
SN74ALS156 DECODER/DEMULTIPLEXER WITH OPEN-COLLECTOR OUTPUTS

SDAS099C - JUNE 1986 - REVISED MAY 1996

description

One of the main applications of the SN74ALS156 is as a dual 1-line to 4-line decoder/demultiplexer with individual strobes (\overline{G}) and common binary-address inputs in a single 16-pin package. When both sections are enabled, the common binary-address inputs sequentially select and route associated input data to the appropriate output of each section. The individual strobes permit enabling or disabling each of the 4-bit sections, as desired.

Data applied to input 1C is inverted at its outputs and data applied at input $2\overline{C}$ is not inverted through its outputs. The inverter following the 1C data input permits use of the SN74ALS156 as a 3-line to 8-line demultiplexer without external gating. All inputs are clamped with high-performance Schottky diodes to suppress line ringing and simplify system design.

The SN74ALS156 is characterized for operation from 0°C to 70°C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Function Tables

2-LINE TO 4-LINE DECODER OR 1-LINE TO 4-LINE DEMULTIPLEXER

	I	NPUTS	OUTPUTS						
SEL	ECT	STROBE	DATA 1C	OUTPUTS					
В	Α	1G		1Y0	1Y1	1Y2	1Y3		
Х	Χ	Н	Х	Н	Н	Н	Н		
L	L	L	Н	L	Н	Н	Н		
L	Н	L	Н	Н	L	Н	Н		
Н	L	L	Н	Н	Н	L	Н		
Н	Н	L	Н	Н	Н	Н	L		
Х	Χ	Х	L	Н	Н	Н	Н		

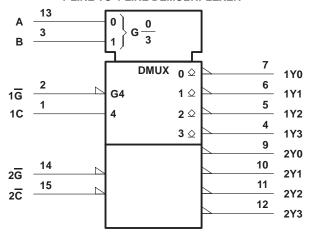
2-LINE TO 4-LINE DECODER OR **1-LINE TO 4-LINE DEMULTIPLEXER**

	I	NPUTS	OUTDUTS						
SEL	ECT	STROBE	DATA	OUTPUTS					
В	Α	2G	2C	2Y0	2Y1	2Y2	2Y3		
Х	X	Н	Х	Н	Н	Н	Н		
L	L	L	L	L	Н	Н	Н		
L	Н	L	L	Н	L	Н	Н		
Н	L	L	L	Н	Н	L	Н		
Н	Н	L	L	Н	Н	Н	L		
Х	Χ	Х	Н	Н	Н	Н	Н		

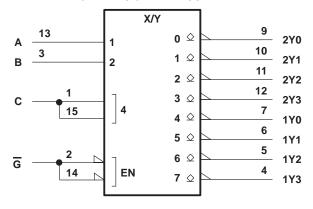
3-LINE TO 8-LINE DECODER OR **1-LINE TO 8-LINE DEMULTIPLEXER**

	INF	UTS					OUT	PUTS			
SELECT			STROBE OR	0	1	2	3	4	5	6	7
c†	В	Α	DATA G‡	2Y0	2Y1	2Y2	2Y3	1Y0	1Y1	1Y2	1Y3
Х	Х	Χ	Н	Н	Н	Н	Н	Н	Н	Н	Н
L	L	L	L	L	Н	Н	Н	L	Н	Н	Н
L	L	Н	L	Н	L	Н	Н	Н	L	Н	Н
L	Н	L	L	Н	Н	L	Н	Н	Н	Н	Н
L	Н	Н	L	Н	Н	Н	L	Н	Н	Н	Н
Н	L	L	L	Н	Н	Н	Н	L	Н	Н	Н
Н	L	Н	L	Н	Н	Н	Н	Н	L	Н	Н
Н	Н	L	L	Н	Н	L	Н	Н	Н	L	Н
Н	Н	Н	L	Н	Н	Н	L	Н	Н	Н	L

† \underline{C} = inputs 1 \underline{C} and 2 $\underline{\overline{C}}$ connected together ‡ \overline{G} = inputs 1 \overline{G} and 2 \overline{G} connected together



