

STEF4S

Electronic fuse for 3.3 V and 5 V lines

Datasheet - production data

Features

- Power MOSFET on-resistance (typ.): 40 mΩ
- Enable function
- Output clamp voltage (typ.): 5.7 V in 5 V mode, and 3.8 V in 3.3 V mode
- Undervoltage lockout
- Short-circuit limit
- Overload foldback current limit
- Controlled soft-start
- Thermal auto-retry
- Internal sensing FET
- Operative temp. range: 40 °C to 85 °C
- Available in DFN 3x3 10L package

Description

The STEF4S is an integrated electronic fuse optimized for monitoring the output current and the input voltage. It can be connected in series to 3.3 V or 5 V rails, protecting the electronic circuitry on its output from overcurrent and overvoltage. The operating mode (5 V or 3.3 V) can be selected by a dedicated pin. The STEF4S has a controlled turn-on time, adjustable by an external capacitor. When an overload condition occurs the device limits the output current to a predefined safe value. If the anomalous overload condition persists it goes into an open state, disconnecting the load from the power supply. If a continuous short-circuit is present on the board, the E-fuse limits the output current to a safe value.

In case of overvoltage on the input, the device clamps the output voltage to a predefined value and protects the load.

If the anomalous fault condition persists, the internal thermal protection circuit shuts down the device and then automatically attempts to resupply the load until the fault condition is removed.

Unlike mechanical fuses, which must be physically replaced after a single event, the Efuse does not degrade in its performance after short-circuit/thermal protection interventions.

Applications

- Hard disk drives
- Solid state drives (SSD)
- Hard disk and SSD arrays
- Set-top boxes
- DVD and blu-ray disc drivers

Table	1.	Device	summary
			o anna y

Order code	Package	Packing			
STEF4SPUR	DFN 3x3 - 10L	Tape and reel			

This is information on a product in full production.

Contents

1	Bloc	Block diagram			
2	Pin o	configu	ration		
3	Maxi	imum ra	atings		
4	Elec	trical ch	naracteristics		
5	Турі	cal char	racteristics		
	5.1	Operat	ting modes		
		5.1.1	Turn-on		
		5.1.2	Normal operating condition9		
		5.1.3	Output voltage clamp9		
		5.1.4	Current limiting		
		5.1.5	Thermal shutdown and auto-retry function		
	5.2	Startup	time and CSS calculation		
	5.3	UVLO	and voltage clamp selection 10		
	5.4	Enable	e pin		
6	Турі	cal perf	ormance characteristics 11		
7	Pack	kage inf	ormation		
	7.1	DFN6	3x3 - 10L package information 15		
	7.2	DFN6	3x3 - 10L packing information		
8	Revi	sion his	story		

Block diagram 1

2 Pin configuration

Table 2. Pin description

Pin n°	Symbol	Note		
1, 2, 3	V _{IN}	Input supply voltage pin		
4	V _{CP}	Voltage clamping and UVLO selection pin (high state 5 V, low state 3.3 V)		
5	GND	Ground pin (can be left floating if TAB is connected to GND)		
6	SST	Soft-start time selection pin. A capacitor can be connected between this pin and GND to increase the startup time		
7	EN	Enable pin (active high)		
8,9,10	V _{OUT}	Output voltage pin		
EXP	GND	Exposed pad is internally connected to GND		

3 Maximum ratings

Symbol	Parameter	Value	Unit
V _{IN}	Positive power supply voltage	-0.3 to 15	V
V _{OUT}	Output voltage	-0.3 to 7	V
V _{CP}	UVLO and voltage clamp selection pin	-0.3 to V _{IN}	V
EN	Enable pin	-0.3 to V _{IN}	V
SST	Soft-start time selection pin	-0.3 to 4.6	V
ТJ	Max. junction temperature ⁽¹⁾	-40 to 125	°C
T _{STG}	Storage temperature range	-65 to 150	°C
T _{LEAD}	Lead temperature (soldering) 10 s	260	°C

Table 3. Absolute maximum ratings

1. The thermal limit is set above the maximum thermal rating. It is not recommended the device to operate at temperatures greater than the maximum ratings for extended periods of time.

