STL15N65M5

N-channel 650 V, 0.335 Ω typ., 10 A MDmesh™ M5 Power MOSFET in a PowerFLAT™ 5x6 HV package

Datasheet - production data

Features

Order code	V DS @ TJ max.	R _{DS(on)} max	ID
STL15N65M5	710 V	0.375 Ω	10 A

- Extremely low RDS(on)
- Low gate charge and input capacitance
- Excellent switching performance •
- 100% avalanche tested

Applications

Switching applications

Description

This device is an N-channel Power MOSFET based on the MDmesh[™] M5 innovative vertical process technology combined with the wellknown PowerMESH™ horizontal layout. The resulting product offers extremely low onresistance, making it particularly suitable for applications requiring high power and superior efficiency.

Table 1: Device summary

Order code	Marking	Package	Packing
STL15N65M5	15N65M5	PowerFLAT™ 5x6 HV	Tape and reel

DocID023633 Rev 2

This is information on a product in full production.

PowerFLAT[™] 5x6 HV

Figure 1: Internal schematic diagram

Contents

Contents

1	Electric	al ratings	3
2	Electric	al characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	9
4	Packag	e information	10
	4.1	Power Flat™ 5x6 HV package information	11
	4.2	Power Flat™ 5x6 HV packing information	13
5	Revisio	n history	15

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage	650	V
V _{GS}	Gate-source voltage	± 25	V
ID	Drain current (continuous) at Tc = 25 °C	10	А
ID	Drain current (continuous) at Tc = 100 °C	5	А
Idм ⁽¹⁾	Drain current (pulsed)	40	А
Ртот	Total dissipation at $T_c = 25 \text{ °C}$ 52		W
I _{AR}	Avalanche current, repetitive or not-repetitive (pulse width limited by T _j max)	2.5	А
E _{AS}	Single pulse avalanche energy (starting T _j = 25 °C, I _D = I _{AR} , V _{DD} = 50 V)	160	mJ
dv/dt (2)	Peak diode recovery voltage slope 15		V/ns
T _{stg}	T _{stg} Storage temperature range		°C
Tj	T _j Operating junction temperature range		°C

Notes:

⁽¹⁾Pulse width limited by safe operating area.

 $\label{eq:ISD} \ensuremath{^{(2)}}\mathsf{I}_{SD} \leq 10 \mbox{ A, di/dt} \leq 400 \mbox{ A/}\mu\mbox{s, V}_{DS(peak)} \ \leq V_{(BR)DSS}, \ V_{DD} = 400 \mbox{ V}.$

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case	2.4	°C/W
R _{thj-pcb} ⁽¹⁾ Thermal resistance junction-pcb		59	°C/W

Notes:

 $^{(1)}\!When$ mounted on 1inch² FR-4 board, 2 oz Cu.

2 Electrical characteristics

(T_c = 25 °C unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	I_D = 1 mA, V_{GS} = 0 V	650			V
	Zoro goto voltago	V _{DS} = 650 V			1	μA
IDSS	I _{DSS} Zero gate voltage drain current	$V_{DS} = 650 \text{ V}, \text{ T}_{C} = 125 \text{ °C} (1), V_{GS} = 0 \text{ V}$			100	μA
Igss	Gate-body leakage current	$V_{\text{GS}} = \pm 25 \text{ V}, V_{\text{DS}} = 0$			± 100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_D = 250 \ \mu A$	3	4	5	V
R _{DS(on)}	Static drain-source on- resistance	$V_{GS}=10~V,~I_{D}=5~A$		0.335	0.375	Ω

Table 4: On /off states

Notes:

⁽¹⁾Defined by design, not subject to production test.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ciss	Input capacitance		-	816	-	pF
Coss	Output capacitance	V _{DS} = 100 V, f = 1 MHz,	-	23	-	pF
Crss	Reverse transfer capacitance	V _{GS} = 0 V	-	2.6	-	pF
Co(tr) ⁽¹⁾	Equivalent capacitance time related	V _{DS} = 0 to 520 V, V _{GS} = 0 V	-	70	-	pF
C _{o(er)} ⁽²⁾	Equivalent capacitance energy related	$v_{\rm DS} = 0.00520$ V, $v_{\rm GS} = 0.0$	-	21	-	pF
Rg	Intrinsic gate resistance	f = 1 MHz open drain	-	5	-	Ω
Qg	Total gate charge $V_{DD} = 520 \text{ V}, \text{ I}_D = 5.5 \text{ A},$		-	22	-	nC
Q _{gs}	Gate-source charge	V _{GS} = 10 V	-	5.5	-	nC
Q _{gd}	Gate-drain charge	(see Figure 16: "Test circuit for gate charge behavior")	-	11	-	nC

Table 5: Dynamic

Notes:

 $^{(1)}C_{oss\;eq.}$ time related is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80 % V_{DSS} .

