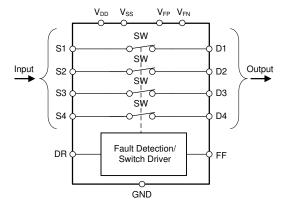


Support & training


TMUX7462F ±60 V Fault-Protected, Latch-Up Immune, Quad Channel Protector with Adjustable Fault Threshold and 1.8-V Logic

1 Features

- Wide Supply Range: ±5 V to ±22 V (Dual), 8 V to 44 V (Single)
- Channel Protector Without Need for Dedicated Select Pin Per Channel
 - Reduces Number of Control Logic Signals to Route Across PCB
- Integrated Fault Protection:
 - Overvoltage Protection, Source to Supplies or to Drain: ±85 V
 - Overvoltage Protection: ±60 V
 - Powered-Off Protection: ±60 V
 - Interrupt Flags to Indicate Fault Status
 - Adjustable Overvoltage Triggering Threshold from 3 V to Supplies
 - Adjustable Output Behavior (Clamped or Open) **During Fault**
- Latch-Up Immunity by Device Construction
- Low and Flat On-Resistance (8 Ω Typical)
- Industry-Standard TSSOP and Smaller WQFN Package

2 Applications

- Factory Automation and Control
- Programmable Logic Controllers (PLC)
- Analog Input Modules
- Semiconductor Test Equipment •
- **Battery Test Equipment**
- Servo Drive Control Module
- Data Acquisition Systems (DAQ)

Simplified Schematic

3 Description

The TMUX7462F is a four-channel protector that can be placed on the front end of a signal path to protect sensitive components downstream from damages caused by overvoltage faults. Each of the 4 channels has an internal switch that is turned-off autonomously upon occurrence of an overvoltage fault without the need of external controls. This simplifies robust system level protection designs by removing the need for control signals for each channel of the device. The overvoltage protection is available in powered and powered-off conditions, making the TMUX7462F suitable for applications where power supply sequencing cannot be precisely controlled.

The switch channels remain in the high impedance state (regardless of switch input conditions) when the devices power supplies are floating, grounded, or at a level that is below the undervoltage (UV) threshold. If the signal level on any Sx pin exceeds the fault supply (V_{FP} or V_{FN}) by a threshold voltage (V_T), then the Sx pin becomes high impedance and an output fault flag is asserted low to indicate a fault condition under normal operation. The drain pin (Dx) is either pulled to the fault supply voltage that was exceeded or left floating depending on the DR control logic.

The device works well with dual supplies (±5 V to ±22 V), a single supply (8 V to 44 V), or asymmetric supplies. The low and flat on-resistance of the device makes the TMUX7462F an ideal solution for data acquisition applications where excellent linearity and low distortion is critical.

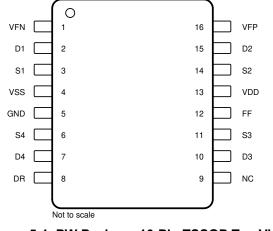
PART NUMBER	PACKAGE	BODY SIZE (NOM)	
TMUX7462F	TSSOP (16)	5.00 mm × 4.40 mm	
	WQFN (16)	4.00 mm × 4.00 mm	

See the orderable addendum at the end of the data sheet for (1)all available packages.

Table of Contents

1 Features	1
2 Applications	1
3 Description	1
4 Revision History	2
5 Pin Configuration and Functions	
6 Absolute Maximum Ratings	4
7 ESD Ratings	<mark>5</mark>
8 Thermal Information	<mark>6</mark>
9 Recommended Operating Conditions	7
10 Electrical Characteristics (Global)	<mark>8</mark>
11 ±15 V Dual Supply: Electrical Characteristics	9
12 ±20 V Dual Supply: Electrical Characteristics	11
13 12 V Single Supply: Electrical Characteristics .	13
14 Parameter Measurement Information	
14.1 On-Resistance	15
14.2 On-Leakage Current	15
14.3 Input and Output Leakage Current under	
Overvoltage Fault	16
14.4 Fault Flag Response Time	17
14.5 Fault Flag Recovery Time	

14.6 Fault Drain Enable Time	. 18
14.7 Inter-Channel Crosstalk	. 18
14.8 Bandwidth	. 19
15 Detailed Description	
15.1 Overview	.20
16 Application and Implementation	.24
16.1 Application Information	
16.2 Typical Application	
17 Power Supply Recommendations	
18 Layout	
18.1 Layout Guidelines	
18.2 Layout Example	
19 Device and Documentation Support	
19.1 Documentation Support	
19.2 Receiving Notification of Documentation Updates.	
19.3 Support Resources	
19.5 Electrostatic Discharge Caution	
19.6 Glossary	
20 Mechanical, Packaging, and Orderable	
Information	. 28


4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

DATE	REVISION	NOTES
March 2021	*	Initial Release

5 Pin Configuration and Functions

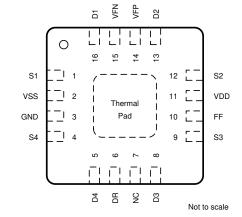


Figure 5-1. PW Package 16-Pin TSSOP Top View

Figure 5-2. RRP Package 16-Pin WQFN Top View

	PIN		TYPE ⁽¹⁾	DESCRIPTION
NAME	TSSOP	WQFN	ITPE	DESCRIPTION
D1	2	16	I/O	Drain pin 1 can be an input or output. The drain pin is not overvoltage protected and shall remain within the recommended operating range.
D2	15	13	I/O	Drain pin 2 can be an input or output. The drain pin is not overvoltage protected and shall remain within the recommended operating range.
D3	10	8	I/O	Drain pin 3 can be an input or output. The drain pin is not overvoltage protected and shall remain within the recommended operating range.
D4	7	5	I/O	Drain pin 4 can be an input or output. The drain pin is not overvoltage protected and shall remain within the recommended operating range.
DR	8	6	I	Drain Response (DR) input. Tying the DR pin to GND enables the drain to be pulled to V_{FP} or V_{FN} through a 40 k Ω resistor during an overvoltage fault event.
FF	12	10	0	General fault flag. This pin is an open drain output and is asserted low when overvoltage condition is detected on any of the source (Sx) pins. Connect this pin to an external supply (1.8 V to 5.5 V) through a 1 k Ω pull-up resistor.
GND	5	3	Р	Ground (0 V) reference.
N.C.	9	7	_	No internal connection
S1	3	1	I/O	Overvoltage protected source pin 1 can be an input or output.
S2	14	12	I/O	Overvoltage protected source pin 2 can be an input or output.
S3	11	9	I/O	Overvoltage protected source pin 3 can be an input or output.
S4	6	4	I/O	Overvoltage protected source pin 4 can be an input or output.
V _{DD}	13	11	Ρ	Positive power supply. This pin is the most positive power-supply potential. Connect a decoupling capacitor ranging from 0.1 μF to 10 μF between V_{DD} and GND for reliable operation.
V _{FP}	16	14	Ρ	Positive fault voltage supply that determines the overvoltage protection triggering threshold on the positive side. Connect to V _{DD} if the triggering threshold is the same as the device's positive supply. Connect a decoupling capacitor ranging from 0.1 μ F to 10 μ F between V _{FP} and GND for reliable operation.
V _{FN}	1	15	Ρ	Negative fault voltage supply that determines the overvoltage protection triggering threshold on the negative side. Connect to V_{SS} if the triggering threshold is the same as the device's negative supply. Connect a decoupling capacitor ranging from 0.1 μ F to 10 μ F between V_{FN} and GND for reliable operation.
V _{SS}	4	2	Ρ	Negative power supply. This pin is the most negative power-supply potential. This pin can be connected to ground in single-supply applications. Connect a decoupling capacitor ranging from 0.1 μ F to 10 μ F between V _{SS} and GND for reliable operation.
	Thermal Pad		_	The thermal pad is not connected internally. No requirement to solder this pad. For best performance it is recommended that the pad be tied to GND or VSS.

(1) I = input, O = output, I/O = input and output, P = power.

