j = 25 °C	V _R = 100 V	-	13	45	μA
		T _j = 125 °C	VR - 100 V	-	13	45	mA
		T _j = 25 °C	I _F = 5 A	-	520		-
		T _j = 125 °C		-	435		
V _F ⁽²⁾	Forward valtage drag	T _j = 25 °C	1 - 10 4	-	620	700	
VF Forward VC	Forward voltage drop	T _j = 125 °C	I _F = 10 A	-	520	580	mV
		T _j = 25 °C	L = 20 A	-	740	810	
		T _j = 125 °C	I _F = 20 A	-	605	665	

1. Pulse test: $t_p = 5 ms$, $\delta < 2\%$

2. Pulse test: $t_p = 380 \ \mu s, \ \delta < 2\%$

To evaluate the conduction losses, use the following equation: $P = 0.580 \times I_{F(AV)} + 0.0043 \times I_{F}^{2} (RMS)$ For more information, please refer to the following application notes related to the power losses :

- AN604: Calculation of conduction losses in a power rectifier
- AN4021: Calculation of reverse losses on a power diode

1.1 Characteristics (curves)

Figure 7. Forward voltage drop versus forward current (per diode)

2 Package information

57

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

2.1 TO-220AB package information

- Epoxy meets UL 94,V0
- Cooling method: by conduction (C)
- Recommended torque value: 0.55 N·m
- Maximum torque value: 0.70 N·m

Figure 8. TO-220AB package outline

	Dimensions				
Ref.	Millin	Millimeters		ference only)	
	Min.	Max.	Min.	Max.	
А	4.40	4.60	0.173	0.181	
b	0.61	0.88	0.240	0.035	
b1	1.14	1.55	0.045	0.061	
С	0.48	0.70	0.019	0.028	
D	15.25	15.75	0.600	0.620	
D1	1.27	′ typ.	0.050 typ.		
E	10.00	10.40	0.394	0.409	
е	2.40	2.70	0.094	0.106	
e1	4.95	5.15	0.195	0.203	
F	1.23	1.32	0.048	0.052	
H1	6.20	6.60	0.244	0.260	
J1	2.40	2.72	0.094	0.107	
L	13.00	14.00	0.512	0.551	
L1	3.50	3.93	0.138	0.155	
L20	16.4	16.40 typ.		δ typ.	
L30	28.9	28.90 typ.		З typ.	
θΡ	3.75	3.85	0.148	0.152	
Q	2.65	2.95	0.104	0.116	

Table 4. TO-220AB package mechanical data

3 Ordering information

Order code	Marking	Package	Weight	Base qty.	Delivery mode
STPS40SM100CT	PS40SM100CT	TO-220AB	1.95 g	50	Tube

Revision history

Date	Version	Changes
25-Mar-2009	1	First issue.
15-Apr-2010	2	Updated package graphics for TO-220AB on front page and in Table 5
27-Jun-2018	3	Updated Table 1. Absolute Ratings (limiting values, per diode, at 25 °C, unless otherwise specified) and Figure 3. Normalized avalanche power derating versus pulse duration (T_j = 125 °C). Removed I ² PAK and D ² PAK package information.
22-Feb-2019	4	Updated Table 1.

Table 6. Document revision history

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2019 STMicroelectronics – All rights reserved