 $^{(2)}C_{\text{oss eq.}}$ energy related is defined as a constant equivalent capacitance giving the same stored energy as C_{oss} when V_{DS} increases from 0 to 80 % V_{DSS} .

Electrical characteristics

	Table 6: Switching times						
Symbol	Parameter	Test conditions	Min.	Тур.	Max	Unit	
t _{d(V)}	Voltage delay time	$V_{DD} = 400 V, I_D = 7 A,$	-	30	-	ns	
tr(∨)	Voltage rise time	R_{G} = 4.7 Ω , V_{GS} = 10 V	-	8	-	ns	
t _{f(I)}	Current fall time	(see Figure 17: "Test circuit for inductive load switching and	-	11	-	ns	
t _{c(off)}	Crossing time	diode recovery times" and Figure 20: "Switching time waveform")	-	12.5	-	ns	

Table 7: Source drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		10	А
Isdm ⁽¹⁾	Source-drain current (pulsed)		-		40	A
Vsd ⁽²⁾	Forward on voltage	$I_{SD} = 10 \text{ A}, V_{GS} = 0$	-		1.5	V
trr	Reverse recovery time	I _{SD} = 10 A, di/dt = 100 A/µs	-	244		ns
Qrr	Reverse recovery charge	V _{DD} = 100 V	-	2.35		μC
Irrm	Reverse recovery current	(see Figure 17: "Test circuit for inductive load switching and diode recovery times")	-	19.2		A
trr	Reverse recovery time	I _{SD} = 10 A, di/dt = 100 A/µs	-	308		ns
Qrr	Reverse recovery charge	$V_{DD} = 100 \text{ V}, \text{ T}_{j} = 150 ^{\circ}\text{C}$	-	2.93		μC
Irrm	Reverse recovery current	(see Figure 17: "Test circuit for inductive load switching and diode recovery times")	-	19		A

Notes:

⁽¹⁾Pulse width limited by safe operating area.

 $^{(2)}\text{Pulsed:}$ pulse duration = 300 $\mu\text{s},$ duty cycle 1.5 %.

DocID023633 Rev 2

57

STL15N65M5

57

Electrical characteristics

DocID023633 Rev 2

Electrical characteristics

STL15N65M5

Notes:

 $^{(1)}\mbox{Eon}$ including reverse recovery of a SiC diode.

57

3 Test circuits

DocID023633 Rev 2

9/16

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

STL15N65M5

4.1

57

Figure 21: PowerFLAT™ 5x6 HV package outline b (x8) e(x6)BOTTOM VIEW L(x4) 3 2 \leq Resin protrusion D2 PIN #1 ID EZ 8 7 6 5 \triangleleft SEATING PLANE SIDE VIEW A2 Å D ш Resin protrusion TOP VIEW 8368143_Rev_3

Power Flat™ 5x6 HV package information

DocID023633 Rev 2

Package information

STL15N65M5

	Table 8: PowerFLAT™ 5	x6 HV mechanical data		
Dim		mm		
Dim.	Min.	Тур.	Max.	
A	0.80		1.00	
A1	0.02		0.05	
A2		0.25		
b	0.30		0.50	
D	5.10	5.20	5.30	
E	6.05	6.15	6.25	
E2	3.10	3.20	3.30	
D2	4.30	4.40	4.50	
е		1.27		
L	0.50	0.55	0.60	
К	1.90	2.00	2.10	

4.2

Power Flat™ 5x6 HV packing information

Figure 23: PowerFLAT™ 5x6 tape (dimensions are in mm)

Figure 24: PowerFLAT™ 5x6 package orientation in carrier tape

Package information

STL15N65M5

5 Revision history

Table 9: Document revision history

Date	Revision	Changes
26-Jun-2013	1	First release
05-Dec-2016	2	Updated title, features and description in cover page. Updated Figure 1: "Internal schematic diagram", Table 2: "Absolute maximum ratings" and Section 4: "Package information". Minor text changes.

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

