

ST7LNB0V3

Datasheet - production data

DiSEqC[™] 2.1 slave microcontroller for LNBs and switchers

Features

- Clock, reset and supply management
 - Reduced power consumption
 - Safe power on/off management by low voltage detector (LVD)
 - Internal 8 MHz oscillator
- Communication interface
 - One DiSEqC[™] 2.1 communication interface
 - Analog interface13/18 V voltage detector
 - 22 kHz tone detector
- I/O ports
 - 8 output ports for control of committed and uncommitted switches
 - 1 output port for standby control.
- Operating voltage 4.5 to 5.5 V
- Temperature range -40 to +85 °C.

Description

The ST7LNB0V3 is an 8-bit microcontroller dedicated to DiSEqCTM slave operation in LNBs and switchers. It is compliant with the DiSEqCTM level 2.1. It also supports backwards compatible mode (13/18 V, 22 kHz tone) and toneburst signalling.

Table 1. Device summary

Order code	Package
ST7LNBV03	SO16 narrow

Figure 1. Block diagram

DocID029484 Rev 1

This is information on a product in full production.

Contents

1	ST7LNB0V3 pin description		
2	ST7I	LNB0V3	implementation7
3	ST7I	LNB0V3	functional description8
	3.1	ST7LN	IB0V3 configuration
	3.2	ST7LN	IB0V3 switching output modes
		3.2.1	Single polarity output mode9
		3.2.2	Decoded output mode9
		3.2.3	Complementary output mode9
4	Sup	ported [DiSEqC™ commands
5	ST7I	LNB0V3	configuration
	5.1	Comm	and 0Fh 12
	5.2	Comm	and 0Dh 12
6	Elec	trical cl	naracteristics
	6.1	Param	eter conditions
		6.1.1	Minimum and maximum values14
		6.1.2	Typical values
		6.1.3	Typical curves
		6.1.4	Loading capacitor
		6.1.5	Pin input voltage
	6.2	Absolu	Ite maximum ratings 15
	6.3	Opera	ting conditions
	6.4	Supply	current characteristics
	6.5	EMC c	haracteristics
		6.5.1	Functional EMS (electromagnetic susceptibility)
		6.5.2	Electromagnetic Interference (EMI)
		6.5.3	Absolute maximum ratings (electrical sensitivity)
	6.6	I/O poi	rt characteristics
		6.6.1	General characteristics
		6.6.2	Output driving current

DocID029484 Rev 1

	6.7	Control pin characteristics	24
	6.8	Thermal characteristics	24
7	Packa	ge information	25
	7.1	Package mechanical data	25
	7.2	Soldering information	26
8	Devic	e configuration	27
	8.1	Data EEPROM option bytes	27
	8.2	Option list	28
9	Revis	ion history	29

List of figures

Figure 1.	Block diagram	
Figure 2.	SO16 narrow pinout	i
Figure 3.	ST7LNB0V3 typical application circuit7	'
Figure 4.	Pin loading conditions	
Figure 5.	Pin input voltage	ì
Figure 6.	Typical IDD in Run against fCPU 18	i
Figure 7.	Two typical applications with unused I/O pin21	
Figure 8.	Typical IPU against VDD with VIN=VSS	
Figure 9.	Typical VOL at VDD=5 V (standard)	į
Figure 10.	Typical VOL at VDD=5 V (high-sink)	į
Figure 11.	Typical VDD-VOH at VDD=5 V	į
Figure 12.	Pin plastic small outline package, 150-mil width, package outline	ì
Figure 13.	Option list	į

List of tables

Table 1. Table 2. Table 3.	Device summary 1 ST7LNB0V3 pin functions 6 Single polarity output mode 9
Table 4. Table 5.	ST7LNB0V3 DiSEqC [™] supported commands
Table 5. Table 6.	Command 0Fh
Table 7.	Reply to command 0Dh
Table 8.	ST7LNB0V3 EEPROM parameters
Table 9.	Output configuration byte
Table 10.	Voltage characteristics
Table 11.	Current characteristics
Table 12.	Thermal characteristics
Table 13.	General operating conditions
Table 14.	Operating conditions with low voltage detector (LVD) 17
Table 15.	Operating conditions with the DiSEqC [™] signalling
Table 16.	Supply current
Table 17.	EMS characteristics
Table 18.	EMI characteristics
Table 19.	Absolute maximum ratings
Table 20.	Electrical sensitivities
Table 21.	General characteristics
Table 22.	Output driving current characteristics
Table 23.	Asynchronous RESET pin
Table 24.	Thermal characteristics
Table 25.	Pin plastic small outline package, 150-mil width, mechanical data
Table 26.	Soldering compatibility (wave and reflow soldering process)
Table 27.	Description of data EEPROM option bytes
Table 28.	Document revision history