Note: Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied.

Table 4. Thermal data

Symbol	Parameter	Value	Unit
R _{thJA}	Thermal resistance junction-ambient	40	°C/W
R _{thJC}	Thermal resistance junction-case	2.5	°C/W

4 Electrical characteristics

Unless otherwise specified, typical values are referred to $V_{IN} = 5 \text{ V}$ for $V_{CP} = V_{IN}$ and $V_{IN} = 3.3 \text{ V}$ for $V_{CP} = GND, C_{IN} = C_{OUT} = 22 \ \mu\text{F}$, T = 25 °C, min. and max. values are referred to T = -40 °C to 85 °C.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{IN}	Operating input voltage				10	V
	Under/ov	ervoltage protection, 3.3 V mode		•		
V _{Clamp}	Output clamping voltage	V _{IN} = 10 V, V _{CP} = GND	3.6	3.8	4.0	V
V _{UVLO}	Under voltage lockout	V _{CP} = GND, Turn-on, voltage going up	2.2	2.3	2.4	V
V _{Hyst}	UVLO hysteresis	V _{CP} = GND	50	90	130	mV
	Under/ov	vervoltage protection, 5 V mode		•		
V _{Clamp}	Output clamping voltage	V_{IN} = 10 V, V_{CP} = V_{IN}	5.4	5.7	6.0	V
V _{UVLO}	Under voltage lockout	V _{CP} = V _{IN} , Turn-on, voltage going up	3.4	3.6	3.8	V
V _{Hyst}	UVLO hysteresis	$V_{CP} = V_{IN}$	60	105	150	mV
		Power MOSFET		•		
D	ON-resistance			40		
R _{DS(on)}	$R_{DS(on)} = (V_{IN} - V_{OUT}) / I_{OUT}$	$T_j = 85 \ ^{\circ}C^{(1)}$			70	mΩ
		Current limit		•		
I _{OL}	Protection trip current			5		Α
I _{Lim}	Overload current limit		5	7	9	Α
I _{Short}	Short-circuit current limit	V _{OUT} = 0 V		3		Α
		Soft-start circuit		•		
т	Output voltage ramp time	From V_{IN} = V_{UVLO} to V_{OUT} = 90 %, no C_{SS}		0.6		ms
T _{ss}		From $V_{IN} = V_{UVLO}$ to $V_{OUT} = 90$ %, $C_{SS} = 100 \text{ nF}$	16	23	30	1113
		Enable pin thresholds				
V _{EN-L}	Enable pin switch-off voltage	Output disabled			0.4	V
$V_{\text{EN-H}}$	Enable pin switch-on voltage	Output enabled	2			V
		V _{CP} pin thresholds				
V _{CP-L}	3.3 V mode selection threshold	3.3 V mode enabled			0.4	V
V _{CP-H}	5 V mode selection threshold	5 V mode enabled	2			V
		Total device	1	,		-

Table 5. STEF4S	electrical	characteristic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
	Bias current	ON state, $V_{EN} = V_{IN} = 5 V$		50	65	
Bias		OFF state, V_{EN} = GND, V_{IN} = 5 V		15		μA
V _{min}	Minimum operating voltage	Device is in OFF state (V _{OUT} = 0)	2			V
Thermal latch						
TSD	Shutdown temperature			140		°C
130	Hysteresis			20		

Table 5. STEF4S electrical characteristic (continued)

1. Guaranteed by design, not tested in production.

5 Typical characteristics

Figure 3. Application circuit

5.1 Operating modes

5.1.1 Turn-on

When the input voltage is applied and the EN pin is high, the output voltage is supplied with a slope defined by the internal dv/dt circuitry. If no additional capacitor is connected to C_{SS} pin, the total time from the enable signal going high and the output voltage reaching the nominal value is around 0.6 ms.

5.1.2 Normal operating condition

The STEF4S E-fuse behaves like a mechanical fuse, buffering the circuitry on its output with the same voltage shown at its input, apart from a small voltage fall due to the MOSFET $R_{DS(on)}$.

