

N-channel 800 V, 0.95 Ω typ., 5 A MDmesh[™] K5 Power MOSFET in a TO-220 package

Datasheet - production data

Figure 1: Internal schematic diagram

Features

Order code	e V _{DS} R _{DS(on)} max.		ID
STP7LN80K5	800 V	1.15 Ω	5 A

- Industry's lowest R_{DS(on)} x area
- Industry's best figure of merit (FoM)
- Ultra-low gate charge
- 100% avalanche tested
- Zener-protected

Applications

• Switching applications

Description

This very high voltage N-channel Power MOSFET is designed using MDmesh[™] K5 technology based on an innovative proprietary vertical structure. The result is a dramatic reduction in on-resistance and ultra-low gate charge for applications requiring superior power density and high efficiency.

Table 1: Device summary

Order code	Marking	Package	Packing	
STP7LN80K5	7LN80K5	TO-220	Tube	

DocID028826 Rev 1

This is information on a product in full production.

Contents

Contents

1	Electric	cal ratings	3
2	Electric	al characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	8
4	Packag	e information	9
	4.1	TO-220 type A package information	
5	Revisio	on history	12

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{GS}	Gate-source voltage	± 30	V
Ι _D	Drain current (continuous) at $T_c = 25 \ ^{\circ}C$	5	А
ID	Drain current (continuous) at T _c = 100 °C	3.4	А
I _D ⁽¹⁾	Drain current (pulsed)	20	А
P _{TOT}	Total dissipation at $T_C = 25 \text{ °C}$	85	W
dv/dt ⁽²⁾	Peak diode recovery voltage slope	4.5	V/ns
dv/dt ⁽³⁾	MOSFET dv/dt ruggedness	50	V/ns
T _{stg}	Storage temperature	55 to 150	°C
Tj	Operating junction temperature	- 55 to 150	C

Notes:

 $\ensuremath{^{(1)}}\ensuremath{\mathsf{Pulse}}$ width limited by safe operating area.

 $^{(2)}I_{SD} \leq 5$ A, di/dt ≤ 100 A/µs; V_DS peak $\leq V_{(BR)DSS},$ V_DD = 400 V

⁽³⁾V_{DS} ≤ 640 V

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case	1.47	°C/W
R _{thj-amb}	Thermal resistance junction-ambient	62.5	°C/W

Table 4: Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AR}	Avalanche current, repetetive or not repetetive (pulse width limited by T_{jmax})	1.5	А
E _{AS}	(Single pulse avalanche energy (starting T_j = 25 °C, I_D = I_{AR} ; V_{DD} = 50 V)	200	mJ

2 Electrical characteristics

 $T_C = 25$ °C unless otherwise specified

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$V_{GS} = 0 \text{ V}, \text{ I}_{D} = 1 \text{ mA}$	800			V
	Zero gate voltage drain current	$V_{GS} = 0 V, V_{DS} = 800 V$			1	μA
I _{DSS}		$V_{GS} = 0 V, V_{DS} = 800 V,$ $T_{C} = 125 °C$			50	μA
I _{GSS}	Gate-body leakage current	V_{DS} = 0 V, V_{GS} = ±20 V			±10	μA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 100 \ \mu A$	3	4	5	V
$R_{DS(on)}$	Static drain-source on-resistance	V_{GS} = 10 V, I _D = 2.5 A		0.95	1.15	Ω

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance	V _{DS} = 100 V, f = 1 MHz, V _{GS} = 0 V	-	270	-	pF
Coss	Output capacitance		-	22	-	pF
C _{rss}	Reverse transfer capacitance		-	0.5	-	рF
$C_{o(er)}^{(1)}$	Equivalent capacitance energy related	$V_{DS} = 0$ to 640 V, $V_{GS} = 0$ V	-	17	-	nC
C _{o(tr)} ⁽²⁾	Equivalent capacitance time related		-	48	-	nC
R _G	Intrinsic gate resistance	$f = 1 \text{ MHz}, I_D=0 \text{ A}$	-	7.5	-	Ω
Qg	Total gate charge	$V_{DD} = 640 \text{ V}, I_D = 5 \text{ A}, V_{GS} = 10 \text{ V}$ (see Figure 15: "Test circuit for	-	12	-	nC
Q _{gs}	Gate-source charge		-	2.6	-	nC
Q_gd	Gate-drain charge	gate charge behavior")	-	8.6	-	nC

