

BGB741L7ESD

Internally matched general purpose LNA MMIC for 50 MHz- 3.5 GHz applications

Support

Product description

The BGB741L7ESD is a high performance broadband low noise amplifier (LNA) MMIC based on Infineon's silicon germanium carbon (SiGe:C) bipolar technology.

Feature list

- Minimum noise figure NF_{min} = 1.05 dB at 2.4 GHz, 3 V, 10 mA
- Supply voltage range V_{CC} = 1.8 to 4.0 V at T_A = 25 °C
- High RF input power robustness of 20 dBm
- Integrated ESD protection: 2 kV HBM at all pins

Product validation

Qualified for industrial applications according to the relevant tests of JEDEC47/20/22.

Potential applications

- Satellite navigation systems (e.g. GPS, GLONASS, BeiDou, Galileo)
- Wireless communications: WLAN 2.4 GHz and 5-6 GHz bands, broadband LTE or WiMAX LNA
- ISM applications like RKE and smart meter, as well as for emerging wireless applications such as DVB-Terrestrial

Device information

Table 1 Part information

Product name / Ordering code	Package	Pin configu	Marking	Pieces / Reel			
BGB741L7ESD /	TSLP-7-1 $1 = V_{CC}$ $2 = V_{Bias}$ $3 = RF_{in}$ $4 = RF_{out}$					AY	7500
BGB741L7ESDE6327XTSA1		5 = V _{Ctrl}	6 = Current adjust	7 = Ground			

Attention: ESD (Electrostatic discharge) sensitive device, observe handling precautions

Functional block diagram

Functional block diagram

This functional block diagram explains how the BGB707L7ESD is used. The RF power on/off function is controlled by applying V_{Ctrl} . By using an external resistor R_{ext} , the pre-set current of 5.5 mA (when R_{ext} is omitted) can be increased. Base V_B and collector V_C voltages are applied to the respective pins RF_{in} and RF_{out} by external inductors L_B and L_C .

Figure 1 Functional block diagram

Table of contents

1

2

3

4 4.1 4.2 4.3

5

Table of contents

Product description	1
Feature list	1
Product validation	1
Potential applications	1
Device information	1
Functional block diagram	2
Table of contents	3
Operating conditions	4
Absolute maximum ratings	5
Thermal characteristics	6
Electrical characteristics	7
DC characteristics	7
Characteristic DC diagrams	8
AC characteristics	. 10
Package information TSLP-7-1	. 19
Revision history	. 21
Disclaimer	. 22

Operating conditions

1 Operating conditions

Table 2Operation conditions at $T_A = 25 \ ^{\circ}C$

Parameter	Symbol		Values		Unit	Note or test condition
		Min.	Тур.	Max.		
Supply voltage	V _{CC}	1.8	3	4	V	-
Control voltage in on-mode	V _{Ctrl-on}	1.2	-	V _{CC}		
Control voltage in off-mode	V _{Ctrl-off}	-0.3		0.3		

Absolute maximum ratings

2 Absolute maximum ratings

Table 3 Absolute maximum ratings at $T_A = 25 \text{ °C}$ (unless otherwise specified)

Parameter	Symbol	Va	lues	Unit	Note or test condition	
		Min.	Max.			
Supply voltage	V _{CC}	-	4	V	<i>T</i> _A = 25 °C	
			3.5		<i>T</i> _A = -55 °C	
Supply current	I _{CC}		30	mA	-	
DC current at <i>RF</i> in	/ _B		3			
Control voltage	V _{Ctrl}		V _{CC}	V		
ESD stress pulse (HBM)	V _{ESD}		+/- 2	kV		
RF input power	P _{RFin}		20	dBm		
Total power dissipation ¹⁾	P _{tot}		120	mW	<i>T</i> _S ≤ 117 °C	
Junction temperature	TJ		150	°C	-	
Storage temperature	T _{Stg}	-55				

Attention: Stresses above the max. values listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Exceeding only one of these values may cause irreversible damage to the integrated circuit.

