

STF13N60M2(045Y)

Datasheet – production data

N-channel 600 V, 0.35 Ω typ., 11 A MDmesh M2 Power MOSFET in a TO-220FP narrow leads package

Figure 1. Internal schematic diagram

Features

Order codes	V _{DS} @ T _{Jmax}	R _{DS(on)} max	ID
STF13N60M2(045Y)	650 V	0.38 Ω	11 A

- Extremely low gate charge
- Excellent output capacitance (Coss) profile
- 100% avalanche tested
- Zener-protected

Applications

Switching applications

Description

This device is an N-channel Power MOSFET developed using MDmesh[™] M2 technology. Thanks to its strip layout and an improved vertical structure, the device exhibits low on-resistance and optimized switching characteristics, rendering it suitable for the most demanding high efficiency converters.

Table 1. Device summary

Order codes	Marking	Package	Packaging
STF13N60M2(045Y)	13N60M2	TO-220FP narrow leads	Tube

This is information on a product in full production.

Contents

1	Electrical ratings	3
2	Electrical characteristics	4
	2.1 Electrical characteristics (curves)	6
3	Test circuits	8
4	Package mechanical data	9
5	Revision history1	1

1

Electrical ratings

Symbol	Parameter	Value	Unit
V_{GS}	Gate-source voltage	± 25	V
Ι _D	Drain current (continuous) at $T_C = 25 \text{ °C}$	11 ⁽¹⁾	А
Ι _D	Drain current (continuous) at $T_C = 100 \ ^{\circ}C$	7 ⁽¹⁾	А
I _{DM} ⁽²⁾	Drain current (pulsed)	44 (1)	А
P _{TOT}	Total dissipation at $T_C = 25 \text{ °C}$	25	W
dv/dt ⁽³⁾	Peak diode recovery voltage slope	15	V/ns
dv/dt ⁽⁴⁾	MOSFET dv/dt ruggedness	50	V/ns
V _{ISO}	Insulation withstand voltage (RMS) from all three leads to external heat sink (t = 1 s; Tc = 25 °C)	2500	V
T _{stg}	Storage temperature	- 55 to 150	°C
Тj	Max. operating junction temperature	- 55 10 150	

Table 2. Absolute maximum ratings

1. Limited by maximum junction temperature.

2. Pulse width limited by safe operating area.

3. I_{SD} \leq 11 A, di/dt \leq 400 A/µs; V_{DS peak} < V_{(BR)DSS}, V_{DD} \text{=} 400 V.

4. $V_{DS} \leq 480 \text{ V}$

Table 3. Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case max	5	°C/W
R _{thj-amb}	Thermal resistance junction-ambient max	62.5	°C/W

Table 4. Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AR}	Avalanche current, repetetive or not repetetive (pulse width limited by T _{jmax})	2.8	А
E _{AS}	Single pulse avalanche energy (starting $T_j=25$ °C, $I_D=I_{AR}$; $V_{DD}=50$)	125	mJ

Electrical characteristics 2

(T_C = 25 °C unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$I_{D} = 1 \text{ mA}, V_{GS} = 0$	600			V
I _{DSS}	Zero gate voltage drain current (V _{GS} = 0)	V _{DS} = 600 V V _{DS} = 600 V, T _C =125 °C			1 100	μA μA
I _{GSS}	Gate-body leakage current (V _{DS} = 0)	V _{GS} = ± 25 V			±10	μA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_D = 250 \ \mu A$	2	3	4	V
R _{DS(on)}	Static drain-source on-resistance	V _{GS} = 10 V, I _D = 5.5 A		0.35	0.38	Ω

Table	5. Or	n /off	states
-------	-------	--------	--------

Table 6. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		-	580	-	pF
C _{oss}	Output capacitance	V _{DS} = 100 V, f = 1 MHz,	-	32	-	pF
C _{rss}	Reverse transfer capacitance	$V_{GS} = 0$	-	1.1	-	pF
C _{oss eq.} ⁽¹⁾	Equivalent output capacitance	$V_{DS} = 0$ to 480 V, $V_{GS} = 0$	-	120	-	pF
R_{G}	Intrinsic gate resistance	f = 1 MHz open drain	-	6.6	-	Ω
Qg	Total gate charge		-	17	-	nC
Q _{gs}	Gate-source charge	V _{DD} = 480 V, I _D = 11 A, V _{GS} = 10 V (see <i>Figure 15</i>)	-	2.5	-	nC
Q _{gd}	Gate-drain charge	165 - 10 V (000 F igure 10)	-	9	-	nC

C_{oss eq.} is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

Table 7. Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time		-	11	-	ns
t _r	Rise time	$V_{DD} = 300 \text{ V}, \text{ I}_{D} = 5.5 \text{ A},$	-	10	-	ns
t _{d(off)}	Turn-off delay time	R _G = 4.7 Ω, V _{GS} = 10 V (see <i>Figure 14</i> and <i>19</i>)	-	41	-	ns
t _f	Fall time		-	9.5	-	ns

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		11	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		44	Α
V_{SD} ⁽²⁾	Forward on voltage	I _{SD} = 11 A, V _{GS} = 0	-		1.6	V
t _{rr}	Reverse recovery time		-	297		ns
Q _{rr}	Reverse recovery charge	I _{SD} = 11 A, di/dt = 100 A/μs V _{DD} = 60 V (see <i>Figure 16</i>)	-	2.8		μC
I _{RRM}	Reverse recovery current		-	18.5		Α
t _{rr}	Reverse recovery time	I _{SD} = 11 A, di/dt = 100 A/µs	-	394		ns
Q _{rr}	Reverse recovery charge	V _{DD} = 60 V, T _j =150 °C	-	3.8		μC
I _{RRM}	Reverse recovery current	(see Figure 16)	-	19		Α

Table 8. Source drain diode

1. Pulse width limited by safe operating area

2. Pulsed: pulse duration = 300 μ s, duty cycle 1.5%

2.1 Electrical characteristics (curves)

Figure 4. Output characteristics

Figure 6. Normalized V_{(BR)DSS} vs temperature

Figure 5. Transfer characteristics

Figure 10. Normalized gate threshold voltage vs temperature

Figure 12. Source-drain diode forward characteristics

Figure 9. Capacitance variations

Figure 11. Normalized on-resistance vs temperature

10

100

VDS(V)

0.1

0.1

1

Figure 13. Output capacitance stored energy

3 **Test circuits**

Figure 14. Switching times test circuit for resistive load

Figure 16. Test circuit for inductive load switching and diode recovery times

Figure 18. Unclamped inductive waveform

VD

IDM

lр

V(BR)DSS

Figure 19. Switching time waveform

Vdd

Vdd

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

		mm	
Dim. —	Min.	Тур.	Max.
А	4.4		4.6
В	2.5		2.7
D	2.5		2.75
E	0.45		0.7
F	0.75		1
F1	0.95		1.20
G	4.95		5.2
G1	2.4		2.7
Н	10		10.4
L2	15.20		15.60
L3	28.6		30.6
L4	10.3		11.1
L5	2.60	2.70	2.90
L6	15.8	16.0	16.2
L7	9		9.3
Dia	3		3.2

Table 9. TO-220FP narrow leads mechanical data

5 Revision history

Date	Revision	Changes
12-Jan-2015	1	First release.

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics – All rights reserved

DocID027342 Rev 1