Table 6: Dynamic

Notes:

 $^{(1)} Energy$ related is defined as a constant equivalent capacitance giving the same stored energy as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

 $^{(2)}$ Time related is defined as a constant equivalent capacitance giving the same stored energy as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit		
t _{d(on)}	Turn-on delay time	$V_{DD} = 400 \text{ V}, I_D = 2.5 \text{ A},$	-	9.3	-	ns		
tr	Rise time	$R_G = 4.7 \Omega$, $V_{GS} = 10 V$ (see <i>Figure</i>	-	6.7	-	ns		
t _{d(off)}	Turn-off-delay time	14: "Test circuit for resistive load switching times" and Figure 19:	-	23.6	-	ns		
t _f	Fall time	"Switching time waveform")	-	17.4	-	ns		

Table	7.	Switching	times
Iable		Owncoming	unica

DocID028826 Rev 1

Electrical characteristics

Table 8: Source drain diode								
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit		
I _{SD}	Source-drain current		-		5	А		
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		20	А		
V _{SD} ⁽²⁾	Forward on voltage	I_{SD} = 5 A, V_{GS} = 0 V	-		1.6	V		
t _{rr}	Reverse recovery time	I _{SD} = 5 A, di/dt = 100 A/µs,	-	276		ns		
Q _{rr}	Reverse recovery charge	V _{DD} = 60 V (see Figure 16: "Test circuit for inductive load	-	2.13		μC		
I _{RRM}	Reverse recovery current	switching and diode recovery times")	-	15.4		А		
t _{rr}	Reverse recovery time	I _{SD} = 5 A, di/dt = 100 A/µs,	-	402		ns		
Q _{rr}	Reverse recovery charge	$V_{DD} = 60 \text{ V}, \text{ T}_{\text{j}} = 150 \text{ °C}$ (see Figure 16: "Test circuit for	-	2.79		μC		
I _{RRM}	Reverse recovery current	inductive load switching and diode recovery times")	-	13.9		А		

Notes:

 $^{(1)}\mbox{Pulse}$ width is limited by safe operating area

 $^{(2)}\text{Pulsed:}$ pulse duration = 300 $\mu\text{s},$ duty cycle 1.5%

Table 9: Gate-source Zener diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)GSO}	Gate-source breakdown voltage	$I_{GS} = \pm 1 \text{ mA}, I_D = 0 \text{ A}$	30		-	V

The built-in back-to-back Zener diodes are specifically designed to enhance the ESD performance of the device. The Zener voltage facilitates efficient and cost-effective device integrity protection, thus eliminating the need for additional external componentry.

Electrical characteristics

57

DocID028826 Rev 1

3 Test circuits

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

Package information

C AIL			Package information	
Table 10: TO-220 type A mechanical data				
Dim.	mm			
	Min.	Тур.	Max.	
А	4.40		4.60	
b	0.61		0.88	
b1	1.14		1.70	
С	0.48		0.70	
D	15.25		15.75	
D1		1.27		
E	10		10.40	
е	2.40		2.70	
e1	4.95		5.15	
F	1.23		1.32	
H1	6.20		6.60	
J1	2.40		2.72	
L	13		14	
L1	3.50		3.93	
L20		16.40		
L30		28.90		
øP	3.75		3.85	
Q	2.65		2.95	

Revision history 5

Table 11: Document revision history

Date	Revision	Changes
08-Jan-2016	1	First release.

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