Table 5-1. Pin Functions

Submit Document Feedback 3

6 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

		MIN	MAX	UNIT
V_{DD} to V_{SS}			48	V
V _{DD} to GND	Supply voltage	-0.3	48	V
V _{SS} to GND	_	-48	0.3	V
V _{FP} to GND	- Fault clamping voltage	-0.3	V _{DD} + 0.3	V
V _{FN} to GND		VSS – 0.3	0.3	V
V _S to GND	Source input pin (Sx) voltage to GND	-65	65	V
V_{S} to V_{DD}	Source input pin (Sx) voltage to V _{DD}	-90		V
V_{S} to V_{SS}	Source input pin (Sx) voltage to V _{SS}		90	V
V _D	Drain pin (Dx) voltage	V _{FN} -0.7	V _{FP} +0.7	V
V _{DIG_IN}	Digital input pin (DR) voltage ⁽²⁾	GND –0.7	48	V
V _{DIG_OUT}	Digital output pin (FF) voltage ⁽²⁾	GND –0.7	6	V
I _{DIG_IN}	Digital input pin (DR) current ⁽²⁾	-30	30	mA
I _{DIG_OUT}	Digital output pin (FF) current ⁽²⁾	-10	10	mA
$I_{S} \text{ or } I_{D (CONT)}$	Source or drain continuous current (Sx or Dx)	I _{DC} ± 10 % ⁽³⁾	I _{DC} ± 10 % ⁽³⁾	mA
T _{stg}	Storage temperature	-65	150	°C
T _A	Ambient temperature	-55	150	°C
TJ	Junction temperature		150	°C

(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) Stresses have to be kept at or below both voltage and current ratings at all time.

(3) Refer to Recommended Operating Conditions for I_{DC} ratings.

7 ESD Ratings

				VALUE	UNIT	
V _(ESD)	Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/JEDEC , pins ⁽¹⁾	JS-001, all	±2000	V	
V _(ESD)		Charged device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾		±500	V	

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

8 Thermal Information

		TMU	X7462F	
	THERMAL METRIC ⁽¹⁾	PW (TSSOP)	RRP (WQFN)	UNIT
		16 PINS	16 PINS	
R _{0JA}	Junction-to-ambient thermal resistance	TBD	42.8	°C/W
R _{0JC(top)}	Junction-to-case (top) thermal resistance	TBD	28.5	°C/W
R _{θJB}	Junction-to-board thermal resistance	TBD	17.9	°C/W
Ψ_{JT}	Junction-to-top characterization parameter	TBD	0.3	°C/W
Ψ_{JB}	Junction-to-board characterization parameter	TBD	17.9	°C/W
R _{0JC(bot)}	Junction-to-case (bottom) thermal resistance	TBD	4.0	°C/W

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

9 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

			MIN	NOM MAX	UNIT
$V_{DD} - V_{SS}$ (1)	Power supply voltage differential		8	22	V
V _{DD}	Positive power supply voltage		5	44	V
V _{FP}	Positve fault clamping voltage		3	V _{DD}	V
V _{FN}	Negative fault clamping voltage		V _{SS}	0	V
Vs	Source pin (Sx) voltage (non-fault condition)		V _{FN}	V _{FP}	V
V _S to GND	Source pin (Sx) voltage to GND (fault condition)		-60	60	V
$V_{\rm S}$ to $V_{\rm DD}$ ⁽²⁾	Source pin (Sx) voltage to V_{DD} or V_D (fault condition)		-85		V
$V_{\rm S}$ to $V_{\rm SS}$ ⁽²⁾	Source pin (Sx) voltage to V_{SS} or V_D (fault condition)			85	V
V _D	Drain pin (Dx) voltage		V _{FN}	V _{FP}	V
V _{DIG_IN}	Digital input pin (DR) voltage		GND	44	V
V _{DIG_OUT} ⁽³⁾	Digital output pin (FF) voltage		GND	5.5	V
T _A	Ambient temperature		-40	125	°C
IDC	Continuous current through switch, WQFN package	T _A = 25°C		150	mA
IDC	Continuous current through switch, WQFN package	T _A = 125°C		60	mA

(1) V_{DD} and V_{SS} can be any value as long as 8 V \leq (V_{DD} - V_{SS}) \leq 44 V.

(2) Source pin voltage (Sx) under a fault condition may not exceed 85 V from supply pins (V_{DD} and V_{SS} .) or drain pins (D, Dx).

(3) Digital output pin (FF) is an open drain output and should be pulled up to a voltage within the max ratings

10 Electrical Characteristics (Global) at $T_A = 25^{\circ}C$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	UNIT
ANALOG SW	ЛТСН						
V _T	Threshold voltage for fault detector				0.7		V
DIGITAL INP	UT/ OUTPUT						
V _{IH}	High-level input voltage	DR pin	-40°C to +125°C	1.3		44	V
V _{IL}	Low-level input voltage	DR pin	-40°C to +125°C	0		0.8	V
V _{OL(FLAG)}	Low-level output voltage	FF pin, I _O = 5 mA	-40°C to +125°C			0.35	V
POWER SUP	PLY						
	Undervoltage lockout (UVLO)	Rising edge, single supply configuration only	-40°C to +125°C	5	6	6.5	V
V _{UVLO}	threshold voltage $(V_{DD} - V_{SS})$	Falling edge, single supply configuration only	-40°C to +125°C	5	5.8	6.5	V

TMUX7462F SCDS394 - MARCH 2021

11 ±15 V Dual Supply: Electrical Characteristics $V_{DD} = +15 V \pm 10\%, V_{SS} = -15 V \pm 10\%, GND = 0 V$ (unless otherwise noted) Typical at $V_{DD} = +15 V, V_{SS} = -15 V, T_A = 25^{\circ}C$ (unless otherwise noted)