5.1.3 Output voltage clamp

The internal voltage clamp circuit clamps the output voltage to the V_{Clamp} values reported in *Table 5* if the input voltage exceeds the typical thresholds of 3.8 V in the 3.3 V mode and 5.7 V in the 5 V mode.

5.1.4 Current limiting

When an overload event occurs, the current limiting circuit reduces the conductivity of the power MOSFET, in order to clamp the input current at the pre-programmed value. The current limit circuit has a foldback characteristic to reduce the power dissipation over the power MOSFET in short-circuit condition.

5.1.5 Thermal shutdown and auto-retry function

If the device temperature exceeds the thermal shutdown threshold, typically 140 °C, the thermal shutdown circuitry turns the power MOSFET off and disconnects the load. Once the die temperature has decreased about 20 °C the device automatically attempts to apply again the power to the load (auto-retry). This cycle persists until the fault condition is removed.

5.2 Startup time and C_{SS} calculation

Connecting a capacitor between the C_{SS} pin and GND allows the modification of the output voltage startup time. The startup time (T_{ss}) is defined as the time interval between the device UVLO threshold, which has been overcome, and V_{OUT}, which has reached 90% of the nominal value as shown in *Figure 4*.

The below **Table 6** shows the typical startup time obtained with the industry-standard values of C_{SS} .

Parameter	Value				
C _{ss} [nF]	None	10	47	100	
T _{ss} [ms]	0.6	2.3	10.8	23	

Table 6. Startup time vs. C_{ss} capacitor value

The capacitance to be added to C_{SS} pin can be also estimated by using the following theoretical formula:

Equation 1

$$C_{SS} = 4.35 \times 10^{-6} \times Tss$$

The above value is not valid if C_{SS} is not connected. C_{SS} is expressed in Farad and the time in seconds.

A ceramic low leakage capacitor is suggested for this purpose. The formula is meant as a theoretical support to choose the C_{SS} capacitor and it does not take into account the capacitor tolerance, temperature and process variations.

Figure 4. Startup time

5.3 UVLO and voltage clamp selection

The device can be used either on the 3.3 V or on the 5 V lines. The operating mode can be selected through the V_{CP} pin.

If this pin is set at high level ($V_{CP} > 2 V$) the operating mode is 5 V. In this mode the UVLO threshold is 3.6 V typical, the clamping voltage is set to 5.7 V.

If the V_{CP} pin is pulled to low level (V_{CP} < 0.4 V), the operating mode is 3.3 V. In this mode the UVLO threshold is 2.3 V typical, the clamping voltage is set to 3.8 V.

5.4 Enable pin

The EN pin is used to turn on/off the device. The device is disabled when the EN pin voltage is lower than 0.4 V, enabled if the EN pin voltage is higher than 2 V.

6 Typical performance characteristics

(The following plots are referred to the typical application circuit and, unless otherwise noted, at T_A = 25 °C)

7 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

7.1 DFN6 3x3 - 10L package information

Figure 21. DFN6 3x3 - 10L package outline

Table 7. DFN6 3X3 - TUL mechanical data					
Dim.		mm			
	Min.	Тур.	Max.		
А	0.70	0.75	0.80		
A1	0.00	0.02	0.05		
b	0.18	0.25	0.30		
D		3.00			
E		3.00			
е		0.5			
D2	2.234	2.384	2.484		
E2	1.496	1.646	1.746		
К	0.20				
L	0.30	0.40	0.50		
aaa		0.05			
bbb		0.10			
CCC		0.10			
ddd		0.05			
eee		0.08			

Table 7. DFN6 3x3 - 10L mechanical data

7.2 **DFN6 3x3 - 10L packing information**

Figure 23. Tape for DFN6 3x3 - 10L

Dim.	mm				
Dini.	Min.	Тур. Ма			
A0	3.20	3.30	3.40		
B0	3.20	3.30	3.40		
K0	1	1.10	1.20		

Table 8. DFN6 3x3 10L tape and reel mechanical data

8 Revision history

Date	Revision	Changes
23-Oct-2013	1	Initial release.
02-Dec-2014	2	Updated Section 4: Electrical characteristics, Section 7: Package information and Figure 3: Application circuit. Minor text changes.

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2014 STMicroelectronics – All rights reserved