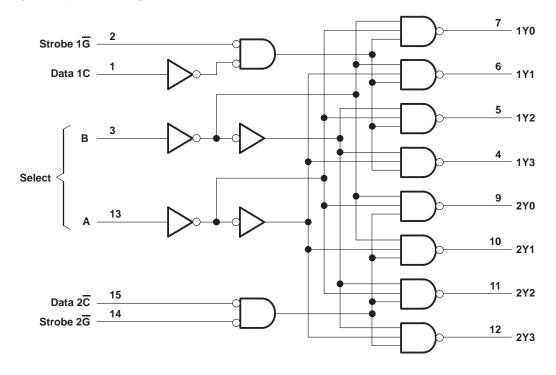
logic symbols[†] (alternatives)


2-LINE TO 4-LINE DECODER

X/Y 7 0 α ♀ 1Y0 2 6 1<u>G</u> 1 α ◊ 1Y1 ΕN 1 5 1C 2 α ◊ 1Y2 4 13 3 α ◊ 1Y3 9 3 0 β ♀ 2Y0 В 2 10 1 β ◊ 2Y1 11 14 & 2G 2 β ♀ 2Y2 15 12 ΕN 2<u>C</u> 3 β ☆ 2Y3

1-LINE TO 4-LINE DEMULTIPLEXER

3-LINE TO 8-LINE DECODER


1-LINE TO 8-LINE DEMULTIPLEXER

† These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

SDAS099C - JUNE 1986 - REVISED MAY 1996

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage, V _{CC}	7 V
Input voltage, V _I	7 V
Operating free-air temperature range, T _A	
Storage temperature range, T _{stg}	°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

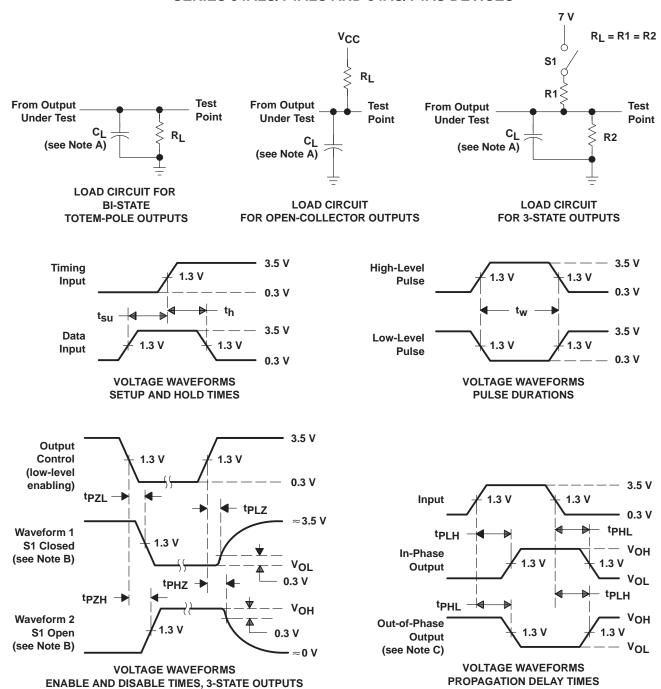
recommended operating conditions

		MIN	NOM	MAX	UNIT
Vcc	Supply voltage	4.5	5	5.5	V
VIH	High-level input voltage	2			V
V_{IL}	Low-level input voltage			8.0	V
Vон	High-level output voltage			5.5	V
loL	Low-level output current			8	mA
TA	Operating free-air temperature	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CON	DITIONS	MIN	TYP†	MAX	UNIT
VIK	$V_{CC} = 4.5 V,$	I _I = –18 mA			-1.5	V
.,	V 45V	$I_{OL} = 4 \text{ mA}$		0.25	0.4	.,
V _{OL}	$V_{CC} = 4.5 V$	$I_{OL} = 8 \text{ mA}$		0.35	0.5	V
ГОН	$V_{CC} = 4.5 V,$	V _{OH} = 5.5 V			0.1	mA
IĮ	$V_{CC} = 5.5 V$,	V _I = 7 V			0.1	mA
lін	$V_{CC} = 5.5 V,$	V _I = 2.7 V			20	μΑ
Ι _{ΙL}	$V_{CC} = 5.5 V,$	V _I = 0.4 V			-0.1	μΑ
ICCL	V _{CC} = 5.5 V			5	9	mA

[†] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.