¹ $T_{\rm S}$ is the soldering point temperature. $T_{\rm S}$ is measured on the emitter lead at the soldering point of the PCB

Thermal characteristics

3 Thermal characteristics

Table 4Thermal resistance

Parameter	Symbol		Values			Note or test condition
		Min.	Тур.	Max.		
Junction - soldering point	R _{thJS}	-	275	-	K/W	-

4 Electrical characteristics

4.1 DC characteristics

Table 5DC characteristics at $V_{CC} = 3 \text{ V}, T_A = 25 \text{ °C}$

Parameter	Symbol		Values		Unit	Note or test
		Min.	Тур.	Max.		condition
Supply current in on-mode	I _{CC-on}				mA	V _{Ctrl} = 3 V
		5.0	5.5	6.5		R _{ext} = open
		-	6	-		$R_{\rm ext} = 30 \rm k\Omega$
		-	10	-		$R_{\rm ext} = 3 \rm k\Omega$
Supply current in off-mode	I _{CC-off}	-	-	6	μΑ	V _{Ctrl} = 0 V
Control current in on-mode	I _{Ctrl-on}		14	20		V _{Ctrl} = 3 V
Control current in off-mode	I _{Ctrl-off}		_	0.1		V _{Ctrl} = 0 V

4.2 Characteristic DC diagrams

The measurement setup is an application circuit according to *Figure 1* on page 2, using the integrated biasing. $T_A = 25$ °C (unless otherwise specified).

Infineon

4.3 AC characteristics

The measurement setup is a test fixture with Bias-T's in a 50 Ω system, T_A = 25 °C.

Testing setup

Electrical characteristics

Table 6AC characteristics, $V_c = 3 V, f = 150 MHz$

Parameter	Symbol Values				Unit	Note or test condition
		Min.	Тур.	Max.		
Minimum noise figure ¹⁾	NF _{min}	-	1.05	-	dB	<i>I</i> _C = 6 mA
			0.95			<i>I</i> _C = 10 mA
						$Z_{\rm S} = Z_{\rm S,opt}$
Noise figure in 50 Ω system ²⁾	NF ₅₀		1.1			I _C = 6 mA
			1.05			/ _C = 10 mA
						$Z_{\rm S} = Z_{\rm L} = 50 \ \Omega$
Transducer gain	$ S_{21} ^2$		19			I _C = 6 mA
			21			<i>I</i> _C = 10 mA
Maximum stable power gain	G _{ms}		20			I _C = 6 mA
			21.5			<i>I</i> _C = 10 mA
Input 1 dB gain compression point	IP _{1dB}		-5.5		dBm	I _{Cq} = 6 mA
			-8			/ _{Cq} = 10 mA
Input 3 rd order intercept point	IIP ₃		5.5			I _C = 6 mA
			3.5			<i>I</i> _C = 10 mA
Input return loss	<i>RL</i> in]	14		dB	<i>I</i> _C = 6 mA
			18			<i>I</i> _C = 10 mA
Output return loss	RLout]	12.5			I _C = 6 mA
			18.5			<i>I</i> _C = 10 mA

¹ Test fixture losses are extracted

² Parameter measured on an application board according to *Figure 1* on page 2 presenting a 50 Ω system to the device. *I*_{Cq} is the quiescent current, that is at small RF input power level. *I*_C increases as RF input power level approaches *IP*_{1dB}.

Electrical characteristics

Table 7AC characteristics, $V_c = 3 V, f = 450 MHz$

Parameter	Symbol		Values		Unit	Note or test condition
		Min.	Тур.	Max.		
Minimum noise figure ¹⁾	NF _{min}	-	1.05	-	dB	I _C = 6 mA
			0.95			/ _C = 10 mA
						$Z_{\rm S} = Z_{\rm S,opt}$
Noise figure in 50 Ω system ²⁾	NF ₅₀		1.1			I _C = 6 mA
			1.05			<i>I</i> _C = 10 mA
						$Z_{\rm S} = Z_{\rm L} = 50 \ \Omega$
Transducer gain	S ₂₁ ²		18.5			I _C = 6 mA
			20.5			<i>I</i> _C = 10 mA
Maximum available power gain	G _{ma}		19			I _C = 6 mA
			20.5			/ _C = 10 mA
Input 1 dB gain compression point	IP _{1dB}		-5		dBm	I _{Cq} = 6 mA
			-7.5			I _{Cq} = 10 mA
Input 3 rd order intercept point	IIP ₃		4			I _C = 6 mA
			2.5			<i>I</i> _C = 10 mA
Input return loss	<i>RL</i> in	1	15.5	1	dB	I _C = 6 mA
			21			<i>I</i> _C = 10 mA
Output return loss	RL _{out}	1	14.5			I _C = 6 mA
			28			$I_{\rm C} = 10 {\rm mA}$