1 ST7LNB0V3 pin description

Figure	2.	SO16	narrow	pinout
i igui c	~	0010	11011011	philout

V _{ss} ⊏	10 16	
	2 15	$5 \square NC^{(1)}$
RESET	3 14	
	4 13	B 🗖 SBY
OP5 🗆	5 12	2 🗖 OP1
OP6 🗆	6 11	D OP2
OP7 🗆	7 10	D 🗖 OP3
OP8 🗆	8 9	D 🗖 OP4
		MSv43202V1

1. NC = not connected

See Table 2 for a description of the pin functions.

Pin number	Function name	Function description	
1	Vss	Ground	
2	V _{DD}	Power Supply (+5 volts)	
3	RESET	Reset (active low) input	
4	DRX	Receive input	
5	OP5	Output 5 (uncommitted port)	
6	OP6	Output 6 (uncommitted port)	
7	OP7	Output 7 (uncommitted port)	
8	OP8	Output 8 (uncommitted port)	
9	OP4	Output 4 (SO B/A)	
10	OP3 ⁽¹⁾	Output 3 (SB/SA)	
11	OP2	Output 2 (H/V)	
12	OP1	Output 1 (Hi/Lo)	
13	SBY	Standby	
14	DTX	DiSEqC™ data transmit output	
15,16	-	Not used ⁽²⁾	

Table 2. ST7LNB0V3 pin functions

 During normal operation this pin must be pulled-up internally or externally to avoid entering ICC mode unexpectedly during a reset. Using an external pull-up of 10 kΩ is mandatory in noisy environment. In the final application, a reset will put the pin back in input pull-up configuration even if it was configured as an output.

2. Unused pins must be tied to ground.

2 ST7LNB0V3 implementation

Figure 3 shows a typical application circuit for the ST7LNB0V3.

Figure 3. ST7LNB0V3 typical application circuit

1. The divider chain connected to the DRX pin must have the following resistance values: 330 k Ω and 100 k $\Omega.$

- 2. The reset circuitry linked to the $\overline{\text{RESET}}$ pin is optional. In fact the ST7LNB0V3 has an internal voltage level detector (LVD) which generates a static reset when the V_{DD} supply is below a threshold voltage of 4.1 V.
- 3. The DiSEqC signalling must have a tone frequency of 22 kHz (\pm 20%) and an amplitude exceeding 150 mV peak to peak.
- 4. When the LVD is enabled (default state), it is mandatory not to connect a pull-up resistor. A 10 nF pulldown capacitor is recommended to filter noise on the reset line.

3 ST7LNB0V3 functional description

3.1 ST7LNB0V3 configuration

Unlike the original slave microcontroller described in the *Eutelsat DiSEqC slave microcontroller specifications* version 1.0, the ST7LNB0V3 does not scan the control pins in order to determine the slave configuration. Instead all configuration parameters must be programmed for each specific application, and an option list (see *Section 8: Device configuration*) must be filled-in to program the necessary options at the manufacturing stage.

The slave configuration parameters are the following:

- The DiSEqC[™] slave address: 11h for an LNB, and 15h for a switcher
- The local oscillator frequency table entry numbers
- The DiSEqC[™] configuration byte (refer to page 15 of *DiSEqC slave microcontroller specifications*)
- The output mode (see next paragraph)
- 22 kHz tone use in backwards compatible mode (SB/SA or Hi/Lo switching)
- Standby pin use.

3.2 ST7LNB0V3 switching output modes

The ST7LNB0V3 has 8 pins, OP1 to OP 8 available to provide 'TTL' logic levels to operate switches. The switches can be are used to select various signal conditions and sources (for example horizontal polarization, or satellite position).

As listed in *Table 2*, the committed output port is composed of OP1 to OP4 and the uncommitted output port is composed of OP5 to OP8.

Depending on the application hardware, the switching control pins OP1 to OP8 may be operated differently. Three possible output modes can be configured as described in the following sections.

3.2.1 Single polarity output mode

In this mode each pin can be controlled individually as described in Table 3.

Table 6. offigie polarity calpar mode		
Function name	Function description	
OP4	SO B/A	
OP3	SB/SA	
OP2	Hor/Ver	
OP1	Hi/Lo	
OP5	SW5	
OP6	SW6	
OP7	SW7	
OP8	SW8	

3.2.2 Decoded output mode

This mode offers the possibility to demultiplex three adjacent committed or uncommitted control lines (Hi/Lo, SB/SA and SOB/A) in order to have a 1 of 8 demux on the output port OP1 to OP8. For more details refer to page 10 of $DiSEqC^{TM}$ slave microcontroller specifications.