switching characteristics (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 4.5 C _L = 50 pl R _L = 500 s T _A = MIN	UNIT	
			MIN	MAX	
t _{PLH}	- A, B	47/ 27/	7	55	
^t PHL		1Y, 2Y	6	25	ns
^t PLH	40	av.	7	50	ns
^t PHL	1C	1Y	6	23	
^t PLH	4 -	47	7	38	
^t PHL	1 G	1Y	6	22	ns
t _{PLH}	2 C , 2 G	2Y	7	38	200
t _{PHL}	2C, 2G	Z Ť	6	22	ns

[‡] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

PARAMETER MEASUREMENT INFORMATION SERIES 54ALS/74ALS AND 54AS/74AS DEVICES

- NOTES: A. C_L includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - C. When measuring propagation delay items of 3-state outputs, switch S1 is open.
 - D. All input pulses have the following characteristics: PRR \leq 1 MHz, $t_{\Gamma} = t_{\Gamma} = 2$ ns, duty cycle = 50%.
 - E. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuits and Voltage Waveforms

10-Dec-2020

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
SN74ALS156D	ACTIVE	SOIC	D	16	40	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	ALS156	Samples
SN74ALS156DE4	ACTIVE	SOIC	D	16	40	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	ALS156	Samples
SN74ALS156DR	ACTIVE	SOIC	D	16	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	ALS156	Samples
SN74ALS156DRE4	ACTIVE	SOIC	D	16	2500	RoHS & Green	NIPDAU	Level-1-260C-UNLIM	0 to 70	ALS156	Samples
SN74ALS156N	ACTIVE	PDIP	N	16	25	RoHS & Green	NIPDAU	N / A for Pkg Type	0 to 70	SN74ALS156N	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

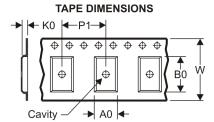
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

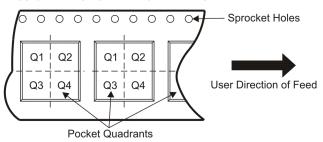
- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

PACKAGE OPTION ADDENDUM

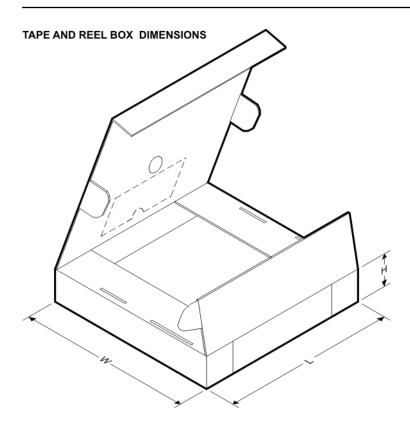

10-Dec-2020


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

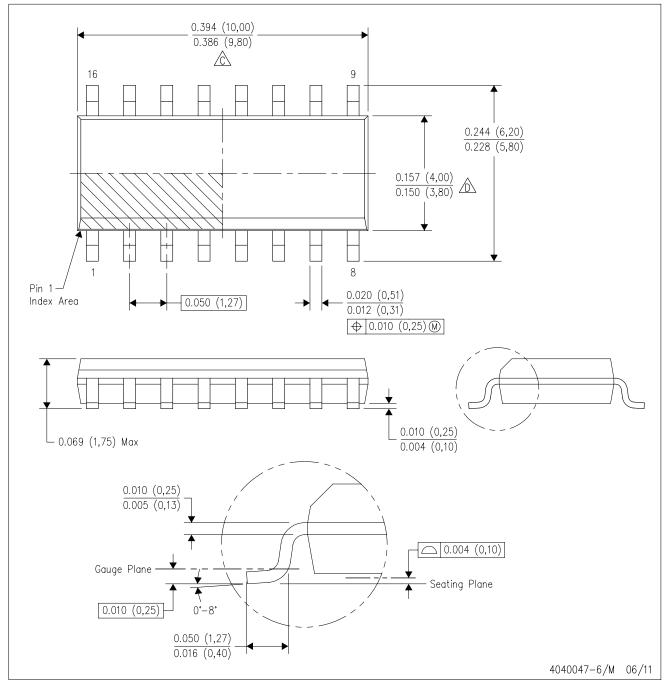

TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device		Package Drawing			Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74ALS156DR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1



*All dimensions are nominal

Ī	Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
	SN74ALS156DR	SOIC	D	16	2500	333.2	345.9	28.6

D (R-PDS0-G16)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.

D (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

Tl's products are provided subject to Tl's Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such Tl products. Tl's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for Tl products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2020, Texas Instruments Incorporated