¹ Test fixture losses are extracted

² Parameter measured on an application board according to *Figure 1* on page 2 presenting a 50 Ω system to the device. *I*_{Cq} is the quiescent current, that is at small RF input power level. *I*_C increases as RF input power level approaches *IP*_{1dB}.

Electrical characteristics

Table 8AC characteristics, $V_{\rm C} = 3 \text{ V}, f = 900 \text{ MHz}$

Parameter	Symbol		Values		Unit	Note or test condition
		Min.	Тур.	Max.		
Minimum noise figure ¹⁾	NF _{min}	-	1.05	-	dB	<i>I</i> _C = 6 mA
			0.95			<i>I</i> _C = 10 mA
						$Z_{\rm S} = Z_{\rm S,opt}$
Noise figure in 50 Ω system ²⁾	NF ₅₀		1.1			I _C = 6 mA
			1.05			<i>I</i> _C = 10 mA
						$Z_{\rm S} = Z_{\rm L} = 50 \ \Omega$
Transducer gain	S ₂₁ ²		18.5			I _C = 6 mA
			20			/ _C = 10 mA
Maximum available power gain	G _{ma}		19			I _C = 6 mA
			20.5			<i>I</i> _C = 10 mA
Input 1 dB gain compression point	IP _{1dB}		-5		dBm	I _{Cq} = 6 mA
			-7			I _{Cq} = 10 mA
Input 3 rd order intercept point	IIP ₃		3			I _C = 6 mA
			1.5			<i>I</i> _C = 10 mA
Input return loss	<i>RL</i> in		15.5		dB	I _C = 6 mA
			19			/ _C = 10 mA
Output return loss	RL _{out}		14.5	1		I _C = 6 mA
			28.5			$I_{\rm C} = 10 {\rm mA}$

¹ Test fixture losses are extracted

² Parameter measured on an application board according to *Figure 1* on page 2 presenting a 50 Ω system to the device. *I*_{Cq} is the quiescent current, that is at small RF input power level. *I*_C increases as RF input power level approaches *IP*_{1dB}.

Electrical characteristics

Table 9AC characteristics, $V_{\rm C} = 3 \text{ V}, f = 1.5 \text{ GHz}$

Parameter	Symbol		Values			Note or test condition
		Min.	Тур.	Max.		
Minimum noise figure ¹⁾	NF _{min}	-	1.05	-	dB	<i>I</i> _C = 6 mA
			1.0			<i>I</i> _C = 10 mA
						$Z_{\rm S} = Z_{\rm S,opt}$
Noise figure in 50 Ω system ²⁾	NF ₅₀		1.1			I _C = 6 mA
			1.05			<i>I</i> _C = 10 mA
						$Z_{\rm S} = Z_{\rm L} = 50 \ \Omega$
Transducer gain	$ S_{21} ^2$		18			I _C = 6 mA
			19.5			<i>I</i> _C = 10 mA
Maximum available power gain	G _{ma}		18.5			I _C = 6 mA
			20			<i>I</i> _C = 10 mA
Input 1 dB gain compression point	IP _{1dB}		-4.5		dBm	I _{Cq} = 6 mA
			-6.5			I _{Cq} = 10 mA
Input 3 rd order intercept point	IIP ₃		2.5			I _C = 6 mA
			1			<i>I</i> _C = 10 mA
Input return loss	<i>RL</i> in		14.5	1	dB	I _C = 6 mA
			16			I _C = 10 mA
Output return loss	RL _{out}		14			I _C = 6 mA
			23			$I_{\rm C} = 10 {\rm mA}$

¹ Test fixture losses are extracted

² Parameter measured on an application board according to *Figure 1* on page 2 presenting a 50 Ω system to the device. *I*_{Cq} is the quiescent current, that is at small RF input power level. *I*_C increases as RF input power level approaches *IP*_{1dB}.