	PARAMETER	25°C (unless otherwise noted)	T _A	MIN	TYP	MAX	UNIT
ANALOG SWIT	СН						
			25°C		8.5		
R _{ON}	On-resistance	$V_{\rm S} = -10 \text{ V to } +10 \text{ V}$ I _D = -10 mA	-40°C to +85°C			14	Ω
		$I_D = -10 \text{ IMA}$	-40°C to +125°C			16.5	
			25°C		0.05		
ΔR _{ON}	On-resistance mismatch between	$V_{\rm S} = -10 \text{ V to } +10 \text{ V}$ $I_{\rm D} = -10 \text{ mA}$	-40°C to +85°C			0.6	Ω
	channels		-40°C to +125°C			0.7	
			25°C		0.6	0.9	
R _{FLAT}	On-resistance flatness	$V_{\rm S} = -10 \text{V} \text{to} + 10 \text{V}$	-40°C to +85°C			1	Ω
T EXT		$I_D = -10 \text{ mA}$	-40°C to +125°C			1	
			25°C		0.3		
I _{S(ON)} ,	Channel on leakage current ⁽¹⁾	V_{DD} = 16.5 V, V_{SS} = -16.5 V Switch state is on	_40°C to +85°C	-10		10	nA
I,D(ON)	g	$V_{\rm S} = V_{\rm D} = \pm 10 \text{ V}$	-40°C to +125°C	-25		25	
FAULT CONDITI				20		20	
	Input leakage current	V _S = ± 60 V, GND = 0V, V _{DD} = V _{FP} = 16.5					
I _{S(FA)}	under overvoltage	$V_{SS} = V_{FN} = -16.5 V$	–40°C to +125°C		±100		μA
I _{S(FA)}	Input leakage current under overvoltage	$ V_S = \pm \ 60 \ V, \ GND = 0V, \ V_{DD} = V_{SS} = V_{FP} = \\ V_{FN} = 0 \ V, \ V_{DR} = 0 \ V \ or \ floating $	-40°C to +125°C		±125		μA
I _{S(FA)}	Input leakage current under overvoltage	$ V_S = \pm \ 60 \ V, \ GND = 0V, \ V_{DD} = V_{SS} = V_{FP} = \\ V_{FN} = \ floating, \ V_{DR} = 0 \ V \ or \ floating $	-40°C to +125°C		±125		μA
DIGITAL INPUT/	OUTPUT	1					
			25°C	-2	± 0.6	2	
IIH	High-level input current	$V_{DR} = V_{DD}$	-40°C to +125°C	-2		2	μA
			25°C	-2	± 0.6	2 2	
IIL	Low-level input current	V _{DR} = 0 V	-40°C to +125°C	-2			μA
SWITCHING CH	ARACTERISTICS						
			25°C		200		
t _{RESPONSE}	Fault response time	$V_{FP} = 10 \text{ V}, \text{ V}_{FN} = -10 \text{ V}, \text{ R}_{L} = 1 \text{ k} \Omega, \text{ C}_{L} = 10 \text{ V}$	-40°C to +85°C			600	ns
		12 pF	-40°C to +125°C			600	
			25°C		0.85		
t _{RECOVERY}	Fault recovery time	$V_{FP} = 10 \text{ V}, \text{ V}_{FN} = -10 \text{ V}, \text{ R}_{L} = 1 \text{ k} \Omega, \text{ C}_{L} =$	-40°C to +85°C			1.8	μs
RECOVERI	,	12 pF	-40°C to +125°C			1.8	
t _{RESPONSE(FLAG)}	Fault flag response time	V _{FP} = 10 V, V _{FN} = –10 V, V _{PU} = 5 V, R _{PU} = 1k Ω, C _L = 12 pF	25°C		80		ns
	Fault flag recovery time	V _{FP} = 10 V, V _{FN} = –10 V, V _{PU} = 5 V, R _{PU} = 1k Ω, C _L = 15 pF	25°C		1		μs
X _{TALK}	Intra-channel crosstalk	$R_{s} = 50 \Omega$, $R_{L} = 50 \Omega$, $C_{L} = 5 pF$, $V_{s} = 200m V_{RMS}$, $V_{BIAS} = 0 V$, $f = 1 MHz$	25°C		-60		dB
BW	–3 dB bandwidth	$R_{S} = 50 \Omega, R_{L} = 50 \Omega, C_{L} = 5 pF,$ $V_{S} = 200m V_{RMS}, V_{BIAS} = 0 V$	25°C		550		MHz
IL	Insertion loss	$R_{s} = 50 \Omega, R_{L} = 50 \Omega, C_{L} = 5 pF,$ $V_{s} = 200m V_{RMS}, V_{BIAS} = 0 V, f = 1 MHz$	25°C		-0.7		dB
C _{S(ON)} , C _{D(ON)}	Input/Output on-capacitance	$f = 1 \text{ MHz}, V_S = 0 \text{ V}$	25°C		16		pF
POWER SUPPL'	Y	1	1				
			25°C		0.35		
I _{DD}	V _{DD} supply current	$V_{DD} = V_{FP} = 16.5 \text{ V}, V_{SS} = V_{FN} = -16.5 \text{ V},$	_40°C to +85°C			1	mA
00	00	V_{DR} = 0V, 5V, or V_{DD} , V_{S} = 0 V	-40°C to +125°C			1	
			25°C		0.3	1	
laa	V _{SS} supply current	$V_{DD} = V_{FP} = 16.5 \text{ V}, V_{SS} = V_{FN} = -16.5 \text{ V},$	_40°C to +85°C		0.0	0.6	mA
I _{SS}	vss supply current	$V_{DR} = 0V$, 5V, or V_{DD} , $V_S = 0V$					ШA
			–40°C to +125°C			0.7	

V_{DD} = +15 V ± 10%, V_{SS} = -15 V ±10%, GND = 0 V (unless otherwise noted) Typical at V_{DD} = +15 V, V_{SS} = -15 V, T_A = 25°C (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	T _A	MIN TYP MAX	
I _{GND}	GND current	$V_{DD} = V_{FP} = 16.5 \text{ V}, V_{SS} = V_{FN} = -16.5 \text{ V}, V_{DR} = 0 \text{ V}, 5 \text{ V}, \text{ or } V_{DD}, V_S = 0 \text{ V}$	25°C	0.1	mA
I _{FP}	V _{FP} supply current	$V_{DD} = V_{FP} = 16.5 \text{ V}, V_{SS} = V_{FN} = -16.5 \text{ V}, V_{DR} = 0 \text{ V}, 5 \text{ V}, \text{ or } V_{DD}, V_S = 0 \text{ V}$	25°C	100	μA
I _{FN}	V _{FN} supply current	$V_{DD} = V_{FP} = 16.5 \text{ V}, V_{SS} = V_{FN} = -16.5 \text{ V}, V_{DR} = 0 \text{ V}, 5 \text{ V}, \text{ or } V_{DD}, V_S = 0 \text{ V}$	25°C	100	μA
			25°C	0.35	
I _{DD(FA)}	V _{DD} supply current under fault	$V_{S} = \pm 60 \text{ V}, V_{DD} = V_{FP} = 16.5 \text{ V}, V_{SS} = V_{FN}$ = -16.5 V, V _{DR} = 0V, 5V, or V _{DD}	-40°C to +85°C		1 mA
			-40°C to +125°C		1
			25°C	0.3	
I _{SS(FA)}	V _{SS} supply current under fault	$V_{S} = \pm 60 V, V_{DD} = V_{FP} = 16.5 V, V_{SS} = V_{FN}$ = -16.5 V, V_{DR} = 0V, 5V, or V_{DD}	-40°C to +85°C	0.	6 mA
			-40°C to +125°C	0.	7
I _{GND(FA)}	GND current under fault	$ V_{S} = \pm 60 \text{ V}, V_{DD} = V_{FP} = 16.5 \text{ V}, V_{SS} = V_{FN} $ = -16.5 V, V_{DR} = 0V, 5V, or V_{DD}		0.2	mA
I _{FP(FA)}	V _{FP} supply current under fault	$V_{S} = \pm 60 \text{ V}, V_{DD} = V_{FP} = 16.5 \text{ V}, V_{SS} = V_{FN}$ = -16.5 V, V_{DR} = 0V, 5V, or V_{DD}		100	μA
I _{FN(FA)}	V _{FN} supply current under fault	$V_{S} = \pm 60 \text{ V}, V_{DD} = V_{FP} = 16.5 \text{ V}, V_{SS} = V_{FN}$ = -16.5 V, V _{DR} = 0V, 5V, or V _{DD}	25°C	100	μΑ

(1) When V_S is positive, V_D is negative, and vice versa.

TMUX7462F SCDS394 - MARCH 2021

12 ±20 V Dual Supply: Electrical Characteristics $V_{DD} = +20 V \pm 10\%, V_{SS} = -20 V \pm 10\%, GND = 0 V$ (unless otherwise noted) Typical at $V_{DD} = +20 V, V_{SS} = -20 V, T_A = 25^{\circ}C$ (unless otherwise noted)

	PARAMETER	25°C (unless otherwise noted)	T _A	MIN	TYP	MAX	UNIT
ANALOG SWIT	СН						
			25°C		8.5		
R _{ON}	On-resistance	$V_{\rm S} = -15 \text{ V to } +15 \text{ V}$	-40°C to +85°C			14	Ω
0.1		$I_D = -10 \text{ mA}$	-40°C to +125°C			16.5	
			25°C		0.05		
ΔR _{ON}	On-resistance mismatch between	$V_{\rm S} = -15 \text{ V to } +15 \text{ V}$	-40°C to +85°C			0.5	Ω
	channels	$I_D = -10 \text{ mA}$	-40°C to +125°C			0.5	
			25°C		1		
R _{FLAT}	On-resistance flatness	$V_{\rm S} = -15 \text{V} \text{ to } +15 \text{V}$	-40°C to +85°C			1.4	Ω
- FLAI		$I_D = -10 \text{ mA}$	-40°C to +125°C			1.5	
			25°C		0.3		
I _{S(ON)} ,	Channel on leakage current	$V_{DD} = 22 \text{ V}, V_{SS} = -22 \text{ V}$ Switch state is on	_40°C to +85°C	-10	0.0	10	nA
I _{D(ON)}		$V_{\rm S} = V_{\rm D} = \pm 15 \text{ V}$	-40°C to +125°C	-25		25	10.0
FAULT CONDIT			-40 0 10 1 120 0	-20		20	
	Input leakage current	V _S = ± 60 V, GND = 0V, V _{DD} = V _{FP} = 22 V,		1			
I _{S(FA)}	under overvoltage	$V_{S} = V_{FD} = -22 V$, $V_{DD} = V_{FP} = 22 V$, $V_{SS} = V_{FN} = -22 V$	–40°C to +125°C		±100		μA
I _{S(FA)}	Input leakage current under overvoltage	$V_S = \pm 60 \text{ V}, \text{ GND} = 0\text{ V}, V_{DD} = V_{SS} = V_{FP} = V_{DR} = 0 \text{ V or floating}$	–40°C to +125°C		±125		μA
I _{S(FA)}	Input leakage current under overvoltage						
DIGITAL INPUT							
			25°C	-2	± 0.6	2	
IIH	High-level input current	$V_{DR} = V_{DD}$	-40°C to +125°C	-2		2	μA
			25°C	-2	± 0.6	2	
IIL	Low-level input current	$V_{DR} = 0 V$	-40°C to +125°C	-2		2	μA
SWITCHING CH							
			25°C	1	200		
t _{RESPONSE}	Fault response time	$V_{FP} = 10 \text{ V}, \text{ V}_{FN} = -10 \text{ V}, \text{ R}_{L} = 1 \text{ k} \Omega, \text{ C}_{L} = 10 \text{ V}$	-40°C to +85°C			600	-
		12 pF	-40°C to +125°C			600	
			25°C		0.85		
t _{RECOVERY}	Fault recovery time	$V_{FP} = 10 \text{ V}, \text{ V}_{FN} = -10 \text{ V}, \text{ R}_{L} = 1 \text{ k} \Omega, \text{ C}_{L} =$	-40°C to +85°C			1.8	μs
RECOVERT		12 pF	-40°C to +125°C			1.8	
t _{RESPONSE(FLAG)}	Fault flag response time	V _{FP} = 10 V, V _{FN} = –10 V, V _{PU} = 5 V, R _{PU} = 1k Ω, C _L = 12 pF	-40°C to +125°C		80		ns
	Fault flag recovery time	V_{FP} = 10 V, V_{FN} = -10 V, V_{PU} = 5 V, R_{PU} = 1k Ω, C_I = 15 pF	–40°C to +125°C		1		μs
X _{TALK}	Intra-channel crosstalk	$R_{S} = 50 \Omega$, $R_{L} = 50 \Omega$, $C_{L} = 5 pF$, $V_{S} = 200m V_{RMS}$, $V_{BIAS} = 0 V$, $f = 1 MHz$	25°C		-60		dB
BW	–3 dB bandwidth	R _S = 50 Ω, R _L = 50 Ω, C _L = 5 pF, V _S = 200m V _{RMS} , V _{BIAS} = 0 V	25°C		550		MHz
IL	Insertion loss	$R_{S} = 50 \Omega$, $R_{L} = 50 \Omega$, $C_{L} = 5 pF$, $V_{S} = 200m V_{RMS}$, $V_{BIAS} = 0 V$, f = 1 MHz	25°C		-0.7		dB
C _{S(ON)} , C _{D(ON)}	Input/Output on-capacitance	f = 1 MHz, V _S = 0 V	25°C		16		pF
POWER SUPPL	Y	1	1	<u> </u>			1
			25°C		0.35		
I _{DD}	V _{DD} supply current	$V_{DD} = V_{FP} = 22 \text{ V}, \text{ V}_{SS} = V_{FN} = -22 \text{ V},$	_40°C to +85°C	+	-	1	mA
		$V_{DR} = 0V$, 5V, or V_{DD} , $V_S = 0V$	-40°C to +125°C	+		1	
				+	0.3		
			250				
I _{SS}	V _{SS} supply current	$V_{DD} = V_{FP} = 22 V, V_{SS} = V_{FN} = -22 V, V_{DR} = 0V, 5V, or V_{DD}, V_{S} = 0 V$	25°C -40°C to +85°C		0.3	0.6	mA

TMUX7462F SCDS394 – MARCH 2021

V_{DD} = +20 V ± 10%, V_{SS} = -20 V ±10%, GND = 0 V (unless otherwise noted) Typical at V_{DD} = +20 V, V_{SS} = -20 V, T_A = 25°C (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	T _A	MIN TYP MAX	UNIT	
I _{GND}	GND current	$V_{DD} = V_{FP} = 22 V, V_{SS} = V_{FN} = -22 V, V_{DR} = 0V, 5V, or V_{DD}, V_{S} = 0 V$	25°C	0.1	mA	
I _{FP}	V _{FP} supply current	$V_{DD} = V_{FP} = 22 V, V_{SS} = V_{FN} = -22 V, V_{DR} = 0V, 5V, or V_{DD}, V_{S} = 0 V$	25°C	100	μA	
I _{FN}	V _{FN} supply current	$V_{DD} = V_{FP} = 22 V, V_{SS} = V_{FN} = -22 V, V_{DR} = 0V, 5V, or V_{DD}, V_{S} = 0 V$	25°C	100	μA	
			25°C	0.35		
I _{DD(FA)}	V _{DD} supply current under fault	$V_{S} = \pm 60 V, V_{DD} = V_{FP} = 22 V, V_{SS} = V_{FN}$ = -22 V, V _{DR} = 0V, 5V, or V _{DD}	-40°C to +85°C	1	mA	
			-40°C to +125°C	1	1	
			25°C	0.3		
I _{SS(FA)}	V _{SS} supply current under fault	$V_{S} = \pm 60 V, V_{DD} = V_{FP} = 22 V, V_{SS} = V_{FN}$ = -22 V, V _{DR} = 0V, 5V, or V _{DD}	-40°C to +85°C	0.6	mA	
			-40°C to +125°C	0.7	1	
I _{GND(FA)}	GND current under fault	$V_{S} = \pm 60 V, V_{DD} = V_{FP} = 22 V, V_{SS} = V_{FN}$ = -22 V, V _{DR} = 0V, 5V, or V _{DD}	25°C	0.2	mA	
I _{FP(FA)}	V _{FP} supply current under fault	$V_{S} = \pm 60 V, V_{DD} = V_{FP} = 22 V, V_{SS} = V_{FN}$ = -22 V, V _{DR} = 0V, 5V, or V _{DD}	25°C	100	μA	
I _{FN(FA)}	V _{FN} supply current under fault	$V_{S} = \pm 60 V, V_{DD} = V_{FP} = 22 V, V_{SS} = V_{FN}$ = -22 V, V _{DR} = 0V, 5V, or V _{DD}	25°C	100	μA	

TMUX7462F SCDS394 - MARCH 2021

13 12 V Single Supply: Electrical Characteristics $V_{DD} = +12 V \pm 10\%$, $V_{SS} = 0 V$, GND = 0 V (unless otherwise noted) Typical at $V_{DD} = +12 V$, $V_{SS} = 0 V$, $T_A = 25^{\circ}C$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	UNIT
ANALOG SWIT	СН						
		$V_{\rm S}$ = 0 V to 7.8 V, $I_{\rm S}$ = -10mA	25°C		9		Ω
R _{ON}	On-resistance	$V_{\rm S}$ = 0 V to 7.8 V, $I_{\rm S}$ = -10mA	–40°C to +85°C			18	Ω
		$V_{\rm S}$ = 0 V to 7.8 V, $I_{\rm S}$ = -10mA	–40°C to +125°C			20	Ω
			25°C		0.05	0.5	
∆R _{ON}	On-resistance mismatch between channels	$V_{\rm S}$ = 0 V to 7.8 V, $I_{\rm S}$ = –10 mA	-40°C to +85°C			0.6	Ω
			-40°C to +125°C			0.7	
			25°C		12	14	-
R _{FLAT}	On-resistance flatness	$V_{\rm S}$ = 0 V to 7.8 V, $I_{\rm S}$ = –10 mA	-40°C to +85°C			19	
			-40°C to +125°C			23	
			25°C		0.3		
I _{S(ON)} ,	Output on leakage current ⁽¹⁾	Switch state is on, V_S = floating, V_D = 1 V/ 10 V, V_{DD} = 13.2	-40°C to +85°C	-10		10	nA
I _{D(ON)}		10 V, VDD - 13.2	-40°C to +125°C	-25		25	
FAULT CONDITI	ION						
I _{S(FA)}	Input leakage current under overvoltage	$V_{S} = \pm 60 \text{ V}, \text{ GND} = 0 \text{ V}, V_{DD} = V_{FP} = 13.2$ V, $V_{SS} = V_{FN} = 0 \text{ V}$	-40°C to +125°C		±100		μA
I _{S(FA)}	Input leakage current under overvoltage	$V_S = \pm 60 \text{ V}, \text{ GND} = 0\text{ V}, V_{DD} = V_{SS} = V_{FP} = V_{FN} = 0 \text{ V}, V_{DR} = 0 \text{ V} \text{ or floating}$	-40°C to +125°C		±125		μΑ
I _{S(FA)}	Input leakage current under overvoltage	$ V_S = \pm \ 60 \ V, \ GND = 0V, \ V_{DD} = V_{SS} = V_{FP} = \\ V_{FN} = \ floating, \ V_{DR} = 0 \ V \ or \ floating $	–40°C to +125°C		±125		μA
DIGITAL INPUT/	OUTPUT						
		., .,	25°C	-2	± 0.6	2	μA
I _{IH}	High-level input current	V _{DR} =V _{DD}	-40°C to +125°C	-2		2	μA
			25°C	-2	± 0.6	2	
IIL	Low-level input current	$V_{DR} = 0 V$	-40°C to +125°C	-2		2	μA
SWITCHING CH	ARACTERISTICS						
			25°C		500	600	
t _{RESPONSE}	Fault response time	$V_{FP} = 8 V, V_{FN} = 0 V, R_1 = 1k \Omega, C_1 = 15 pF$	-40°C to +85°C			650	ns
			-40°C to +125°C			700	
			25°C		1.5		
t _{RECOVERY}	Fault recovery time	V _{FP} = 8 V, V _{FN} = 0 V, R _L = 1k Ω, C _L = 15 pF	-40°C to +85°C			5	μs
RECOVERT	,		-40°C to +125°C			5	
t _{RESPONSE(FLAG)}	Fault flag response time	V _{FP} = 8 V, V _{FN} = 0 V, V _{PU} = 5 V, R _{PU} = 1k Ω, C _L = 15 pF	-40°C to +125°C		75	-	ns
t _{RECOVERY(FLAG)}	Fault flag recovery time	V _{FP} = 8 V, V _{FN} = 0 V, V _{PU} = 5 V, R _{PU} = 1k Ω, C _L = 15 pF	-40°C to +125°C		60		μs
X _{TALK}	Inter-channel crosstalk	$R_{s} = 50 \Omega, R_{L} = 50 \Omega, C_{L} = 5 pF, V_{s} = 200m V_{RMS}, V_{BIAS} = 2 V, f = 1 MHz$	25°C		-60		dB
BW	–3 dB bandwidth	$R_{S} = 50 \Omega, R_{L} = 50 \Omega, C_{L} = 5 pF, V_{S} = 200m V_{RMS}, V_{BIAS} = 2 V$	25°C		550		MHz
IL	Insertion loss	R _S = 50 Ω, R _L = 50 Ω, C _L = 5 pF, V _S = 200m V _{RMS} , V _{BIAS} = 2 V, f = 1 MHz	25°C		-0.7		dB
C _{S(ON)} , C _{D(ON)}	Input/Output on-capacitance	f = 1 MHz, V _S = 6 V	25°C		16		pF
POWER SUPPL	Y						
			25°C		0.35		mA
I _{DD}	V _{DD} supply current	$V_{DD} = V_{FP} = 13.2 \text{ V}, V_{SS} = V_{FN} = 0 \text{ V},$	-40°C to +85°C			1	mA
		V_{DR} = 0V, 5V, or V_{DD} , V_{S} = 6 V	-40°C to +125°C			1	mA
I _{GND}	GND current	$V_{DD} = V_{FP} = 13.2 \text{ V}, V_{SS} = V_{FN} = 0 \text{ V},$ $V_{DR} = 0\text{ V}, 5\text{ V}, \text{ or } V_{DD}, V_{S} = 6 \text{ V}$	25°C		0.3		mA
I _{FP}	V _{FP} supply current	$V_{DD} = V_{FP} = 13.2 \text{ V}, V_{SS} = V_{FN} = 0 \text{ V},$ $V_{DR} = 0\text{ V}, 5\text{ V}, \text{ or } V_{DD}, V_{S} = 6 \text{ V}$	25°C			0.6	μA

V_{DD} = +12 V ± 10%, V_{SS} = 0 V, GND = 0 V (unless otherwise noted) Typical at V_{DD} = +12 V, V_{SS} = 0 V, T_A = 25°C (unless otherwise noted)

PARAMETER		TEST CONDITIONS	T _A	MIN TYP	MAX	UNIT
I _{FN}	V _{FN} supply current	$V_{DD} = V_{FP} = 13.2 \text{ V}, V_{SS} = V_{FN} = 0 \text{ V}, V_{DR} = 0 \text{ V}, 5 \text{ V}, \text{ or } V_{DD}, V_S = 6 \text{ V}$	25°C		0.7	μA
I _{DD(FA)}			25°C	0.35		mA
	V _{DD} supply current under fault	$V_{S} = \pm 60 \text{ V}, V_{DD} = V_{FP} = 13.2 \text{ V}, V_{SS} = V_{FN}$ = 0 V, V _{DR} = 0V, 5V, or V _{DD}	–40°C to +85°C		1	mA
			-40°C to +125°C		1	mA
I _{GND(FA)}	GND current under fault	$V_{S} = \pm 60 \text{ V}, V_{DD} = V_{FP} = 13.2 \text{ V}, V_{SS} = V_{FN}$ = 0 V, V _{DR} = 0V, 5V, or V _{DD}	25°C	0.7		mA
I _{FP(FA)}	V _{FP} supply current under fault	$V_{S} = \pm 60 \text{ V}, V_{DD} = V_{FP} = 13.2 \text{ V}, V_{SS} = V_{FN}$ = 0 V, V _{DR} = 0V, 5V, or V _{DD}	25°C	100		μA
I _{FN(FA)}	V _{FN} supply current under fault	$V_{S} = \pm 60 V, V_{DD} = V_{FP} = 13.2 V, V_{SS} = V_{FN}$ = 0 V, V _{DR} = 0V, 5V, or V _{DD}	25°C	100		μA

(1) When V_S is 10 V, V_D is 1 V, and vice versa.

14 Parameter Measurement Information

14.1 On-Resistance

The TMUX7462F's on-resistance is the ohmic resistance across the source (Sx) and drain (Dx) pins of the device. The on-resistance varies with input voltage and supply voltage. The symbol R_{ON} is used to denote on-resistance. The measurement setup used to measure R_{ON} is shown in Figure 14-1. ΔR_{ON} represents the difference between the R_{ON} of any two channels, while $R_{ON_{FLAT}}$ denotes the flatness that is defined as the difference between the maximum and minimum value of on-resistance measured over the specified analog signal range.

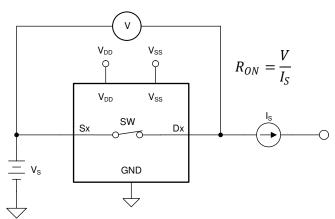


Figure 14-1. On-Resistance Measurement Setup

14.2 On-Leakage Current

Source on-leakage current ($I_{S(ON)}$) and drain on-leakage current ($I_{D(ON)}$) denotes the channel leakage currents when the switch is in the on state. $I_{S(ON)}$ is measured with the drain floating, while $I_{D(ON)}$ is measured with the source floating. Figure 14-2 shows the circuit used for measuring the on-leakage currents.

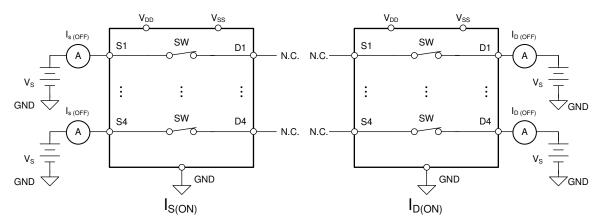
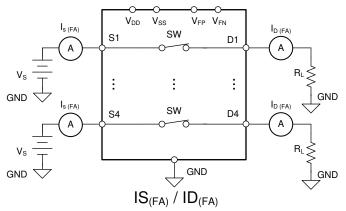



Figure 14-2. On-Leakage Measurement Setup

14.3 Input and Output Leakage Current under Overvoltage Fault

If any of the source pin voltage goes above the fault supplies (V_{FP} or V_{FN}) by one threshold voltage (V_T), the TMUX7462F's overvoltage protection feature is triggered to turn off the switch under fault, keeping the fault channel in the high-impedance state. $I_{S(FA)}$ and $I_{D(FA)}$ denotes the input and output leakage current under overvoltage fault conditions, respectively. The supply (or supplies) can either be in normal operating condition (Figure 14-3) or abnormal operating condition (Figure 14-4) when the overvoltage fault occurs. The supply (or supplies) can either be unpowered ($V_{DD} = V_{SS} = V_{FN} = V_{FP} = 0$ V), floating ($V_{DD} = VSS = V_{FN} = V_{FP} = No$ Connection), or at any level that is below the undervoltage (UV) threshold during abnormal operating conditions.

 $(|V_S| > |V_{FP} + V_T| \text{ or } |V_{FN} - V_T|, DR = Floating \text{ or } V_{DD})$

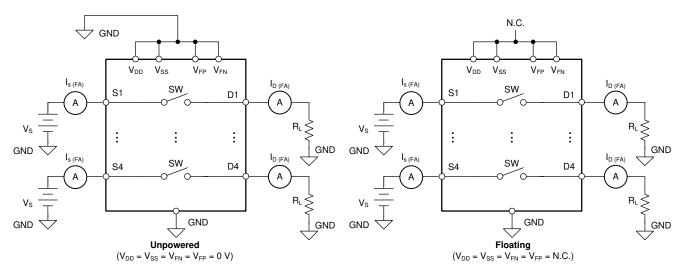


Figure 14-4. Measurement Setup for Input and Output Leakage Current Under Overvoltage Fault with Unpowered or Floating Supplies

14.4 Fault Flag Response Time

Fault flag response time ($t_{RESPONSE(FLAG)}$) measures the delay between the source voltage exceeding the fault supply voltage (V_{FP} or V_{FN}) by 0.5 V and the general fault flag (FF) pin to go below 10% of its original value. Figure 14-5 shows the setup used to measure $t_{RESPONSE(FLAG)}$.

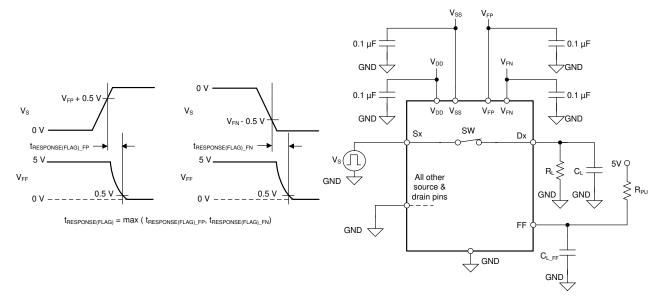


Figure 14-5. Fault Flag Response Time Measurement Setup

14.5 Fault Flag Recovery Time

Fault flag recovery time ($t_{RECOVERY(FLAG)}$) measures the delay between the source voltage falling from the overvoltage condition to below the fault supply voltage (V_{FP} or V_{FN}) plus 0.5 V and the general fault flag (FF) pin to rise above 3 V with 5 V external pull-up. Figure 14-6 shows the setup used to measure $t_{RECOVERY(FLAG)}$.

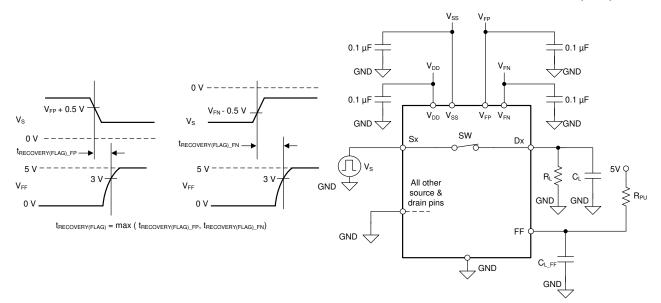


Figure 14-6. Fault Flag Recovery Time Measurement Setup

14.6 Fault Drain Enable Time

 $t_{RESPONSE(DR)}$ represents the delay between the voltage at the DR pin falling from a high to low signal and the output of the drain pin reaching 90% of the fault supplies (V_{FP} or V_{FN}). $t_{RESPONSE(DR)}$ is a measure of how quickly the internal pull-up engages in response to the DR pin. Figure 14-7 shows the setup used to measure $t_{RESPONSE(DR)}$.

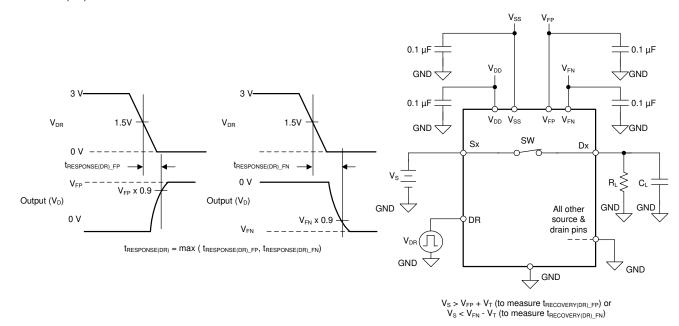
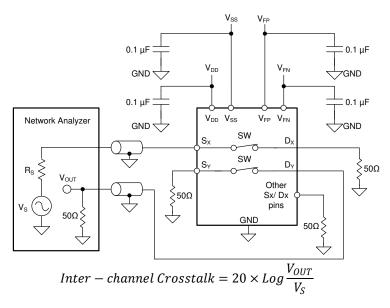



Figure 14-7. Fault Drain Enable Time Measurement Setup

14.7 Inter-Channel Crosstalk

Figure 14-8 shows how the inter-channel crosstalk ($X_{TALK(INTER)}$) is measured as the voltage at the source pin (Sx) of an on-switch input, when a 1-V_{RMS} signal is applied at the source pin of an on-switch input in a different channel.

14.8 Bandwidth

Bandwidth (BW) is defined as the range of frequencies that are attenuated by < 3 dB when the input is applied to the source pin (Sx) of an on-channel, and the output is measured at the TMUX7462F's drain pin (D or Dx). Figure 14-9 shows the setup used to measure bandwidth of the switch.

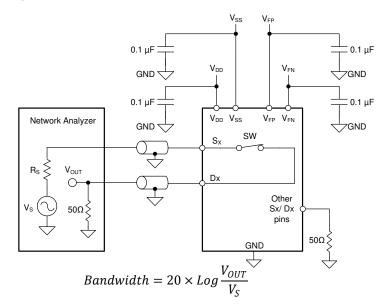
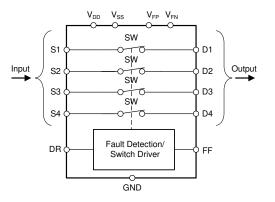


Figure 14-9. Bandwidth Measurement Setup



15 Detailed Description

15.1 Overview

The TMUX7462F is a four-channel protector that can be placed in series with the signal path to protect sensitive components downstream from overvoltage faults. The channel protector prevents overvoltages in both powered and powered-off conditions, making it suitable for applications where correct power supply sequencing cannot be precisely controlled. The powered-off condition includes floating power supplies, grounded power supplies, or power supplies at any level that are below the undervoltage (UV) threshold. The internal switch is turned-on and turned-off autonomously based on the fault situation without the need of external controls, making the device extremely easy to implement in the system. The primary supply voltages define the on-resistance profile, while the secondary supply voltages define the voltage level at which the overvoltage protection engages. The device works well with dual supplies (± 5 V to ± 22 V), a single supply (8 V to 44 V), or asymmetric supplies (such as V_{DD} = 12 V, V_{SS} = -5 V).

15.1.1 Functional Block Diagram

15.1.2 Feature Description

15.1.2.1 Flat ON-Resistance

The TMUX7462F are designed with a special switch architecture to produce ultra-flat on-resistance (R_{ON}) across most of the switch input operation region. The flat R_{ON} response allows the device to be used in precision sensor applications since the R_{ON} is controlled regardless of the signals sampled. The architecture is implemented without a charge pump so no unwanted noise is produced from the device to affect sampling accuracy.