It is also possible to have a 1 of 4 demux by decoding only 2 control lines, SB/SA and SO B/A for controlling a 1 of 4 switcher for example.

3.2.3 Complementary output mode

In this mode the state of the uncommitted switching output port pins is the complementary of the state of the committed output ports pins. For more details refer to page 14 of $DiSEqC^{TM}$ slave microcontroller specifications.

4 Supported DiSEqC[™] commands

Command number (Hex byte)		
00h	RESET	Reset DiSEqC™ microcontroller
01h	clr RESET	Clear the RESET flag
02h	STANDBY	Switch peripheral power off
03h	Power on	Switch peripheral power supply off
04h	Set Cont	Set contention flag
05h	Contend	Return address only if contention flag is set
06h	Clr Cont	Clear contention flag
07h	Address	Return address unless contention flag is set
08h	Move C	Change address only if contention flag is set
09h	Move	Change address unless contention flag is set
10h	STATUS	Read STATUS register
11h	Config	Read Configuration register
14h	Group 0	Read switching state (committed port)
15h	Group 1	Read switching state (uncommitted port)
20h	Set Lo	Select the low Local oscillator frequency
21h	Set VR	Select the vertical polarization
22h	Set Pos A	Select satellite position A
23h	Set SO A	Select switch Option A
24h	Set Hi	Select the Hi local oscillator frequency
25h	Set HL	Select the Horizontal polarization
26h	Set Pos B	Select satellite position B
27h	Set SO B	Select the switch Option B
28h	Set S1 A	Select switch S1 input A
29h	Set S2 A	Select switch S2 input A
2Ah	Set S3 A	Select switch S3 input A
2Bh	Set S4 A	Select switch S4 input A
2Ch	Set S1 B	Select switch S1 input B
2Dh	Set S2 B	Select switch S2 input B
2Eh	Set S3 B	Select switch S3 input B
2Fh	Set S4B	Select switch S4 input B
38h	Write N0	Write to port group 0 (committed switches)
39h	Write N1	Write to port group 1 (uncommitted switches)

Table 4. ST7LNB0V3 DiSEqC[™] supported commands

DocID029484 Rev 1

Table 4. 017 ENDOVO DIOEq0 Supported commands (communed)		
Command number (Hex byte)	Command name	Command function
51h	LO	Read current L.O frequency table entry number
52h	LO Lo	Read Lo L.O frequency table entry number
53h	LO Hi	Read Hi L.O frequency table entry number

Table 4. ST7LNB0V3 DiSEgC [™] supported	commands	(continued)	
	commanus	(continueu)	

Note: After a power-on, the ST7LNB0V3 responds to backwards compatible signalling (13/18 V, 22 kHz, tone burst) until a valid DiSEqC frame is detected.

A RESET command must be sent in order to return to backwards compatible mode.

5 ST7LNB0V3 configuration

A dedicated DiSEqC command is implemented to configure the ST7LNB0V3 to the required target application. This configuration is stored in the ST7LNB0V3 embedded EEPROM location.

5.1 Command 0Fh

ST7LNB0V3 devices are shipped to customers with a default parameter value. These parameters can be updated using a dedicated 0Fh DiSEqC command.

The format of this command is described in *Table 5* where "data" is the parameter value to be programmed at the "index" location as shown in *Table 8*.

Table 5. Command 0Fh				
E0h	DiSEqC Slave address	0Fh	index	data

Note: The special command E0 xx 0F FF FF protects the EEPROM data from any subsequent write access (where xx is the corresponding DiSEqC Slave address).

5.2 Command 0Dh

A dedicated 0Dh command has been added to read a parameter located in EEPROM.

The format of this command is described in *Table 6* where "index" is the address of the byte to be read in EEPROM area.

Table 6. Command 0Dh

E2h	DiSEqC Slave address	0Dh	index
-----	-------------------------	-----	-------

The format of the reply frame is given in *Table 7* where "data" is the byte read from EEPROM:

Table 7. Reply to command 0Dh

	E4h	data
--	-----	------

Timings

The time required to update a byte parameter (write followed by read operation) is 130 ms; whereas the time required to update all the parameters is about 3.5 s.

Index	Parameter	Description	Default Value
00	Slave address	DiSEqC slave address (00 to FFh) ⁽¹⁾	14h
01	L.O frequencies	(2)	00h
02	Output configuration	See Table 9	0Ah
03	Serial / version number	user can enter a value:0000h to FFFFh	1Bh, see note 4
04	Senar / version number		FFh

Table 8. ST7LNB0V3 EEPROM parameters

1. Besides the address defined in the EEPROM at index 00h, addresses 10h and 00h are recognized also as valid addresses.

L.O frequencies: Local oscillator table entry numbers.
 High nibble: High L.O frequency
 Low nibble: Low L.O frequency

Table 9. Output configuration byte

Bit number	Bit description ⁽¹⁾	Value
0	22 kHz use	0: High/Low switching 1: SB/SA switching
[1:4]	Decoded mode selection	0: mode not selected [1 to 8]: decoded mode number
5	Complementary mode selection	0: mode not selected 1: mode selected
6	2 lines decoded mode selection	0: mode not selected 1: mode selected
7	Not used	0

1. If neither the Decoded mode nor the Complementary mode is set then the Single polarity mode is selected by default.

6 Electrical characteristics

6.1 Parameter conditions

Unless otherwise specified, all voltages are referred to $\mathsf{V}_{SS}.$

6.1.1 Minimum and maximum values

Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_A=25$ °C and $T_A=T_Amax$ (given by the selected temperature range).

Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3\Sigma$).

6.1.2 Typical values

Unless otherwise specified, typical data are based on $T_A = 25$ °C, $V_{DD} = 5$ V for the 4.5 V $\leq V_{DD} \leq 5.5$ V voltage range. They are given only as design guidelines and are not tested.

6.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

6.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in *Figure 4*.

Figure 4. Pin loading conditions

6.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in Figure 5.

6.2 Absolute maximum ratings

Stresses above those listed as "absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Symbol	Ratings	Maximum value	Unit
V _{DD} - V _{SS}	Supply voltage	7.0	V
V _{IN}	Input voltage on any pin ⁽¹⁾⁽²⁾	$V_{SS}\text{-}0.3$ to $V_{DD}\text{+}0.3$	v
V _{ESD(HBM)}	Electrostatic discharge voltage (Human Body Model)		
V _{ESD(MM)}	Electrostatic discharge voltage (Machine Model)	- see Section 6.5.3 on page	

Table 10. Voltage characteristics

1. Directly connecting the I/O pins to V_{DD} or V_{SS} could damage the device if an unexpected change of the I/O configuration occurs (for example, due to a corrupted program counter). To guarantee safe operation, this connection has to be done through a pull-up or pull-down resistor (typical: 10k Ω for I/Os). Unused I/O pins must be tied in the same way to V_{DD} or V_{SS} according to their reset configuration.

When the current limitation is not possible, the V_{IN} absolute maximum rating must be respected, otherwise
refer to I_{INJ(PIN)} specification. A positive injection is induced by V_{IN}>V_{DD} while a negative injection is
induced by V_{IN}<V_{SS}.

Symbol	Ratings	Maximum value	Unit
I _{VDD}	Total current into V _{DD} power lines (source) ⁽¹⁾	100	
I _{VSS}	Total current out of V_{SS} ground lines (sink) ⁽¹⁾	100	
	Output current sunk by any standard I/O and control pin	25	
I _{IO}	Output current sunk by any high sink I/O pin	50	mA
	Output current source by any I/Os and control pin	- 25	ША
I _{INJ(PIN)} ⁽²⁾⁽³⁾	Injected current on RESET pin	± 5	
'INJ(PIN)````	Injected current on any other pin ⁽⁴⁾⁽⁵⁾	± 5	
$\Sigma I_{INJ(PIN)}^{2)}$	Total injected current (sum of all I/O and control pins) ⁽⁴⁾	± 20	

Table 11. Current characteristics

1. All power (V_{DD}) and ground (V_{SS}) lines must always be connected to the external supply.

When the current limitation is not possible, the V_{IN} absolute maximum rating must be respected, otherwise refer to I_{INJ(PIN)} specification. A positive injection is induced by V_{IN}>V_{DD} while a negative injection is induced by V_{IN}>V_{SS}. 2.

Negative injection disturbs the analog performance of the device. In particular, it induces leakage currents 3. throughout the device including the analog inputs. To avoid undesirable effects on the analog functions,

care must be taken: - Analog input pins must have a negative injection less than 0.8 mA (assuming that the impedance of the analog voltage is lower than the specified limits) - Pure digital pins must have a negative injection less than 1.6 mA. In addition, it is recommended to inject the current as far as possible from the analog input pins.

4. When several inputs are submitted to a current injection, the maximum Σl_{INJ(PIN)} is the absolute sum of the positive and negative injected currents (instantaneous values). These results are based on characterization with Σl_{INJ(PIN)} maximum current injection on four I/O port pins of the device.

5. True open drain I/O port pins do not accept positive injection.

Symbol Ratings		Value	Unit	
T _{STG}	Storage temperature range	-65 to +150	°C	
TJ	Maximum junction temperature (see Section 6.8: Thermal characteristics)			

Operating conditions 6.3

Symbol	Parameter	Conditions	Min	Max	Unit
V _{DD}	Supply voltage	-	4.5	5.5	V
T _A	Ambient temperature	-	-40	+85	°C

Table 13.	General	operating	conditions
14010 101	•••••	oporaning	••••••••

	Table 14. Operating conditions with low voltage detector (LVD)							
Symbol	Parameter	Conditions	Min	Тур	Max	Unit		
V _{IT+(LVD)}	Reset release threshold $(V_{DD}$ rise)	-	4.00	4.25	4.50	V		
V _{IT-(LVD)}	Reset generation threshold $(V_{DD} fall)$	-	3.80	4.10	4.30	v		
V _{hys}	LVD voltage threshold hysteresis	V _{IT+(LVD)} -V _{IT-(LVD)}	-	200	-	mV		
Vt _{POR}	V _{DD} rise time rate ⁽¹⁾	-	20	-	20000	μs/V		
t _{g(VDD)}	Filtered glitch delay on V _{DD}	Not detected by the LVD	-	-	150	ns		
I _{DD(LVD})	LVD/AVD current consumption	-	-	200	-	μA		

Table 14. Operating conditions with low voltage detector $(I \setminus D)$

Not tested in production. The V_{DD} rise time rate condition is needed to ensure a correct device power-on and LVD reset. When the V_{DD} slope is outside these values, the LVD may not ensure a proper reset of the MCU. 1.

				-	-	
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{DiSEqC}	DiSEqC [™] tone frequency	-	17.6	22	26.4	kHz
V _{DiSEqC}	DiSEqC [™] tone voltage	-	150	650	-	mV _{PP}
V _{Backward}	13/18 volt backward compatibility voltage threshold ⁽¹⁾	-	-	15	-	V

Table 15. Operating conditions with the DiSEqC[™] signalling

In backwards compatible mode, bus DC voltage is compared with 15 V. If it exceeds this voltage then it is considered as 18 V else it is considered as 13 V. 1.

6.4 Supply current characteristics

The following current consumption specified for the ST7 functional operating modes over temperature range does not take into account the clock source current consumption. To get the total device consumption, the two current values must be added.

Symbol	Parameter	Conditions ⁽¹⁾	Тур	Max	Unit
	Supply current in Run mode ⁽²⁾		4.50	7	
I _{DD}	Supply current for LNB or switcher applications ⁽³⁾	V _{DD} =5.5V, f _{CPU} =8MHz	-	20	mA

1. $T_A = -40$ to +125 °C unless otherwise specified.

2. CPU running with memory access, all I/O pins in input mode with a static value at V_{DD} or V_{SS} (no load), all peripherals in reset state; clock input (CLKIN) driven by external square wave, LVD disabled.

3. Data based on typical ST7LNB0V3 LNB or switcher application software running.

6.5 EMC characteristics

Susceptibility tests are performed on a sample basis during product characterization.

6.5.1 Functional EMS (electromagnetic susceptibility)

Based on a simple running application on the product (toggling 2 LEDs through I/O ports), the product is stressed by two electromagnetic events until a failure occurs (indicated by the LEDs).

- **ESD**: Electrostatic discharge (positive and negative) is applied on all pins of the device until a functional disturbance occurs. This test conforms with the IEC 1000-4-2 standard.
- **FTB**: A Burst of Fast Transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100pF capacitor, until a functional disturbance occurs. This test conforms with the IEC 1000-4-4 standard.

A device reset allows normal operations to be resumed. The test results are given in the table below based on the EMS levels and classes defined in application note AN1709.

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Software recommendations:

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical Data corruption (control registers...)
- Prequalification trials:

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the RESET pin or the Oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Symbol	Parameter	Conditions	Level/Class
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	V_{DD} =5 V, T_A =+25 °C, f _{OSC} =8 MHz conforms to IEC 1000-4-2	2B
V _{FFTB}	Fast transient voltage burst limits to be applied through 100 pF on V_{DD} and V_{DD} pins to induce a functional disturbance	$V_{DD}=5$ V, $T_A=+25$ °C, $f_{OSC}=8$ MHz conforms to IEC 1000-4-4	3B

Table 17. EMS characteristics

6.5.2 Electromagnetic Interference (EMI)

Based on a simple application running on the product (toggling 2 LEDs through the I/O ports), the product is monitored in terms of emission. This emission test is in line with the norm SAE J 1752/3 which specifies the board and the loading of each pin.

Symbol	Parameter	Conditions	Monitored	Max vs. [f _c	Unit	
	Farameter	Conditions	frequency band	1/4 MHz	1/8 MHz	Unit
S _{EMI}		V _{DD} =5 V, T _A =+25 °C, SO16 package,	0.1 MHz to 30 MHz	8	14	
	Peak level		30 MHz to 130 MHz	27	32	dBμV
		conforming to SAE J 1752/3	130 MHz to 1 GHz	26	28	
			SAE EMI Level	3.5	4	-

1. Data based on characterization results, not tested in production.

6.5.3 Absolute maximum ratings (electrical sensitivity)

Based on three different tests (ESD, LU and DLU) using specific measurement methods, the product is stressed in order to determine its performance in terms of electrical sensitivity. For more details, refer to the application note AN1181.

Electrostatic discharge (ESD)

Electrostatic Discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts*(n+1) supply pin). This test conforms to the JESD22-A114A/A115A standard.

Table	19.	Absolute	maximum	ratings
-------	-----	----------	---------	---------

Symbol	Ratings	Conditions	Maximum value ⁽¹⁾	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	T _A =+25 °C	4000	V

1. Data based on characterization results, not tested in production.

Static and dynamic latch-up

- LU: 3 complementary static tests are required on 10 parts to assess the latch-up performance. A supply overvoltage (applied to each power supply pin) and a current injection (applied to each input, output and configurable I/O pin) are performed on each sample. This test conforms to the EIA/JESD 78 IC latch-up standard. For more details, refer to the application note AN1181.
- **DLU**: Electrostatic discharges (one positive then one negative test) are applied to each pin of 3 samples when the micro is running to assess the latch-up performance in dynamic mode. Power supplies are set to the typical values, the oscillator is connected as near as possible to the pins of the micro and the component is put in reset mode. This test conforms to the IEC1000-4-2 and SAEJ1752/3 standards. For more details, refer to the application note AN1181.

Symbol	Parameter	Conditions	Class ⁽¹⁾
LU	Static latch-up class	T _A =+25 °C	А
DLU	Dynamic latch-up class	V _{DD} =5.5 V, f _{OSC} =4 MHz, T _A =+25 °C	A

Table 2). Elec	trical s	sensitiv	ities
---------	---------	----------	----------	-------

 Class description: A Class is an STMicroelectronics internal specification. All its limits are higher than the JEDEC specifications, that means when a device belongs to Class A it exceeds the JEDEC standard. B Class strictly covers all the JEDEC criteria (international standard).

6.6 I/O port characteristics

6.6.1 General characteristics

Subject to general operating conditions for V_{DD} , f_{OSC} , and T_A unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	
V _{IL}	Input low level voltage	-	-	-	$0.3V_{DD}$	V	
V _{IH}	Input high level voltage	-	$0.7 V_{DD}$	-	-	V	
V _{hys}	Schmitt trigger voltage hysteresis ⁽¹⁾	-	-	400	-	mV	
۱ _L	Input leakage current	$V_{SS} \le V_{IN} \le V_{DD}$	-	-	±1		
I _S	Static current consumption ⁽²⁾	Floating input mode	-	-	200	μA	
R _{PU}	Weak pull-up equivalent resistor ⁽³⁾	$V_{IN} = V_{SS}, V_{DD} = 5 V$	50	120	250	kΩ	
C _{IO}	I/O pin capacitance		-	5	-	pF	
t _{f(IO)out}	Output high to low level fall time ⁽¹⁾	C _L = 50 pF	-	25	-		
t _{r(IO)out}	Output low to high level rise time ⁽¹⁾	Between 10% and 90%	-	25	-	ns	

Table 21.	General characteristics	
-----------	--------------------------------	--

1. Data based on characterization results, not tested in production.

2. Configuration not recommended, all unused pins must be kept at a fixed voltage: using the output mode of the I/O for example or an external pull-up or pull-down resistor (see *Figure 7*). Data based on design simulation and/or technology characteristics, not tested in production.

 The R_{PU} pull-up equivalent resistor is based on a resistive transistor (corresponding I_{PU} current characteristics described in *Figure 8*).

Figure 8. Typical I_{PU} against V_{DD} with $V_{IN}=V_{SS}$

6.6.2 Output driving current

Subject to general operating conditions for V_{DD} , f_{CPU} , and T_A unless otherwise specified.