Electrical characteristics

Table 10AC characteristics, $V_{\rm C} = 3 \text{ V}, f = 1.9 \text{ GHz}$

Parameter	Symbol		Values			Note or test condition	
		Min.	Тур.	Max.			
Minimum noise figure ¹⁾	NF _{min}	-	1.05	-	dB	<i>I</i> _C = 6 mA	
			1.05			<i>I</i> _C = 10 mA	
						$Z_{\rm S} = Z_{\rm S,opt}$	
Noise figure in 50 Ω system ²⁾	NF ₅₀		1.15			I _C = 6 mA	
			1.1			<i>I</i> _C = 10 mA	
						$Z_{\rm S} = Z_{\rm L} = 50 \ \Omega$	
Transducer gain	S ₂₁ ²		17.5			I _C = 6 mA	
			19			<i>I</i> _C = 10 mA	
Maximum available power gain	G _{ma}		18			I _C = 6 mA	
			19.5			<i>I</i> _C = 10 mA	
Input 1 dB gain compression point	IP _{1dB}		-4		dBm	I _{Cq} = 6 mA	
			-6			$I_{Cq} = 10 \text{ mA}$	
Input 3 rd order intercept point	IIP ₃		2.5			I _C = 6 mA	
			1			<i>I</i> _C = 10 mA	
Input return loss	<i>RL</i> in		13.5		dB	<i>I</i> _C = 6 mA	
			15			<i>I</i> _C = 10 mA	
Output return loss	RLout		13.5			I _C = 6 mA	
			21			$I_{\rm C} = 10 {\rm mA}$	

¹ Test fixture losses are extracted

² Parameter measured on an application board according to *Figure 1* on page 2 presenting a 50 Ω system to the device. *I*_{Cq} is the quiescent current, that is at small RF input power level. *I*_C increases as RF input power level approaches *IP*_{1dB}.

Electrical characteristics

Table 11AC characteristics, $V_{\rm C} = 3 \text{ V}, f = 2.4 \text{ GHz}$

Parameter	Symbol		Values		Unit	Note or test condition	
		Min.	Тур.	Max.			
Minimum noise figure ¹⁾	NF _{min}	-	1.1	-	dB	<i>I</i> _C = 6 mA	
			1.05			<i>I</i> _C = 10 mA	
						$Z_{\rm S} = Z_{\rm S,opt}$	
Noise figure in 50 Ω system ²⁾	NF ₅₀		1.15			I _C = 6 mA	
			1.1			<i>I</i> _C = 10 mA	
						$Z_{\rm S} = Z_{\rm L} = 50 \ \Omega$	
Transducer gain	$ S_{21} ^2$		17			I _C = 6 mA	
			18.5			<i>I</i> _C = 10 mA	
Maximum available power gain	G _{ma}		17.5			I _C = 6 mA	
			19			<i>I</i> _C = 10 mA	
Input 1 dB gain compression point	IP _{1dB}		-3.5		dBm	I _{Cq} = 6 mA	
			-5.5			/ _{Cq} = 10 mA	
Input 3 rd order intercept point	IIP ₃		3			I _C = 6 mA	
			1			<i>I</i> _C = 10 mA	
Input return loss	<i>RL</i> _{in}		12.5		dB	<i>I</i> _C = 6 mA	
			13.5			<i>I</i> _C = 10 mA	
Output return loss	RL _{out}		12.5			<i>I</i> _C = 6 mA	
			18			<i>I</i> _C = 10 mA	

¹ Test fixture losses are extracted

² Parameter measured on an application board according to *Figure 1* on page 2 presenting a 50 Ω system to the device. *I*_{Cq} is the quiescent current, that is at small RF input power level. *I*_C increases as RF input power level approaches *IP*_{1dB}.