15.1.2.2 Protection Features

The TMUX7462F offer a number of protection features to enable robust system implementations.

15.1.2.2.1 Input Voltage Tolerance

The maximum voltage that can be applied to any source input pin is +60 V or -60 V, allowing the device to handle typical voltage fault conditions in industrial applications. Take caution: the device has different maximum stress ratings across different pin combinations and are defined as the following:

1. Between source pins and supply rails: 85 V

For example, if the device is powered by V_{DD} supply of 25 V, then the maximum negative signal level on any source pin is -60 V. If the device is powered by V_{DD} supply of 40 V, then the maximum negative signal level on any source pin is reduced to -45 V to maintain the 85 V maximum rating across the source pin and the supply.

2. Between source pins and drain pin of the same channel: 85 V

For example, if the DR pin is left floating and an overvoltage voltage fault of –60 V occurs on the source pin S1, then the maximum positive voltage signal level driven on the drain pin channel D1 is 25 V to maintain the 85 V maximum rating across the source pin and the drain pin.

15.1.2.2.2 Powered-Off Protection

The source (Sx) pins of the device remain in the high impedance (Hi-Z) state, and the device performance remains within the leakage performance specifications when the supplies of TMUX7462F are removed ($V_{DD}/V_{SS} = 0$ V or floating) or at a level that is below the undervoltage (UV) threshold. Powered-off protection minimizes system design complexity by removing the need to control the system's power supply sequencing. The feature prevents errant voltages on the input source pins from reaching the rest of the system and maintains isolation when the system is powering up. Without powered-off protection, signal on the input source pins can back-power the supply rails through internal ESD diodes and cause potential damage to the system.

A GND reference must always be present to ensure proper operation. Source and drain voltage levels of up to ± 60 V are blocked in the powered-off condition.

15.1.2.2.3 Fail-Safe Logic

Fail-Safe logic circuitry allows voltages on the control input pin (DR) to be applied before the supply pins. This eliminates the need for power sequencing of the logic signals and protects the device from potential damage. The control inputs are protected against positive faults of up to +44 V in the powered-off condition, but do not offer protection against a negative overvoltage condition.

15.1.2.2.4 Overvoltage Protection and Detection

The TMUX7462F detects overvoltage inputs by comparing the voltage on a source pin (Sx) with the fault supplies (V_{FP} and V_{FN}). A signal is considered overvoltage if it exceeds the fault supply voltages by the threshold voltage (V_T).

The switch automatically turns OFF and the source pin becomes high impedance to ensures only small leakage currents flow through the switch when an overvoltage is detected. The drain pin (Dx) behavior can be adjusted by controlling the drain response (DR) pin in the following ways:

1. DR pin floating or driven above VIH:

If the DR pin is driven about VIH level of the pin, then the drain pin becomes high impedance (Hi-Z) upon overvoltage fault.

2. DR driven below V_{IL}:

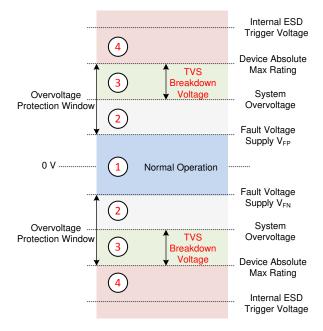
If the DR pin is driven below VIL level of the pin, then the drain pin (Dx) is pulled to the supply that was exceeded. For example, if the source voltage exceeds V_{FP} , then the drain output is pulled to V_{FP} . If the source voltage exceeds V_{FN} , then the drain output is pulled to V_{FN} . The pull-up impedance is approximately 40 k Ω , and as a result, the drain current is limited to roughly 1 mA during a shorted load (to GND) condition.

 V_{FP} and V_{FN} are required fault supplies that set the level at which the overvoltage protection is engaged. V_{FP} can be supplied from 3 V to V_{DD} , while the V_{FN} can be supplied from V_{SS} to 0 V. If the fault supplies are not available in the system, then the V_{FP} pin must be connected to V_{DD} , while the V_{FN} pin must be connected to V_{SS} . In this case, the overvoltage protection then engages at the primary supply voltages V_{DD} and V_{SS} .

15.1.2.2.5 Latch-Up Immunity

Latch-up is a condition where a low impedance path is created between a supply pin and ground. This condition is caused by a trigger (current injection or overvoltage), but once activated, the low impedance path remains even after the trigger is no longer present. This low impedance path may cause system upset or catastrophic damage due to excessive current levels. The Latch-up condition typically requires a power cycle to eliminate the low impedance path.

An insulating oxide layer is placed on top of the silicon substrate to prevent any parasitic junctions from forming in the TMUX7462F devices. As a result, the devices are latch-up immune under all circumstances by device construction.



15.1.2.2.6 EMC Protection

The TMUX7462F is not intended for standalone electromagnetic compatibility (EMC) protection in industrial applications. There are three common high voltage transient specifications that govern industrial high voltage transient specifications: IEC61000-4-2 (ESD), IEC61000-4-4 (EFT), and IEC61000-4-5 (surge immunity). A transient voltage suppressor (TVS), along with some low-value series current limiting resistor, are required to prevent source input voltages from going above the rated ±60 V limits.

It is critical to ensure that the maximum working voltage is greater than the normal operating range of the input source pins protected and any known system common-mode overvoltage that may be present due to incorrect wiring, loss of power, or short circuit when selecting a TVS protection device. Figure 15-1 shows an example of the proper design window when selecting a TVS device.

Region 1 denotes the normal operation region of TMUX7462F, where the input source voltages stay below the fault supplies V_{FP} and V_{FN} . Region 2 represents the range of possible persistent DC (or long duration AC overvoltage fault) presented on the source input pins. Region 3 represents the margin between any known DC overvoltage level and the absolute maximum rating of the TMUX7462F. The TVS breakdown voltage must be selected to be less than the absolute maximum rating of the TMUX7462F, but greater than any known possible persistent DC or long duration AC overvoltage fault to avoid triggering the TVS inadvertently. Region 4 represents the margin the system designers must impose when selecting the TVS protection device to prevent accidental triggering of the TMUX7462F devices' ESD cells.

Figure 15-1. System Operation Regions and Proper Region of Selecting a TVS Protection Device

15.1.2.3 Overvoltage Fault Flags

The voltages on TMUX7462F's source input pins are continuously monitored, and the status of whether an overvoltage condition occurs is indicated by an active low general fault flag (FF). The voltage on the FF pin indicates if any of the source input pins are experiencing an overvoltage condition. If any source pin voltage exceeds the fault supply voltages by a V_T, the FF output is pulled-down to below V_{OL}. The FF pin is an open-drain output, and external pull-up resistors of 1 k Ω are recommended. The pull-up voltage can be in the range of 1.8 V to 5.5 V, depending on the controller voltage the device interfaces with.

15.1.2.4 Bidirectional and Rail-to-Rail Operation

The TMUX7462F conducts equally well from source (Sx) to drain (Dx) or from drain (Dx) to source (Sx). Each signal path has very similar characteristics in both directions; however, it is noted that the overvoltage protection is implemented only on the source (Sx) side. The voltage on the drain is only allowed to swing between V_{FP} and V_{FN} and no overvoltage protection is available on the drain side.

The primary supplies (V_{DD} and V_{SS}) define the on-resistance profile of the switch channel, whereas the fault voltage supplies (V_{FP} and V_{FN}) define the signal range that can be passed through from source to drain of the device. It is good practice to use voltages on V_{FP} and V_{FN} that are lower than V_{DD} and V_{SS} to take advantage of the flat on-resistance region of the device for better input-to-out linearity.

15.1.3 Device Functional Modes

The TMUX7462F offer two modes of operation (Normal mode and Fault mode) depending on whether any of the input pins experience an overvoltage condition.

15.1.3.1 Normal Mode

In Normal mode operation, signals of up to V_{FP} and V_{FN} can be passed through the switch from source (Sx) to drain (Dx) or from drain (Dx) to source (Sx). The following conditions must be satisfied for the switch to stay in the ON condition:

- The difference between the primary supples $(V_{DD} V_{SS})$ must be higher or equal to 8 V.
- V_{FP} must be between 3 V and V_{DD} , and V_{FN} must be between V_{SS} and 0 V.
- The input signals on the source (Sx) or the drain (Dx) must be between V_{FP} + V_T and V_{FN} V_T .

15.1.3.2 Fault Mode

The TMUX7462F enters into the Fault mode when any of the input signals on the source (Sx) pins exceed V_{FP} or V_{FN} by a threshold voltage V_{T} . The switch input experiencing the fault automatically turns off, and the source pin becomes high impedance with negligible amount of leakage current flowing through the switch under the overvoltage condition. Section 15.1.2.2.4 describes how the drain pin (Dx) behavior under the Fault mode can be programmed. The general fault flag (FF) is asserted low in the Fault mode.

The overvoltage protection is provided only for the source (Sx) input pins. The drain (Dx) pin, if used as signal input, must stay in between V_{FP} and V_{FN} at all time since no overvoltage protection is implemented on the drain pin.

15.1.3.3 Truth Table

Table 15-1 shows the truth tables for the TMUX7462F. Each switch is independently controlled by its own select pin.

DR PIN STATE	Dx State During Fault Condition								
0	Pulled up to V_{FP} or V_{FN}								
1	Open (HI-Z)								

Table 15-1. TMUX7462F Truth Table

16 Application and Implementation

Note

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality.

16.1 Application Information

The TMUX7462F is part of the fault protected switches and multiplexers family of devices. The ability to protect downstream components from overvoltage events up to ± 60 V and latch-up immunity features makes these switches and multiplexers suitable for harsh environments.

16.2 Typical Application

The need to monitor remote sensors is common among factory automation control systems. For example, an analog input module or mixed module (AI, AO, DI, and DO) of a programmable logic controller (PLC) will interface to a field transmitter to monitor various process sensors at remote locations around the factory. A switch or multiplexer is often used to connect multiple inputs from the system and reduce the number of downstream channels.

There are a number of fault cases that may occur that can be damaging to many of the integrated circuits. Such fault conditions may include, but are not limited to, human error due to miswiring, component failure, wire shorts, electromagnetic interference (EMI), transient distrubances, and more.

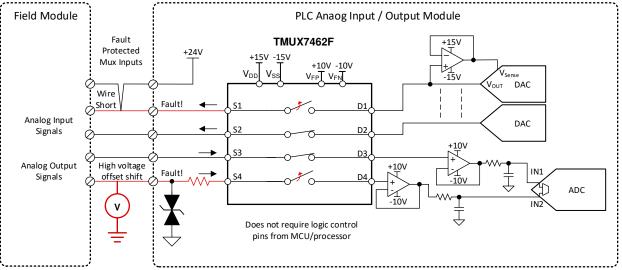


Figure 16-1. Typical Application

16.2.1 Design Requirements

PARAMETER	VALUE
Positive supply (V _{DD}) mux	+15 V
Negative supply (V _{SS}) mux	-15 V
Power board supply voltage	24 V
Input or output signal range non-faulted	-10 V to 10 V
Overvoltage protection levels	-60 V to 60 V
Control logic thresholds	1.8 V compatible, up to 44 V
Temperature range	-40°C to +125°C

Table 16-1. Design Parameters

16.2.2 Detailed Design Procedure

The TMUX7462F device's normal operation is to provide fault protection for the system while minimizing the control logic signals required to route across the PCB. The device works as a channel protector by allowing the signals to pass when in the valid voltage range, and opening the switch if there is a fault case. A fault protected switch can add extra robustness to the system against fault conditions while also reducing the number of components required to interface with the physical input channels.

The application shows two channels of the TMUX7462F connected as analog outputs and two channels connected as analog inputs to the PLC system. The analog input channels utilize the TMUX7462F to protect down stream operational amplifiers that are operating at a lower supply voltage than the multiplexer. The TMUX7462F only has overvoltage protection on the source pins, therefore these pins are connected to the external system connector on the analog output channels. If there is a miswiring or wire short issue on the connectors, the channel protector will open the switch channel to help prevent long term fault conditions from damaging the DAC.

If there is a fault condition, the drain pin of the channels can either be pulled up to the fault supply voltage (V_{FP} and V_{FN}) through a 40 k Ω resistor or be left floating depending on the state of the DR pin. This can be configured to match the system requirements on how to handle a fault condition.

17 Power Supply Recommendations

The TMUX7462F operates across a wide supply range of ± 5 V to ± 22 V (8 V to 44 V in single-supply mode). The device also performs well with asymmetrical supplies such as V_{DD} = 12 V and V_{SS} = -5 V. For improved supply noise immunity, use a supply decoupling capacitor ranging from 1 µF to 10 µF at the V_{DD} and V_{SS} pins to ground. Always ensure the ground (GND) connection is established before supplies are ramped.

The fault supplies (V_{FP} and V_{FN}) provide the current required to operate the fault protection, and thus, must be low impedance supplies. They can be derived from the primary supplies by using a resistor divider and buffer or be an independent supply rail. The fault supplies must not exceed the primary supplies as it might cause unexpected behavior of the switch. Use a supply decoupling capacitor ranging from 1 μ F to 10 μ F at the V_{FP} and V_{FN} pins to ground for improved supply noise immunity.

The positive supply, V_{DD} , must be ramped before the positive fault rail, V_{FP} , for proper power sequencing of the TMUX7462F. Similarly, the negative supply, V_{SS} , must be ramped before the negative fault voltage rail, V_{FN} .

18 Layout

18.1 Layout Guidelines

The image below illustrates an example of a PCB layout with the TMUX7462F. Some key considerations are:

- Decouple the V_{DD} and V_{SS} pins with a 1-µF capacitor, placed as close to the pin as possible. Make sure that the capacitor voltage rating is sufficient for the supplies.
- Multiple decoupling capacitors can be used if their is a lot of noise in the system. For example, a 0.1-µF and 1-µF can be placed on the supply pins. If multiple capacitors are used, placing the lowest value capacitor closest to the supply pin is recommended.
- Keep the input lines as short as possible.
- Use a solid ground plane to help distribute heat and reduce electromagnetic interference (EMI) noise pickup.
- Do not run sensitive analog traces in parallel with digital traces. Avoid crossing digital and analog traces if possible, and only make perpendicular crossings when necessary.

18.2 Layout Example

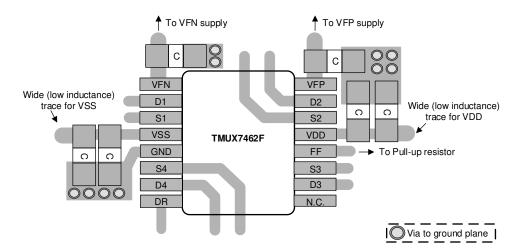
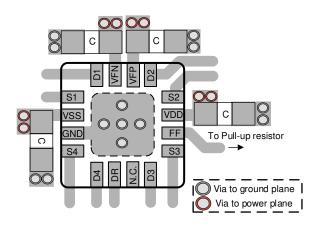



Figure 18-1. TSSOP Layout Example

19 Device and Documentation Support

19.1 Documentation Support

19.1.1 Related Documentation

- Texas Isntruments, ADS8664 12-Bit, 500-kSPS, 4- and 8-Channel, Single-Supply, SAR ADCs with Bipolar Input Ranges data sheet
- Texas Instruments, OPA140 High-Precision, Low-Noise, Rail-to-Rail Output, 11-MHz JFET Op Amp data sheet
- Texas Instruments, OPA192 36-V, Precision, Rail-to-Rail Input/Output, Low Offset Voltage, Low Input Bias Current Op Amp with e-Trim[™] data sheet

19.2 Receiving Notification of Documentation Updates

To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on *Subscribe to updates* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

19.3 Support Resources

TI E2E[™] support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.

Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

19.4 Trademarks

TI E2E[™] is a trademark of Texas Instruments. All trademarks are the property of their respective owners.

19.5 Electrostatic Discharge Caution

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

19.6 Glossary

TI Glossary This glossary lists and explains terms, acronyms, and definitions.

20 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
							(6)				
PTMUX7462FRRPR	ACTIVE	WQFN	RRP	16	3000	Non-RoHS & Non-Green	Call TI	Call TI	-40 to 125		Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

⁽⁶⁾ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (https://www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2021, Texas Instruments Incorporated