Symbol	Parameter	Conditions	Min	Max	Unit
	Output low level voltage for a standard I/O pin	V _{DD} =5V I _{IO} =+5 mA	-	1.0	
V _{OL} ⁽¹⁾	(1) when 8 pins are sunk at same time (see <i>Figure 9</i>)		-	0.4	
VOL (Output low level voltage for a high sink I/O pin	V _{DD} =5V I _{IO} =+20 mA	-	1.3	V
	/hen 4 pins are sunk at same time (see Figure 10)	V _{DD} =5V I _{IO} =+8 mA	-	0.75	V
y (2)	Output high level voltage for an I/O pin when 4	V _{DD} =5V I _{IO} =-5 mA	V _{DD} -1.5	-	
		V _{DD} =5V I _{IO} =-2 mA	V _{DD} -0.8	-	

Table 22. Output driving current characteristics

1. The I_{IO} current sunk must always respect the absolute maximum rating specified in Section Table 11. and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VSS} .

2. The I_{IO} current sourced must always respect the absolute maximum rating specified in *Section Table 11.* and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VDD}. True open drain I/O pins does not have V_{OH}.

6.7 Control pin characteristics

Symbol	Parameter	Conditions ⁽¹⁾⁽²⁾⁽³⁾	Min	Тур	Max	Unit
V _{IL}	Input low level voltage	-	-	-	$0.3V_{DD}$	V
V _{IH}	Input high level voltage	-	$0.7V_{DD}$	-	-	V
V _{hys}	Schmitt trigger voltage hysteresis ⁽⁴⁾	-	-	1	-	V
V	Output low level voltage ⁽⁵⁾	V _{DD} = 5 V I _{IO} = +5 mA	-	0.5	1.0	v
V _{OL}		$V_{DD} = 5 V$ $I_{IO} = +2 mA$	-	0.2	0.4	V
R _{ON}	Pull-up equivalent resistor ⁽⁶⁾⁽⁴⁾	V _{DD} =5 V	20	40	80	kΩ
t _{w(RSTL)out}	Generated reset pulse duration	Internal reset sources	-	30	-	μs
t _{h(RSTL)in}	External reset pulse hold time ⁽⁷⁾	-	20	-	-	μs
t _{g(RSTL)in}	Filtered glitch duration ⁽⁸⁾	-	-	200	-	ns

1. The output of the external reset circuit must have an open-drain output to drive the ST7 reset pad. Otherwise the device can be damaged when the ST7 generates an internal reset (LVD or watchdog).

Whatever the reset source is (internal or external), the user must ensure that the level on the RESET pin can go below the V_{IL} max. level specified in Table 11 on page 16. Otherwise the reset will not be taken into account internally.

 Because the reset circuit is designed to allow the internal RESET to be output in the RESET pin, the user must ensure that the current sunk on the RESET pin (by an external pull-up for example) is less than the absolute maximum value specified for I_{INJ(RESET)} in *Table 11 on page 16*.

4. Data based on characterization results, not tested in production.

The I_{IO} current sunk must always respect the absolute maximum rating specified in *Table 11 on page 16* and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VSS}.

 The R_{ON} pull-up equivalent resistor is based on a resistive transistor. Specified for voltage on RESET pin between V_{ILmax} and V_{DD}

 <u>4. To guarantee the reset of the device</u>, a minimum pulse has to be applied to the RESET pin. All short pulses applied on RESET pin with a duration below t_{h(RSTL)in} can be ignored.

8. The reset network protects the device against parasitic resets.

6.8 Thermal characteristics

Table 24. Thermal characteristics

Symbol	Ratings	Value	Unit
R _{thJA}	Package thermal resistance (junction to ambient)	85	°C/W
T _{Jmax}	Maximum junction temperature ⁽¹⁾	150	°C
P _{Dmax}	Power dissipation ⁽²⁾	300	mW

1. The maximum chip-junction temperature is based on technology characteristics.

 The maximum power dissipation is obtained from the formula P_D = (T_J - T_A) / R_{thJA}. The power dissipation of an application can be defined by the user with the formula: P_D=P_{INT}+P_{PORT} where P_{INT} is the chip internal power (I_{DD}xV_{DD}) and P_{PORT} is the port power dissipation depending on the ports used in the application.

Package information 7

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK[®] is an ST trademark.

Package mechanical data 7.1

Figure 12. Pin plastic small outline package, 150-mil width, package outline

Dim.		mm			inches	
Dim.	Min	Тур	Max	Min	Тур	Мах

Table 25. Pin plastic small outline package, 150-mil width, mechanical data

Dim.						
Dini.	Min	Тур	Мах	Min	Тур	Мах
А	1.35	-	1.75	0.053	-	0.069
A1	0.10	-	0.25	0.004	-	0.010
В	0.33	-	0.51	0.013	-	0.020
С	0.19	-	0.25	0.007	-	0.010
D	9.80	-	10.00	0.386	-	0.394
E	3.80	-	4.00	0.150	-	0.157
е	-	1.27	-	-	0.050	-
Н	5.80	-	6.20	0.228	-	0.244
α	0°	-	8°	0°	-	8°
L	0.40	-	1.27	0.016	-	0.050
	Number of pins					
N			1	6		

7.2 Soldering information

In order to meet environmental requirements, ST offers the ST7LNB0V3 in ECOPACK[®] package. The package have a Lead-free second level interconnect. The category of second Level Interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97.

The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at *www.st.com*, together with specific technical application notes covering the main technical aspects related to lead-free conversion (AN2033, AN2034, AN2035, AN2036).

Backward and forward compatibility

The main difference between Pb and Pb-free soldering process is the temperature range.

- ECOPACK LQFP, SDIP, SO and QFN20 packages are fully compatible with Lead (Pb) containing soldering process (see application note AN2034)
- TQFP, SDIP and SO Pb-packages are compatible with Lead-free soldering process, nevertheless it's the customer's duty to verify that the Pb-packages maximum temperature (mentioned on the Inner box label) is compatible with their Lead-free soldering temperature.

Package	Plating material devices	Pb solder paste	Pb-free solder paste
SDIP & PDIP	Sn (pure Tin)	Yes	Yes ⁽¹⁾
QFN	Sn (pure Tin)	Yes	Yes ⁽¹⁾
LQFP and SO	NiPdAu (Nickel-palladium-Gold)	Yes	Yes ⁽¹⁾

Table 26. Soldering compatibility (wave and reflow soldering process)

1. Assemblers must verify that the Pb-package maximum temperature (mentioned on the Inner box label) is compatible with their Lead-free soldering process.

8 Device configuration

8.1 Data EEPROM option bytes

Table 27. Description of data EEPROM option bytes

Byte name	Description	Address
FAM	Device Family Address (11h:LNB; 15h: switcher)	1002h
LOFREQ	Local Oscillator Frequency Table Entry Numbers	1003h
PARAM	Output Mode and 22 kHz Tone Use (Hi/Lo or SB/SA)	1004h

FAM option byte: Device Family Address

11h: Normal LNB

15h: Normal Switcher

LOFREQ option byte Local Oscillator Frequency Table Entry Number

This byte indicates the value of a LNB local oscillator:

- Lowest Nibble = Lo Local Oscillator Frequency Table Entry Number
- Highest Nibble = Hi Local Oscillator Frequency Table Entry Number

See Table 2 on page 8 of the Eutelsat DisEqC slave microcontroller specifications version 1.0.

PARAM option byte: Output Mode and 22 kHz Tone Use (Hi/Lo or SB/SA)

- Bit 7:8 = Not used
- Bit 6 = Decoded Mode With Only Two Lines (the lowest line of a selection group is kept low)

0: Decoded mode with only two lines not selected

- 1: Decoded mode with only two lines selected
- Bit 5 = Complementary Mode Selection
 0: Complementary Mode not selected
 1: Complementary Mode selected
- Bit 4:1 = Decoded Mode Number
 0: Decoded Mode not selected
 1 to 8: Decoded Mode Number (refer to table 5a on page 11 of the Eutelsat DisEqC slave microcontroller speculations version 1.0.
 - Bit 0 = 22 kHz Tone Use 0: 22 kHz tone use for Hi/Lo switching in backwards compatible mode 1: 22 kHz tone use for SB/SA switching in backwards compatible mode
- Note: If neither a decoded mode nor a complementary output mode is selected, the output mode is the sinGle polarity output mode (refer to Table 3: Single polarity output mode).

Note:

8.2 Option list

Figure 13. Option list

ST7LNB0V3 DiseqC. SLAVE MICROCONTROLLER OPTION LIST (Last update: July 2016) Address: Package (tick one box) ------ST7LNB0V3 | SO16 NARROW (16 pin) Family address (tick one box) ------Normal LNB (11h) | [] Normal Switcher (15h) | [] Backwards Compatible 22 kHz tone usage (tick one box) Hi/Lo switching | [] SB/SA switching | [] ------- Local oscillator frequencies table entry number -----Hi L.O table entry number | [] Lo L.O table entry number | [] ------- Switching output type: (tick or fill one box) _____ ----- | ------_____ Single polarity output | [] Decoded mode output | [] (indicate the mode number) | Complementary output | [] ------Notes Date Please download the latest version of this option list from: www.st.com MSv43213V1

DocID029484 Rev 1

9 Revision history

Table 28. Document revision history	Table 28	Document	revision	history
-------------------------------------	----------	-----------------	----------	---------

Date	Revision	Changes
09-Jul-2016	1	Initial release.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics – All rights reserved

DocID029484 Rev 1