Electrical characteristics

Table 12AC characteristics, $V_{\rm C} = 3 \text{ V}, f = 3.5 \text{ GHz}$

Parameter	Symbol		Values		Unit	Note or test condition
		Min.	Тур.	Max.		
Minimum noise figure ¹⁾	NF _{min}	-	1.25	-	dB	<i>I</i> _C = 6 mA
			1.2			<i>I</i> _C = 10 mA
						$Z_{\rm S} = Z_{\rm S,opt}$
Noise figure in 50 Ω system ²⁾	NF ₅₀		1.35			I _C = 6 mA
			1.25			<i>I</i> _C = 10 mA
						$Z_{\rm S} = Z_{\rm L} = 50 \ \Omega$
Transducer gain	$ S_{21} ^2$		15			/ _C = 6 mA
			16.5			<i>I</i> _C = 10 mA
Maximum available power gain	G _{ma}		16			/ _C = 6 mA
			17.5			<i>I</i> _C = 10 mA
Input 1 dB gain compression point	IP _{1dB}		-2.5		dBm	I _{Cq} = 6 mA
			-4.5			I _{Cq} = 10 mA
Input 3 rd order intercept point	IIP ₃		3.5			/ _C = 6 mA
			1.5			<i>I</i> _C = 10 mA
Input return loss	<i>RL</i> in	1	10	1	dB	I _C = 6 mA
			10.5			/ _C = 10 mA
Output return loss	RLout	1	10			I _C = 6 mA
			13.5			<i>I</i> _C = 10 mA

¹ Test fixture losses are extracted

² Parameter measured on an application board according to *Figure 1* on page 2 presenting a 50 Ω system to the device. *I*_{Cq} is the quiescent current, that is at small RF input power level. *I*_C increases as RF input power level approaches *IP*_{1dB}.

Electrical characteristics

Table 13AC characteristics, $V_{\rm C} = 3 \text{ V}, f = 5.5 \text{ GHz}$

Parameter	Symbol		Values		Unit	Note or test condition
		Min.	Тур.	Max.		
Minimum noise figure ¹⁾	NF _{min}	-	1.8	-	dB	<i>I</i> _C = 6 mA
			1.75			<i>I</i> _C = 10 mA
						$Z_{\rm S} = Z_{\rm S,opt}$
Noise figure in 50 Ω system ²⁾	NF ₅₀		1.95			I _C = 6 mA
			1.85			<i>I</i> _C = 10 mA
						$Z_{\rm S} = Z_{\rm L} = 50 \ \Omega$
Transducer gain	S ₂₁ ²		12			I _C = 6 mA
			13			<i>I</i> _C = 10 mA
Maximum available power gain	G _{ma}		14			I _C = 6 mA
			15			/ _C = 10 mA
Input 1 dB gain compression point	IP _{1dB}		-1		dBm	I _{Cq} = 6 mA
			-3			I _{Cq} = 10 mA
Input 3 rd order intercept point	IIP ₃		8.5			I _C = 6 mA
			4			<i>I</i> _C = 10 mA
Input return loss	<i>RL</i> in	1	7		dB	<i>I</i> _C = 6 mA
			8			<i>I</i> _C = 10 mA
Output return loss	RL _{out}]	7			I _C = 6 mA
			8.5			<i>I</i> _C = 10 mA

¹ Test fixture losses are extracted

² Parameter measured on an application board according to *Figure 1* on page 2 presenting a 50 Ω system to the device. *I*_{Cq} is the quiescent current, that is at small RF input power level. *I*_C increases as RF input power level approaches *IP*_{1dB}.

Package information TSLP-7-1

Foot print

Datasheet

BGB741L7ESD Internally matched general purpose LNA MMIC for 50 MHz- 3.5 GHz applications

Package information TSLP-7-1

Figure 10 Marking layout example

See our Recommendations for Printed Circuit Board Assembly of TSLP/TSSLP/TSNP Packages . Note: The marking layout is an example. For the real marking code refer to the device information on the

first page. The number of characters shown in the layout example is not necessarily the real one. The marking layout can consist of less characters.

Revision history

Revision history

Document version	Date of release	Description of changes
3.0	2018-09-26	New datasheet layout.

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2018-09-26 Published by Infineon Technologies AG 81726 Munich, Germany

© 2018 Infineon Technologies AG All Rights Reserved.

Do you have a question about any aspect of this document? Email: erratum@infineon.com

Document reference IFX-zev1491985034409

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury